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Abstract— Unmanned Aerial Vehicles (UAVs) can charge
Wireless Rechargeable Sensor Networks (WRSNs) in remote
or hard to access locations. However, the charging efficiency is
heavily affected by the distance between the wireless transmitter
and receiver. This efficiency impacts the possible power level
increase of each charged node. Most charging algorithms
require full knowledge of sensor nodes’ power levels to identify
the nodes to charge. Collecting this power information adds
overhead to the network and limits scalability. We propose and
implement Charging with Power Transfer Efficiency Compen-
sation (CPTEC), an algorithm that charges a WRSN without
the need for a priori knowledge of the nodes’ power levels.
We show that CPTEC compensates for efficiency drops, due to
landing alignments, making it practical for real-world power
transfer scenarios. Our results show that CPTEC is able to
perform with a median at ≈ 72% of the optimal performance
of a full knowledge algorithm that assumes maximum power
transfer efficiency, while other work drops to ≈ 22%. Under
constant maximum efficiency CPTEC performs ≈ 90% of the
optimal full knowledge case.

I. INTRODUCTION

An Unmanned Aerial Vehicle (UAV) can be used to
safely and efficiently charge a Wireless Rechargeable Sensor
Networks (WRSN) in remote or dangerous environments
using wireless power transfer technology [1]. Most charging
algorithms require the full knowledge of sensor nodes’ power
levels prior to execution. As the size of WRSN increases, it
becomes increasingly difficult to collect power information
from all the nodes. Another practical limitation of charging
using wireless power transfer is power transfer efficiency.
This efficiency depends on the alignment and distance be-
tween the transmitter and receiver.

In this work, we propose and experimentally evaluate
Charging with Power Transfer Efficiency Compensation
(CPTEC) a charging algorithm, which overcomes unpre-
dictable efficiency changes when charging a WRSN and
operates with no a priori power knowledge of the network.
CPTEC utilizes probability and probabilistic bounds to elim-
inate the need for a priori knowledge. We implement this
algorithm on a UAV, with a wireless power transfer system,
and examine both simulation and field results. In this work,
we assume the charging path is already planned similar to
our previous work [2]. In a wireless power transfer system,
using resonant coupling, energy is transferred from a source
coil to a receiver coil over the non-conductive medium [3].
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Fig. 1. A UAV landing near a node leading to different actions. Stay Area
where it will charge, Retry Area where it will attempt a second landing;
Leave Area when it is better to ignore this node and travel to the next.

Typically the coils must be aligned along their axis for best
power transfer efficiency. We land a UAV on the sensor nodes
and compensate for power transfer efficiency drops due to
misalignment. The use of a UAV helps extend the reach and
speed of charging while minimizing the WRSN overhead.

A key feature of our algorithm is that it dynamically adapts
based on the measured power transfer efficiency in the field.
Figure 1 illustrates the impact of landing location on charging
efficiency. Assume a UAV is attempting to charge several
sensor nodes. The UAV lands near each node and attempts
to transfer power. In addition to efficiency, the algorithm
must take into account the available power on-board and
the sensor node’s power level. When the UAV lands, it can
initiate a short power transfer to determine the true power
transfer efficiency. Based on this it can decide to stay and
charge; try another landing to get a higher efficiency; or take-
off and not charge that node. We refer to the first case area
as the Stay Area, and it is best if the UAV stays where it
is and engages charging. The second case is the Retry Area,
where the cost of a re-land scenario is less than the cost of
low power transfer efficiency at the original landing location.
In this case, a reattempt is made in hopes to achieve a better
efficiency. The third case is the Leave Area, and it is best if
the UAV ignores this node.

The main contributions of this paper are:

• Proposing Charging with Power Transfer Efficiency
Compensation (CPTEC), an algorithm with no a priori
knowledge requirement to extend the life of a WRSN.

• Results showing CPTEC achieves 72% of the theoretical
maximum efficiency algorithm with full knowledge, and
also outperforms other approaches.

• Simulation and experiments validating the implementa-
tion of CPTEC with a UAV configured to autonomously
perform recharging.



II. RELATED WORK

Node life is one category for determining the life of a
WRSN [4]. Node life can be defined as the time until the
first sensor runs out of energy [5]; the time when the first
cluster head runs out of energy [6]; the time all the sensor
nodes run out of energy [7]; the time a percentage of the
network runs out of energy [8]. In our work we consider the
life of a WRSN as the time until a percentage of the network
runs out of energy [9].

Several works introduce mobility and robots to WRSN.
While adding cheap mobile sensors was shown to sustain
a WRSN [10], the solution did not address power transfer
efficiency. Robots are also used for data muling in WRSN
and the behaviour is very similar to charging. Data muling
can be done both on ground [11] and underwater, also
using passive visual techniques for localization [12]. Wireless
power transfer can be performed using a ground vehicle
as well [13]. When using ground vehicles, the robot travel
time cannot be ignored in comparison to the sensor nodes’
discharge rates.

As WRSN scale in size, the cost associated with collecting
energy information becomes impractical. An efficient energy
monitoring protocol was designed to address this problem
[14]. However, it requires the use of several mobile charging
robot (MCR) units and each requiring full knowledge of the
nodes’ power and the communication protocols. Full power
level knowledge is also required when solving the charging
problem as an optimization problem [15], where the solution
is to maximise the ratio between the MCR vacation time
over cycle time. Even though sensor nodes are low in energy
demand, a big portion of their energy budget is consumed by
the transceivers [16], a substantial amount of power can be
saved by reducing information relay. We address scalability
by eliminating the need for a priori energy information.

A partial knowledge adaptive approach to increase the
life of a WRSN exists [17], where representatives of nodes
are used to gain partial knowledge. An MCR adapts its
trajectories based on the energy dissipation rate of the
representatives. The solution assumes that the representatives
reflect the behaviour of nodes in their locality. While this
approach requires less information, it still requires a priori
knowledge of the representatives’ power levels.

Two zero knowledge algorithms: centralized charging
(CC) and distributed charging (DC), which utilize several
MCR units exist [18]. In both CC and DC, the MCR
exhaustively visits all the nodes in its designated or ne-
gotiated region respectively. The authors reported that both
algorithms had low performance when compared to full or
partial knowledge counterparts. This we think was due to
the exhaustive-search nature of the no-knowledge algorithms.
Our approach does not require full network exploration,
rendering it more competitive to full knowledge algorithms.

In terms of strongly coupled magnetic resonances, early
work [3] demonstrated approximately 40% efficiency. Af-
terwards, a near constant 70% was demonstrated [19] using
an adaptive auto-tuning technique. Inductive power transfer

using Class-E amplifiers can provide efficiency up to 95%
[20]. While efficiency was increased it always depends on
an optimal alignment between the transmitter and receiver
coils. This assumption cannot be guaranteed in real-world
applications, where precise landings with small UAVs is
challenging due to environmental factors such as wind.

III. PROBLEM FORMULATION

In this section, we provide the formal definition of the
no knowledge efficiency compensation wireless power trans-
fer problem. Given a wireless rechargeable sensor network
(WRSN) consisting of s sensor nodes {n1, n2, . . . , ns} and
a base station, BS . Without loss of generality, assume all
nodes have the same battery capacity, ES . Each node, ni, is
independent from the others and possesses an energy level
ei, forming a set of energy values Ne,

Ne = {e1, e2, . . . , es}. (1)

We define the life of the WRSN as the time when a
percentage of the sensor nodes reach zero residual energy.
Given a WRSN with fixed size s, the network life is then
defined as the time when k nodes reach zero residual energy.

Given Ne there exists a set of nodes Υ, when charged to
level L will lead to the maximum WRSN life extension Ψ
[2]. Without knowing Ne, charging a set of nodes υ to level
l leads to a life extension ψ, ψ ≤ Ψ. Υ is the optimal set of
nodes to charge, while υ is a subset of nodes to charge.

We use a single UAV to charge the WRSN. The UAV uses
one battery for both navigation and charging. We assume a
single UAV flight to charge the WRSN is shorter than the
time between two consecutive discharges of a sensor node.
When charging a sensor node, the UAV attempts to align its
transmission coil centre to the node’s receiver coil centre;
we refer to this process as concentric localization. We define
the power consumed to perform concentric localization as λ.

While the UAV is charging a sensor node let the power
consumed by the UAV be Λc. Not all Λc reaches the sensor
node, due to misalignment and interference. We define η as
the power transfer efficiency, that is the percentage of power
received by the sensor node while being charged by the UAV.
The node received power Λn will be

Λn = ηΛc. (2)

We define the distance between the UAV and the sensor
node n after concentric localization as dλ. The power transfer
efficiency at node n, ηn, is a function of the distance dλ, we
define Φ as the power efficiency function,

ηn = Φ(dλ). (3)

Each node will have a different dλ causing a different
η. Define ηni

as the efficiency charging node ni given its
distance dλi

, ηυ is the set of η values for each node in υ,

ηυ = {ηn1
, ηn2

, . . . ηnm
},m = |υ|. (4)

There exists an expected power transfer efficiency E(η),
based on an expected concentric localization distance E(dλ).



We define C ′ as the total expected power needed by the
UAV to charge the nodes in υ, using expected efficiency,

C ′ = u× λ+

u∑
i=1

(l − ei)
E(η)

, u = |υ|, (5)

given actual efficiencies ηυ , the actual power needed, C, is

C = u× λ+

u∑
i=1

(l − ei)
ηni

, (6)

We study the case where there is no knowledge of Ne and
we want to maximise ψ, using actual efficiency values, ηυ ,
and E(η). The objectives become:
• Finding the charging list υ and target power level l

to bring network life increase ψ close to optimal life
increase Ψ.

• Maximize ψ to bring it closer to Ψ, after knowing the
exact power transfer efficiencies ηυ and updating the
charging decisions.

IV. CHARGING WITH POWER TRANSFER EFFICIENCY
COMPENSATION (CPTEC)

In this section we present our algorithm, Charging with
Power Transfer Efficiency Compensation (CPTEC). The al-
gorithm assumes no a priori knowledge of sensors’ power
levels Ne (Equation 1). Figure 2 shows a high-level de-
scription of the algorithm flow. The algorithm explores the
WRSN by visiting nodes sequentially, and a sub-algorithm,
ANLPP, determines the end of exploration. Once explo-
ration is complete, a return and re-visit phase starts. During
this phase, the algorithm invokes an sub-algorithm to charge
sensor nodes (CHARGE). The charging algorithm determines
if visited nodes should be charged, and in turn utilizes
another algorithm to compensate for efficiency drops, DE-
TERMINENEWTARGET. Next, we describe in details CPTEC
and each sub-algorithm.

 

 

 

Visit next node 

and identify 

power levels 

Determine 

exploration 

termination 

(ANLPP) 

Charge nodes 

accounting for 

efficiency 

(Charge) 

Identify feasible nodes 

and levels 

(DetermineNewTarget) 

Revisit next node 

on the way back 

to Base 

Check Explore      Terminate 

exploration 

Reattempt       

landing 
Still in 

charge list 

      Dropped  

     from charge  

                 list 

Land  

Done  

Reach 

  Base 

Start Leave Base  

Finish 

Fig. 2. General overview of CPTEC Mission.

A. CPTEC Algorithm Flow

Our objective is to increase the overall network life,
without knowing Ne, and taking into account the impact
of power transfer efficiency η. We start with an overall

description of the mission to achieve this objective. There are
three phases to the mission: 1) Identifying the target nodes;
2) Landing on the target nodes and identifying power transfer
efficiency; 3) Determining if charging the nodes is feasible.

Algorithm 1 CPTEC
Require: N . List of node in WRSN
Require: MCR . The traversing UAV
1: procedure CPTEC
2: vNodes← empty . List of visited nodes
3: node← empty . Current node closest to UAV
4: υ ← empty . List of nodes to charge
5: l← 0 . Target power level to charge the nodes in υ
6: take-off UAV from BS

7: exploreF lag ← True . Flag indicating exploration status
8: while exploreF lag do
9: visit node, the next node in N

10: add node to vNodes
11: power ← Get MCR Power Level
12: hp← calcualte power needed to return home
13: C ← power − hp . Available power for charging
14: exploreF lag, υ, l←ANLPP(vNodes, C)
15: end while
16: while not at BS do . On the way back charge node in υ
17: visit node, the next node in N on the way back
18: if node in υ then . Current node is in charging list
19: power ← Get MCR Power Level
20: hp← calcualte power needed to return home
21: C ← power − hp . Available power for charging
22: υ, l← CHARGE(C, node, υ, l)
23: end if
24: end while
25: end procedure

Algorithm 1 shows the pseudo code to achieve the objec-
tive. The algorithm keeps track of the visited nodes vNodes.
When the UAV takes off from BS , vNodes is empty (line 2).
The algorithm instructs the UAV to visit the next node and
add it to vNodes (line 9). Next, the algorithm reserves power
to return back to BS and the power left is what can be used
for charging, C, (lines 11-13). ANLPP, Algorithm 2, then
determines if exploration should continue, if so the process
is repeated (line 14). Otherwise, the algorithm will instruct
the UAV to return to BS and commence charging while
returning. ANLPP also returns the list of nodes to charge
υ (line 14). When the UAV is above any node in υ it will
invoke CHARGE, Algorithm 3, to charge the node. Available
power for charging, C, is computed again and passed to the
CHARGE (lines 19-22). C is used for both localizing the UAV
over the node and charging the node. CHARGE, Algorithm 3,
identifies the feasibility of charging a node and performs the
charging. The mission ends once the UAV is back at BS .
Next, we describe ANLPP and CHARGE.

B. All Network Least Possible Probability (ANLPP)

In this subsection, we describe ANLPP, an algorithm that
determines the furthest beneficial exploration point of a
WRSN in the absence of knowing Ne. It utilizes probability
and a probabilistic bound derived from Chernoff bounds.
Our previous work shows that ANLPP extends the life of
a WRSN on average to 90% of what a full knowledge
algorithm can achieve. The detailed results and derived
equations can be found in our previous work [2]. However,



Algorithm 2 ANLPP
Require: vNodes . List of visited nodes
Require: C . UAV available power
Require: λ . Localization cost in terms of power
Require: minTh . Low probability threshold for the low power nodes
Require: maxTh . High probability threshold for the low power nodes
1: procedure ANLPP(vNodes, C)
2: exploreF lag ← True . Flag indicating exploration status
3: υ,C′, l← identify nodes to charge and power needed
4: powerLeft← C − C′

5: if powerLeft < power needed to reach next ndoe then
6: powerToChargeOneNode← λ+ l −min(υ)
7: if C > powerToChargeOneNode then
8: Plo ← findProbLess(min(υ))
9: Phi ← findProbLess(max(υ))

10: if Plo ≤ minTh AND Phi ≤ maxTh then
11: exploreF lag ← False
12: end if
13: else
14: exploreF lag ← False
15: end if
16: end if
17: return exploreF lag, υ, l
18: end procedure

ANLPP does not accommodate for varying power transfer
efficiency and uses a fixed efficiency assumption.

Algorithm 2 invokes a charging method to determine the
list of nodes to charge, υ, and the estimated power needed
for charging C ′ (line 3). The charging technique (line 3) is
inspired by the Greedy Plus algorithm [13]. In our charging
technique, we bring the lowest power node to the power
level of the next lowest node. Then we repeat the process
by increasing the power of now the two lowest nodes to the
power level of the next lowest node and so on. We repeat
this process until no power is left or the available power is
not enough to bring the nodes to the next power level. The
algorithm makes sure it can charge at least a single node
(lines 6-7). If there is enough power left after estimating the
charging cost the algorithm returns an indicator to continue
exploration. If it can charge several nodes without enough
power left for exploration it looks into dropping nodes from
υ (lines 7-12) in favour of exploration.

The algorithm uses probability to drop nodes from its
charging list, υ, enabling it to further explore the WRSN. By
finding Pr[X ≤ Y ], where Y is substituted with the lowest
and highest power nodes in υ and compared to a low and
high threshold respectively to make an exploration decision
(lines 8-12). The probability thresholds are identified based
on the WRSN properties and characteristics. ANLPP returns
the exploration decision exploreF lag, the nodes to charge υ,
and the target power level l they should reach. Once ANLPP
return False after visiting a node, exploration is terminated
and the UAV starts its return to BS and charges the nodes
in υ using CHARGE. Next, we describe CHARGE.

C. CHARGE

Once the UAV is above a node that is in υ, a decision
must be made to charge this node or not. ANLPP uses
an expected efficiency E(η) when identifying the nodes to
charge and an estimated charging cost C ′. In practice, the
actual efficiency may vary from E(η), Equation 3, based
on landing accuracy and disturbances. CHARGE attempts to

Algorithm 3 Charge based on efficiency
Require: C . Available power to be used for charging
Require: node . Current node to charge
Require: υ . List of nodes to charge in descending location order
Require: l . Target power level to charge the nodes in υ
Require: λ . Power cost of concentrically localizing UAV with a node
Require: E(η) . Expected power transfer efficiency
1: procedure CHARGE(C, node, υ, l)
2: C′ ← power needed to charge all nodes in υ to l
3: if C < C′ then . Not enough power to charge all nodes in υ
4: υ, l← DETERMINENEWTARGET(C, υ, l)
5: end if
6: if node in υ then . Current node still in charging list
7: Land on node
8: η ← Get efficiency based on landing data
9: ωstay ← (l − nodepower)/η + λ

10: ωreland ← (l− nodepower)/E(η) + 2λ
11: if ωreland < ωstay then . It is cheaper to re-land
12: take-off
13: υ, l← CHARGE(C − λ, υ, l)
14: else
15: Transfer power to node bringing its power up to l
16: end if
17: end if
18: return υ, l
19: end procedure

compensate for this possible efficiency difference. Given the
actual available power for charging, C, the current node
under the UAV, node, the list of nodes to charge, υ, and the
target charging level, l, CHARGE (Algorithm 3) identifies the
feasibility to charge node.

Algorithm 3 starts by estimating, C ′, the power needed to
bring the nodes in υ to the level l using E(η) (line 2). C ′ also
includes the localization cost, λ, associated with charging. If
the available power for charging, C, is less than the needed
power C ′, then the given target level l is not achievable
and must be reconsidered (lines 3-5). The algorithm invokes
DETERMINENEWTARGET that will identify a feasible target
and updates the charging list υ. Once a charging list is
feasible the algorithm charges node if it is still on the
charging list υ (line 6).

When charging node the UAV is instructed to land on
the node, this will cost the UAV λ power (line 7). Once
the UAV has landed on the target, or close to it, the actual
power transfer efficiency, η, is exactly determined (line 8).
The actual cost to charge node is then computed based on
η (line 9). Also, the cost of a take-off and landing again
over node is estimated (line 10). Based on the approach
with lowest cost the algorithm transfers power or reattempt
charging (lines 11-16). Algorithm 3 deals with charging a
single node, the possibility of updating the charging list υ,
and the target power level l as needed. Next, we describe
DETERMINENEWTARGET the algorithm responsible for the
updating of υ and l.

D. DETERMINENEWTARGET

When the available power for charging C is not enough
to charge all the nodes in υ to l then a new target level must
be identified. This is the responsibility of DETERMINENEW-
TARGET (Algorithm 4). The algorithm addresses this issue
recursively (line 9). The algorithm finds the highest power
node in υ and uses its power level as the new target l (line 5).



Algorithm 4 Determine next charging power target level
Require: C . Available power to be used for charging
Require: υ . List of nodes to charge in descending location order
Require: λ . Power cost of concentrically localizing MCR with a node
Require: E(η) . Expected landing efficiency
1: procedure DETERMINENEWTARGET(C, υ, l)
2: if υ is empty then
3: return υ, zero
4: end if
5: l← power of maximum power node in υ . New target
6: remove maximum power node from υ
7: C′ ← power needed to charge all nodes in υ to l using E(η)
8: if C′ > C then . Not enough power, reduce levels more
9: υ, l← DETERMINENEWTARGET(C, υ,)

10: end if
11: return υ, l
12: end procedure

Then this highest power node is drops from υ (line 6). Since
υ is now a smaller list the power needed to charge υ is also
reduced. It also decreases the target power, l, reducing the
power needed for each individual node in υ. After that, it
estimates the power needed to charge all the nodes in the
new υ to the new l, C ′ (line 7). If C ′ is still greater than C
then the algorithm recursively calls itself, further reducing
l and the size of υ. Otherwise, it will return the current υ
and l as a feasible solution (line 11). The algorithm has two
recursion breaking conditions; the first is when υ is empty
(line 2-3); the second is when charging υ to l is feasible.

DETERMINENEWTARGET uses expected efficiency E(η)
in its computations. While the algorithms’ proposed list, υ,
is theoretically possible and most probable, it may still fail
if the next landing results in a very low efficiency case. In
that case, the whole process is repeated and DETERMINE-
NEWTARGET will make a new decision. Next, we describe
the system we used to conduct experiments.

V. EXPERIMENTS SETUP

In this section, we describe the hardware and software
components used in our system. We also identify and explain
the models and external resources used in our experiments.

A. System Details

When conducting our power transfer experiments we used
an Ascending Technologies Firefly quadrotor UAV to carry
the transmitting coils and power system. This UAV has
a 600g payload capacity. An Odroid XU-4 computer was
mounted on the vehicle to run the algorithm and conduct
autonomous landings. The Odroid XU-4 is a single board
computer. The Odroid is equipped with an eight-core ARM
processor, and two gigabytes of memory, and both an eMMC
and a micro-SD flash storage. The Odroid is running an
Ubuntu 16.04 operating system. The autonomous code is
written in C++ running under Robot Operating System
(ROS) middleware. The vehicle is controlled using a Pro-
portional Integral Derivative (PID) controller. The control
system uses position reference points to control and navigate
the vehicle through the WRSN. When generating a WRSN
we use real-world parameters from previous works [2] [21].

As defined in Equation 3 an efficiency function must be
identified. We use the WiBotic Adaptive Wireless Charging

Fig. 3. WiBotic Distance vs Efficiency plot1.

System1. Figure 3 shows the efficiency of the WiBotic and
other systems. The power transfer efficiency is a function of
the distance between the centre of the power transmitting coil
and the power receiving coil. The transmission and receiving
coils are located on the UAV and sensor node respectively.
The diameter of our coil is 45cm.

Figure 3 shows that the WiBotic system does not peak as
high as a resonant wireless charging system. But the WiBotic
system has a larger range of operation. Both resonant and
inductive power charging reach ≈ 5% efficiency at distance
3.5 times the coil diameter. On the other hand, the WiBotic
system provides ≈ 24% efficiency at 3.5 times the coil
diameter. This enables the utilization of wireless power
transfer with a higher error in coils’ alignment.

B. Landing Experimental Setup

While GPS can be used to instruct the navigation of the
UAV, it fails to accurately position the UAV at a specific
location. In order to achieve high power transfer efficiency,
a sub-meter accuracy is needed to locate a sensor node. The
2017 official GPS Performance Analysis Report for the Fed-
eral Aviation Administration reported the R95 average errors
is in the three-meter range [22]. The vehicle manufacturer
also reports a drift of ±2m. We compensate for this GPS
error by using visual localization.

We implemented visual localization using both colour
segmentation and shape detection. The camera we used is
an mvBlueFox-MLC model manufactured by Matrix Vision.
The camera is mounted underneath the vehicle, connected to
the Odroid via USB. The camera provides 8-bit red green
blue (RGB) images. Because hue saturation value (HSV) is
closer to human perception of colours [23], the image colours
are mapped to an HSV colour space. After computing HSV
values for each pixel, the image is thresholded to identify
areas of colour interest. Thresholds were set up based on
actual colour readings of printed markers placed over the
target locations. A thresholded image is shown in Figure 4,
middle. We approach the known coordinates of a sensor
using GPS, then search the area to identify the target. The
target is identified by a centre and a radius, that is passed

1Wibotic wireless power, radio frequency safety, CoMotion Labs,
4545 Roosevelt Way NE, Suite 400, Seattle, WA, 98105-4721 (2017)
http://www.wibotic.com/wireless-power/



Fig. 4. Left: The vehicle used for wireless power transfer. An image going through the visual localization method. Middle: image after conversion and
thresholds. Right: the projected centre and radios back on original image

on to the landing control code. An imposed target over the
original image can be seen in Figure 4, right.

C. CPTEC Experiments Setup

In our field experiments, we generate a WRSN of size 150
nodes. Nodes are then visited to identify their power levels.
Once the algorithm identifies the furthest point of exploration
the set of nodes to charge, υ, is identified. Finally, the UAV
returns back to BS , and on the way back it charges the nodes
in υ. The size of υ, in our field experiment, was found to be
11 nodes. To ease experiment setup and evaluation, instead of
having 11 different nodes, the UAV landed on the same node
11 times. Between landings, the UAV travelled the distance
between two nodes. We evaluate two charging algorithms:
ANLPP with static landing, and CPTEC. First, we consider
ANLPP with static landing, where the UAV lands on a node
and identifies a charging efficiency then uses this charging
efficiency to charge the node. The second approach uses
CPTEC, where efficiency compensation is conducted. When
CPTEC is invoked the UAV may charge a node, attempt re-
landing or skip a node.

D. CPTEC Simulation Setup

In our simulations, we evaluate the performance of four
approaches to charging with lack of a priori power knowl-
edge. We assess the performance of each algorithm to an
optimal full knowledge algorithm with maximum power
transfer efficiency additional details on the optimal algorithm
can be found in our previous work [2]. The four algorithms
are Naive, Min, ANLPP, and CPTEC. All algorithms explore
the WRSN and identify nodes to charge then return back to
the base station and charge nodes on the way back. Naive
computes the amount of power needed to charge the nodes
it visits. Once it runs out of power to charge more nodes it
terminates exploration and returns. Min will keep exploring
until it identifies a minimum power node in the list of nodes
it should charge. Once it finds a minimum power node,
based on a predefined threshold, it terminates exploration and
returns to base. ANLPP does not compensate for efficiency
drops, while CPTEC does.

VI. EXPERIMENT RESULTS

In this section, we show the results of field and simulation
experiments. We start with landing characterization experi-
ments, then conduct field experiments. We finally, use the
data from real landings to perform additional simulations.

A. Landings

While CPTEC does not require the knowledge of sensor
nodes’ power levels, Ne, the algorithm does need the ex-
pected power transfer efficiency E(η). Since power transfer
efficiency, η, is a function of landing distance, λ, Equation 3.
In order to identify E(η), we need to find E(dλ). Landings
are characterized to determine E(dλ).

Our first set of experiments characterize landing distances.
We then use the landing distances to compose a landing
probability distribution function (PDF). Using the PDF we
can determine the expected landing distance E(dλ). Figure 5
shows the landing PDF gained from attempting 60 landings
in winds varying between 0.2 − 4.5 m/s and measuring the
distance away from the target. The figure shows a peak close
to the 1D, a coil diameter distance ≈ 45cm. The resulting
mean from all landings is 81.8cm, this is E(dλ).

By applying Equation 3, we use E(dλ) to determine the
expected power transfer efficiency E(η). We use Figure 3 as
Φ. We find that E(η) is 69.08%. With the expected efficiency,
E(η), identified we proceed with the experiments.
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Fig. 5. Top: Landing probability distribution. Bottom: Landing power
transfer efficiency. The red line indicates the mean value.

B. CPTEC Results

Figure 6, shows each node in υ with its power level before
and after charging. A node is represented with a bar that is
split in two, each part represents the behaviour under each
charging algorithm. The nodes are ordered by their distance
from BS , where a sensor node with lower ID is closer to BS .
At the top of each node the action taken by the algorithm
can be seen, where C indicates the node is charged at first
landing, L means the algorithm decided to leave this node.



R indicates the algorithm decided to re-land, and the node
is either charged or not based on the second landing.

Figure 6 shows the results of running CPTEC in the field.
We compare the behaviour of CPTEC and ANLPP with static
landing. It can be seen that ANLPP with static landings
clearly failed to charge all the nodes in υ. ANLPP with static
landing charged the fifth node (ID 7), in υ on its way back,
even though it had a near zero efficiency. Charging the fifth
node (ID 7) drained all the available charging power and
prevented it from charging the other nodes. While CPTEC
decides to drop the fifth node, as well as the ninth node
(ID 3) and charged the rest of the nodes. CPTEC also
determined that re-landing was a better option three times.
One of the re-lands resulted in a better efficiency enabling
the charge of node 6. The other two re-landings resulted
in worse efficiency causing the abandonment of nodes one
and two. CPTEC was able to charge nine out of 11 nodes,
while ANLPP with static landing was only able to charge
five nodes. This shows the ability of CPTEC to overcome
and compensate for low-efficiency power transfer cases.
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Fig. 6. Field results of charging nodes in υ using CPTEC & ANLPP static
landing, L indicates Leave Area, R is Retry Area, C is Stay Area.

C. CPTEC Simulation Results

We generate one million random WRSN of size 150 nodes
each. For each network, we run an optimal full knowledge
charging algorithm that determines the maximum possible
network life increase. We run each of the four algorithms
on the same WRSN and record the performance of each
algorithm. Our first set of experiments assume an optimal
landing on each sensor node producing a maximum power
transfer efficiency. We show simulation results in Figure 7,
left. Figure 7, left, shows that both ANLPP & CPTEC
are able to perform with a median of 90% of what a
full knowledge optimal algorithm can achieve. The Naive
algorithm fails since it runs out of power to explore in favour
of charging the few nodes it encounters in the beginning.
Min algorithm does perform a bit better, it makes sure to
charge at least a single low power node. But it wastes power
charging nodes that are not part of the optimal set of nodes
to charge. CPTEC and ANLPP perform identically when the
power transfer efficiency is the best possible.

We repeat the simulation experiments but use simulated
landings. We use the landing PDF from Figure 5. Using
Equation 3 efficiency η is determined for each charging. Each
algorithm’s performance is shown in Figure 7, right.

Fig. 7. Left: Performance of the four charging algorithms using maximum
efficiency for each landing. Right: Performance of the four charging
algorithms when landings produce different efficiencies. Red line represents
the median and the blue dotted line represents the mean.

Figure 7, right, shows the impact of varying efficiency
on each algorithm, compared to the left figure, as well as
the algorithms compared to each other. Each algorithm’s
individual performance drops. While ANLPP drops the most
in comparison, CPTEC not only maintains performing higher
than all the other algorithms, 72%, it also suffers the least
drop in overall performance.
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Fig. 8. Top: A simulate WRSN being charged by UAV. Middle: Charging
energy left on-board UAV over each node. Bottom: Power transfer efficiency
at each node.

Finally, we examine a single WRSN charging simulation.
Figure 8 demonstrates both CPTEC and ANLPP with static
landing charging a WRSN. CPTEC drops the third node it
encounters (node 11) due to low efficiency and available
charging power level. When CPTEC encounters node 5 it
finds nearly zero efficiency that leads it to discard this node.
On the other hand, ANLPP with static landing commences
charging in spite of near zero charging efficiency, and this
leads to losing all the UAV charging power. Figure 8 shows



that charging node 5 leads to near zero power for ANLPP
while ignoring this node only costs CPTEC the landing cost.
CPTEC still dropped another node due to not having enough
power left to charge all the remaining nodes. While CPTEC
was still not able to charge all the nodes in υ, it significantly
outperformed the static land and charge approach. Sacrificing
some nodes proved to be very beneficial.

VII. CONCLUSION AND FUTURE WORK

In this work, we presented Charging with Power Transfer
Efficiency Compensation (CPTEC) a WRSN charging algo-
rithm. CPTEC operates in the absence of a priori sensor
nodes’ power level knowledge and compensates for power
transfer efficiency loss, due to real landings. We showed that
our solution can increase the life of a WRSN on average
to 72% of a theoretical optimal solution that assumes full
knowledge and a constant maximum efficiency. CPTEC also
achieved 90% of optimal under constant efficiency, similar to
our previous work ANLPP [2]. On the other hand, ANLPP
drops to almost 22% with varying efficiency.

We used an off the shelf UAV and a commercially avail-
able wireless power transfer system with real-world operation
parameters [21]. We used visual and GPS data to control the
descent of the UAV on the sensor. We conducted simulations
to demonstrate the improvement in performance with and
without efficiency drops. Our results showed a promising and
practical solution to increase the life of large-scale WRSN.

The next steps are to incorporate a larger vehicle, create
a test bed of sensors, and investigate the impact of no
power information delegation alone on the life of a WRSN.
In addition, we plan to investigate the impact of changing
network parameters, and conduct a competitive analyses.
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