
Adaptive Decentralized Control of Underwater Sensor Networks
for Modeling Underwater Phenomena

Carrick Detweiler†1, Marek Doniec†, Mingshun Jiang?, Mac Schwager†,
Robert Chen?, Daniela Rus†

†CSAIL MIT ?UMass Boston

{carrick, doniec, schwager, rus}@csail.mit.edu {mingshun.jiang, bob.chen}@umb.edu

Abstract
Understanding the dynamics of bodies of water and their

impact on the global environment requires sensing informa-
tion over the full volume of water. We develop a gradient-
based decentralized controller that dynamically adjusts the
depth of a network of underwater sensors to optimize sensing
for computing maximally detailed volumetric models. We
prove that the controller converges to a local minimum. We
implement the controller on an underwater sensor network
capable of adjusting their depths. Through simulations and
experiments, we verify the functionality and performance of
the system and algorithm.
Categories and Subject Descriptors

C.3 [Special-Purpose and Application-Based Sys-
tems]: Microprocessor/microcomputer application; C.4
[Performance of Systems]: Measurement techniques; J.2
[Physical Sciences and Engineering]: Earth and atmo-
spheric sciences
General Terms

Algorithms, Design, Experimentation, Measurement
Keywords

Depth Adjustment, Ocean, Sensing, Sensor Network

1 Introduction
Over 70% of the world is covered in water. Sensing just

the surface of the rivers, lakes, and oceans provides a huge
challenge to scientists. To more fully understand the dynam-
ics of these bodies of water and their impact on the global en-
vironment, we must understand them at all depths, not just on
the surface. Collecting sufficient data to understand the full
water environment requires either high density placement of
sensors or autonomous motion of sensors, both of which are
incredibly challenging in underwater environments.

1Now at the University of Nebraska–Lincoln.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is premitted. To copy otherwise, to republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee.
SenSys’10, November 3–5, 2010, Zurich, Switzerland.
Copyright 2010 ACM 978-1-4503-0344-6/10/11 ...$10.00

Figure 1. Boston Harbor bathymetry and grid for hydro-
dynamic model.

Current systems for studying the dynamics of water bod-
ies at multiple depths fall into three categories: (1) static sen-
sor buoys; (2) ships/ROVs/AUVs; and (3) water column pro-
filers. The first two cannot be deployed in a sufficient density
to cover the full water volume due to cost; the latter lacks the
autonomy and communications to cover unknown and dy-
namic bodies of water. Solving this requires algorithms and
systems that enable adaptive and decentralized sensing.

In this paper, to solve this, we develop, analyze, and test
a decentralized, adaptive algorithm for positioning an un-
derwater sensor network. Our sensor network nodes dy-
namically adjust their depths through a new decentralized,
gradient-descent based algorithm with guaranteed proper-
ties. The dynamic depth adjustment algorithm runs online,
which enables the nodes to adapt to changing conditions
(e.g. tidal) and does not require a-priori decisions about node
placement in the water. Through neighbor communication
the algorithm collaboratively optimizes the nodes’ depths for
sensing in support of computing maximally detailed volu-
metric models. We prove the controller algorithm converges
to a local minimum. Through simulations and experiments
on our AQUANODE hardware platform, we show the local
minimum is near the global minimum of the system; often
the local minimum equals the global.

We apply the algorithm to the problem of monitor-
ing chromophoric dissolved organic matter (CDOM) in the
Neponset River that feeds into Boston harbor (see Figure 1).
CDOM is part of the dissolved organic matter in rivers,

lakes, and oceans. An understanding of CDOM dynamics
in coastal waters and of its resulting distribution is important
for remote sensing and for estimating light penetration in the
ocean. In this paper we simulate positioning sensors along
the Neponset River and adjusting their depths to optimize
the sensing of CDOM as it is discharged into Boston harbor.
We also use the CDOM model as input for a four-node test
deployment in the Charles River.

The decentralized controller positions the nodes so they
are in good locations to collect data to model the values of the
system over the whole region, not just the particular points
where there are sensors. The sensor nodes use a covariance
function that describes the relationship between the possible
positions of the sensor nodes and the whole region of inter-
est. As a first pass, we model the covariance as a multivariate
Gaussian, as is often used in objective analysis in underwater
environments [25]. We also compute a numeric covariance
for the Neponset River based on data from a numerical model
of the river. The model is based on readings from a few spe-
cific sensor locations and is extended to all points in the river
using a physics-based hydrodynamic model [21].

The algorithm assumes a fixed covariance model, how-
ever, we show in a river test that the algorithm can be it-
erated with different covariance models to capture dynamic
phenomena. In the Neponset River, the concentration of
CDOM is highly dependent on the tide level, which causes
river level variations of about 2m. The physics-based model
lets us numerically compute the covariance of the CDOM
readings in the Neponset River based on different tide levels.
The nodes adjust their covariance model, and therefore their
depths, based on the tide charts. The model data is accurate
on average, however, it may not accurately capture small-
scale temporal and spatial variations. The sensor nodes and
algorithm fill this gap and provide detailed measurements at
informative locations. Over time, the physics-based CDOM
model can be enhanced by using the new measurements.

The controller uses the covariance in a decentralized gra-
dient descent algorithm. We implement this solution in sim-
ulation and on our AQUANODE underwater sensor network
that has depth adjustment capabilities and test it in the lab,
pool, and river. The algorithm requires very little commu-
nication, allowing each node to only send its own depth in-
formation, as well as providing fault tolerance in instances
where packets are lost. Both are important in underwater
sensor networks that can only communicate acoustically–a
low bandwidth (300b/s) and limited reliability (<50% packet
success) communication method. Our algorithm has limited
memory and computation requirements allowing it to run in
real-time on our power efficient sensor network.

We introduce our underwater sensor network in Section 2.
We then discuss the model of the river and ocean environ-
ment, and its importance for scientific understanding in Sec-
tion 3. We next introduce and analyze our decentralized
depth controller algorithm in Section 4. Section 5 explores
results of simulations, pool, and river experiments. We then
analyze and discuss issues related to parameters, placement,
and implementation in Section 6. This is followed by a dis-
cussion of related work in Section 7. Finally, we discuss
future work and conclude in Section 8.

assembled winch

timing belt

motor

spool with
fishing line

glass thrust
bearing

transducer magentic
couplers

Figure 2. Depth adjustment system and AQUANODE.

2 Underwater Sensor Network Platform
We have developed an inexpensive underwater sensor

network system that incorporates the ability to dynami-
cally adjust its depth. The base sensor node hardware is
called the AQUANODE platform and is described in detail
in [13, 15, 35]. We have extended this basic underwater
sensor network with autonomous depth adjustment ability
and created a five node sensor network system, whose nodes
move up and down in the water column under their own con-
trol. Each node costs under two thousand dollars. Here we
will briefly summarize the system and describe some details
of the winch-based depth adjustment system.

Figure 2 shows a picture of two AQUANODES with the
depth adjustment hardware. The AQUANODE operating
system runs on an NXP LPC2148 ARM7TDMI processor
clocked at 60MHz. This processor has 40kB of ram and
512kB of on-chip flash. A SD card slot allows logging of
gigabytes of data onboard. Each node has a pressure and
temperature sensor as well as inputs for both analog and dig-
ital sensors connected via an underwater connect. Examples
of sensors we have connected include CDOM, salinity, dis-
solved oxygen, and cameras.

The main communication system we use is a custom de-
veloped 10W acoustic modem [15]. The modem uses a
frequency-shift keying (FSK) modulation with a 30KHz car-
rier frequency and has a physical layer baud rate of 300b/s.
The MAC layer is a self-synchronizing TDMA protocol with
4 second slots. In each slot the master can send a packet
and receive a response from one other sensor node. Each
packet contains 11 bytes of payload. The acoustic modems
are also able to measure distances between pairs of nodes. In
previous work we have demonstrated how this can be used
to localize static and mobile nodes in the underwater net-
work [14]. We can use this capability to determine the posi-
tions of the nodes in our experiments.

The AQUANODES have lithium-ion batteries which have
60Whr of energy. In its lowest power mode (about 8mW)
this is sufficient for about a year of standby time. In full
sensing mode the AQUANODE uses about 150mW which al-
lows for two weeks of full sensing (reading recorded at least

once a second). With frequent acoustic communication it
uses about 1W allowing for an operation time of about two
days. The depth adjustment system typically uses under 1W
allowing for continuous depth adjustment for over two days.
By varying the duty cycle of the sensing, communication,
and motion the desired deployment time can be achieved.

The AQUANODE is anchored at the bottom and floats
mid-water column. The depth adjustment system allows the
length of anchor line to be altered to adjust the depth in the
water. The AQUANODE is cylindrically shaped with a di-
ameter of 8.9cm and a length of 25.4cm without the winch
mechanism and 30.5cm with the winch attached. It weighs
1.8kg and is 200g buoyant with the depth adjustment system
attached. The depth adjustment system allows the AQUAN-
ODES to adjust their depth at a speed of up to 0.5m/s and use
approximately 1W when in motion.

The winch is driven by a 1.5A motor controller with a
software quadrature decoder. This is connected to a 1.95 watt
Faulhaber motor, which connects to a custom designed mag-
netic coupler. The magnetic coupler transmits drive power
from the inside of the housing to the outside without need-
ing to penetrate the housing with a shaft. This has a number
of advantages. First, there is no chance of leaking. Second,
this allows the external components of the winch to be eas-
ily removed. Finally, the magnetic coupler is compliant to
misalignments of the two sides of the coupler.

The external magnetic coupler attaches directly to the
spool on which the anchor line is wound via an aluminum
shaft. Bronze bushings support the shaft in order to allow it
to spin with low-friction. Since the anchor line winds per-
pendicular to the shaft, three delrin pulley wheels guide and
redirect the anchor line. These provide a low-friction method
for properly aligning the anchor line on the spool. We use
30lb test fishing line as the anchor line on the spool and it
holds over 50 meters of line.

3 Modeling Underwater Phenomena
One prominent phenomenon in coastal oceans is the exis-

tence of tidal fronts, which are located at the meeting place
of freshwater and oceanic water, normally determined by the
strongest salinity gradient. Such fronts are typically associ-
ated with high concentrations of suspended sediments and
hence with high turbidity, so-called the maximum turbid-
ity zone (MTZ) [30]. The frontal zones also tend to be bi-
ologically active areas attracting zooplankton and fish lar-
vae due to turbulent mixing and physical retention [16, 29].
For a small river, the flow may be approximated as two-
dimensional (one vertical and one along the river channel),
and hence the front can be approximated as a thin line from
the surface tilting down to the bottom with a vertical thick-
ness about 10s of cm. The frontal position is determined by
the river flow and tidal movement, but is moving back and
forth along with tidal flow. In Neponset River, the dominant
period of frontal movement is 12.4 hrs., controlled by the M2
tide component.

Underwater sensor networks enable detecting and mea-
suring the tidal front in Neponset River in conjunction with a
numerical model. The model we use in this paper was de-
veloped for Boston Harbor (BH), based on the Estuarine,

Coastal, Ocean Model (ECOM-si) with Mellor and Yamada
2.5 turbulent closure for the vertical mixing [8, 7, 33]. The
model domain covers the entire BH (over 500km2) and a
part of the Massachusetts Bay (MB) with a grid resolution
around 70m (Figure 1). The model was forced by surface
winds and heat fluxes derived from measurements at NOAA
buoy 44013 in western MB, and freshwater discharges at the
USGS gauges, and boundary forcing (tides, currents, temper-
ature and salinity) derived from the model output of the MB
hydrodynamic model [21]. The model captures the general
dynamic processes including tidal cycle, seasonal develop-
ment of stratification, and wind- and river-driven circulation.

We are particularly interested in CDOM, which is the op-
tically active component of the total dissolved organic mat-
ter in the oceans. In estuaries, CDOM is mostly produced
in fringing marshes and exported through freshwater dis-
charges and hence it is closely tied to salinity with nearly lin-
ear salinity-CDOM mixing curves [17]. Additional sources
(sinks) from mid-estuary production (removal) will make the
mixing curve concave upward. An understanding of CDOM
dynamics in coastal waters and of its resulting distribution is
important for remote sensing and for estimating light pene-
tration in the ocean [10, 5, 6].

Improved understanding of CDOM dynamics requires
sensor networks measuring the Neponset River. To en-
sure a reasonable dataset is collected we can use our nu-
merical model to inform the decentralized control algorithm
with depth adjustment. Using this information allows better
placement for sensing. The collected data can then be used
to calibrate and further improve the Boston Harbor model.
In turn, better models will allow improved placement of the
nodes for collecting sensory information. We now detail the
decentralized control algorithm that can use covariance data
derived from these models of the CDOM concentration in
the Neponset River.

4 Decentralized Control Algorithm
In this section we give the intuition behind the approach,

formulate the problem, develop a general decentralized con-
troller, introduce a Gaussian covariance function, and define
the controller in terms of the covariance function. We also
prove the convergence of the controller and provide a sensor
network implementation.

4.1 Problem Formulation and Intuition
Given N sensors at locations p1 · · · pN we want to opti-

mize their positions for providing the most information about
the change in the values of all other positions q∈Q, where Q
is the set of all points in our region of interest. We are espe-
cially interested in the case where the motion of the sensors,
pi, is constrained to some path P(i). In the case of our un-
derwater sensor network the nodes are constrained to move
in 1D along z with fixed x,y.

Intuitively, the best positions to place the sensors are po-
sitions that tell us the most about other locations. Consider
the case with one sensor at position p1, and one point q1 of
interest. We want to place p1 at the location along its path
that is closest to q1. At this position any changes in the sen-
sory value at q1 are highly correlated to observed changes we
measure at p1. This correlation is captured by covariance, so

Figure 3. Dashed lines are the motion constraints on the
AQUANODE motion, green circles are the points of sensor
interest. Solid lines and the labels indicate the covariance
between the point of interest and the indicated sensor.

the sensor should be placed at the point of maximum covari-
ance with the point of interest. Or more formally, position
p1 such that the Cov(p1,q1) is maximized.

More generally, we want to maximize the covariance be-
tween the point of interest q1 and all sensed points pi by
moving all pi to maximize:

argmax
pi

N

∑
i=1

Cov(pi,q1) (1)

This is for the case of one point q1, if we have M points of
interest in the region Q, we can add an additional sum over
the points of interest:

argmax
pi

M

∑
j=1

N

∑
i=1

Cov(pi,q j) (2)

This objective function, however, has the problem that some
areas may be covered well, while others are not covered. Fig-
ure 3 shows the case with three sensors, p1, p2 and p3, cov-
ering two points, q1 and q2. For this example we assume that
p1 and p3 are fixed and look at the effect of moving p2. Both
configurations in Figure 3 yield an objective function value
of .5+ .5+ .5 = 1.5. This contradicts the intuition that the
configuration on the right is better.

To prevent the problems associated with Equation 2 and
illustrated in Figure 3 we need to ensure that the objective
function penalizes regions that are already covered by other
nodes. We achieve this by modifying the objective function
to minimize:

argmax
pi

M

∑
j=1

(
N

∑
i=1

Cov(pi,q j)

)−1

(3)

Instead of maximizing the double sum of the covariance, this
objective function minimizes the sum of the inverse of the
sum of covariance. This reduces the increase in the sensing
quality achieved when additional nodes move to cover an al-
ready covered region.

This changes the example at left in Figure 3 to give an ob-
jective value of (.5+ .5)−1 + .5−1 = 3. It changes the right
side in Figure 3 to (.5+ .25−1 +(.5+ .25)−1 = 2 2

3 . Our new
minimization of the objective function will select the right-
most configuration in Figure 3, which is intuitively better.

To extend this to optimize placement for sensing every
point in the region, we modify the objective function to inte-
grate over all points q in the region Q of interest:

∫
Q

(
N

∑
i=1

Cov(pi,q)

)−1

dq (4)

4.2 Objective Function
The objective function, g(q, p1, ..., pN), is the cost of sens-

ing at point q given sensors placed at positions p1, ..., pN . For
N sensors, we define the sensing cost at a point q as:

g(q, p1, ..., pN) =

(
N

∑
i=1

f (pi,q)

)−1

(5)

This is the inside of Eqn 4 when f (pi,q) =Cov(pi,q).
Integrating the objective function over the region of in-

terest gives the total cost function. We call this function
H (p1, ..., pN) and formally define it as:

H (p1, ..., pN) =
∫

Q
g(q, p1, ..., pN) dq+

N

∑
i=1

φ(pi) (6)

where Q is the region of interest. The sum over the function
φ(pi) is a term added to prevent sensors from trying to move
outside of the water column. We need this restriction on the
node’s movement to prove convergence of the controller for
this cost function. Specifically, we define φ(pi) as:

φ(pi) =

(
zi− (di/2)

di/2

)β

(7)

where di is the depth at the location pi and β is even and
positive. The φ(pi) component causes the cost function to be
very large if a sensor is placed outside of the water column.
4.3 General Decentralized Controller

Given the objective function in Equation 6, we wish to
derive a decentralized control algorithm that will move all
nodes to optimal locations making use of local information
only. We derive a gradient descent controller which is local-
ized, efficient, and provably convergent.

Our goal is to minimize H (p1, ..., pN), henceforth re-
ferred to as H . To do this we start by taking the gradient
of H with respect to each of the zis:

∂H
∂zi

=
∂

∂zi

∫
Q

g(q, p1, ..., pN) dq+
∂

∂zi

N

∑
j=1

φ(p j)

=
∫

Q
−g(q, p1, ..., pN)

2 ∂

∂zi
f (pi,q) dq+

∂

∂zi
φ(pi) (8)

Next, we take the partial derivative of φ(pi) and find:

∂

∂zi
φ(pi) =

∂

∂zi

(
zi− (di/2)

di/2

)β

= β

(
zi− (di/2)

di/2

)β−1

(9)

To minimize H we move each sensor in the direction of
the negative gradient. Let ṗi be the control input to sensor i.
Then the control input for each sensor is:

ṗi =−k
∂H
∂zi

(10)

where k is some scalar constant. This provides a general con-
troller usable for any sensing function, f (pi,q). To use this
controller we next present a practical function for f (pi,q).

4.4 Gaussian Sensing Function
We use the covariance between points pi and q as the

sensing function:

f (pi,q) =Cov(pi,q) (11)

In an ideal case we would know exactly the covariance
between the ith sensor and each point of interest, q. As this
is not possible, we have chosen to use a multivariate Gaus-
sian as a first-approach approximation of the sensing quality
function. Using a Gaussian to estimate the covariance be-
tween points in underwater systems is common in objective
analysis [25]. In Section 5.1 we show how to numerically
estimate the covariance given real or modeled data.

We define the Gaussian to have different variances for
depth (σ2

d) and for surface distance (σ2
s). This captures the

idea that quantities of interest (e.g. algae blooms) in the
oceans or rivers tend to be stratified in layers with higher
concentrations at certain depths. Thus, the sensor reading at
a position pi and depth d is likely to be similar to the read-
ing at position q if it is also at depth d. However, sensor
readings are less likely to be correlated between two points
at different depths. Thus, the covariance function is a three-
dimensional Gaussian, which has one variance based on the
surface distance and another based on the difference in the
depth between the two points.

Let f (pi,q) = Cov(pi,q) be the sensing function where
the sensor is located at point pi = [xi,yi,zi] and the point of
interest is q = [xq,yq,zq]. Define σ2

d to be the variance in
the direction of depth and σ2

s to be the variance in the sens-
ing quality based on the surface distance. We then write our
sensing function as:

f (pi,q) =Cov(pi,q) = Ae
−
(

(xi−xq)2+(yi−yq)2

2σ2
s

+
(zi−zq)2

2σ2
d

)
(12)

where A is a constant related to the two variances, which can
be set to 1 for simplicity.

4.5 Gaussian-Based Decentralized Controller
We take the partial derivative of the sensing function from

Equation 12 to complete the gradient of our objective func-
tion shown in Equation 8. The gradient of the sensing func-
tion ∂

∂zi
f (pi,q) is:

∂

∂zi
f (pi,q) =

∂

∂zi
Ae
−
(

(xi−xq)2+(yi−yq)2

2σ2
s

+
(zi−zq)2

2σ2
d

)

=− f (pi,q)
(zi− zq)

σ2
d

(13)

Substituting this into Equation 8, we get the objective
function:

∂H
∂zi

=−
∫

Q

(
N

∑
j=1

f (p j,q)

)−2
∂

∂zi
f (pi,q)−1 dq+

∂

∂zi
φ(pi)

=
∫

Q
g(q, p1, ..., pN)

2 f (pi,q)
(zi− zq)

σ2
d

dq+
∂

∂zi
φ(pi)

(14)

4.6 Controller Convergence
To prove that our gradient controller (equation 10) con-

verges to a critical point of H , we must show [9, 23, 31]:
1. H must be differentiable;
2. ∂H

∂zi
must be locally Lipschitz;

3. H must have a lower bound;
4. H must be radially unbounded or the trajectories of the

system must be bounded.
While this assures convergence to a critical point of H , small
perturbations to the system will cause the gradient controller
to converge to a local minimum and not a local maximum or
saddle point of the cost function [31].
Theorem 1. The controller −k ∂H

∂zi
converges to a critical

point of H . In other words as time, t, progresses the output
of the controller will go to zero:

lim
t←∞
−k

∂H
∂zi

= 0 (15)

PROOF. We show that the objective function satisfies the
conditions outlined above. In Section 4.5 we determined
the gradient of H , satisfying condition 1. ∂H

∂zi
has a locally

bounded slope, meaning it is locally Lipschitz and satisfies
condition 2.

To show that H is bounded below, to satisfy condition 3,
consider the composition of the objective function:

H (p1, ..., pN) =
∫

Q
g(q, p1, ..., pN) dq+

N

∑
i=1

φ(pi) (16)

The ∑φ(pi) term is the sum of a number raised to an even
power and is clearly bounded below by zero. Expanding the
notation in the integral term we can see:∫

Q
g(q, p1, ..., pN) dq =

∫
Q

(
N

∑
j=1

f (p j,q)

)−1

dq (17)

and f (p j,q) is a Gaussian, which is always positive. The
integral and sum of positive terms is also positive. Thus, both
terms and therefore H are bounded below by zero, satisfying
condition 3.

Unfortunately, H is not radially unbounded. However,
the trajectories of the system are bounded, satisfying condi-
tion 4. To see this note that the trajectories of our system
are along the z axis. Equation 7 defines the ∑φ(pi) term.
By choosing a sufficiently large β the cost of moving out-
side of the column overcomes any potential sensing advan-
tage gained by moving outside as the integral term of H is
bounded below.

Thus, we have satisfied all the conditions for controller
convergence, proving our controller −k ∂H

∂zi
converges.

4.7 Implementation
Algorithm 1 shows the implementation of the decentral-

ized depth controller (Equation 8) in pseudo-code. The pro-
cedure receives as input the depths of all other nodes in
communication range. The procedure requires two func-
tions F(p_i,x,y,z) and FDz(p_i,x,y,z). These func-
tions take the sensor location, pi, and the point, [x,y,z], that

we want to cover. The first function, F(p_i,x,y,z), com-
putes the covariance between the sensor location and the
point of interest. The second function, FDz(p_i,x,y,z),
computes the gradient of the covariance function with re-
spect to z at the same pair of points.

Algorithm 1 Decentralized Depth Controller
1: procedure UPDATEDEPTH(p1 · · · pN)
2: integral← 0
3: for x = xmin to xmax do
4: for y = ymin to ymax do
5: for z = zmin to zmax do
6: sum← 0
7: for i = 1 to N do
8: sum+= F(p_i,x,y,z)
9: end for

10: integral+= −1
sum2 ∗ FDz(p_i,x,y,z)

11: end for
12: end for
13: end for
14: delta = K ∗ integral
15: if delta > maxspeed then
16: delta = maxspeed
17: end if
18: if delta <−maxspeed then
19: delta =−maxspeed
20: end if
21: changeDepth(delta)
22: end procedure

After the procedure computes the numeric integral, it
computes the change in the desired depth. This change is
bounded by the maximum speed the node can travel. Finally,
the procedure changes the node depth. Note that for this im-
plementation we ignore the impact of φ(pi) on the controller.
Instead, changeDepth puts a hard limit on the range of the
nodes, preventing them from moving out of the water col-
umn. We found that this had little impact on the results.

5 Simulation and Hardware Experiments
In this section we discuss the results of simulation ex-

periments and of experiments performed in a pool and river
with our underwater sensor network hardware. First we de-
tail how to obtain a covariance model.

5.1 Covariance Model
In Section 4 we developed the decentralized depth con-

troller algorithm using a multivariate Gaussian as the covari-
ance function. However, more generally, if we have real in-
formation about the system, we can numerically compute the
covariance.

Figure 4 (bottom) shows the concentration of CDOM in
the Neponset River, which feeds into Boston Harbor at two
different tide levels. We find that the CDOM concentration
is highly dependent on the tide level. Other parameters that
may impact CDOM concentration include rainfall and wind
patters. This data was computed from a numerical model
for Boston Harbor as described in Section 3. The model is
accurate on average, however, new measurements from the

AQUANODES will be used to further refine and calibrate the
Neponset River and Boston Harbor models.

Figure 4 (top) shows the numerically computed covari-
ance along the length of the river and depth. We numeri-
cally computed the covariance along the length of the river
by examining the each pair of points at distance k apart and
taking the sample covariance, which is Cov(pts k apart) =
∑(ab)/N−mean(a)∗mean(b) for the N points a and b that
are k distance apart. We compute the covariance along the
depth of the river in a similar manner.

Most of the sensors we use only measure the value at the
location of the sensor node. Using covariance allows us to
expand the range of the sensor by determining the likely re-
lation between the location of the sensor and other locations.
This can fail in some situations where there are discontinu-
ities in the sensory field, for instance strong currents bringing
in different water. However, the covariance function can be
adjusted to take into account this type of geographic depen-
dence if these types of discontinuities are expected or de-
tected.

We fit a Gaussian basis function to the numeric covariance
curve. To do this we use Matlab’s newrb function. Figure 5
shows the result of the basis function fit. The error in the fit
depends on the number of Gaussians used. For this plot with
6 elements the error is 1.88%, whereas using 10 elements
gives an error of 0.54%. Using a basis function gives us
a compact representation of the covariance function that a
sensor node can easily store and compute.

An advantage of using a Gaussian basis function is that
it allows online updates of the covariance function based on
the sensed data. Nodes can share and learn the parameters of
the basis function using a number of existing techniques for
fitting basis functions to unknown data [26].

Figure 4 shows two different tide level in the river system.
Different covariance functions, based on the tide, enable dy-
namic repositioning of the sensor network to adapt to chang-
ing conditions. Section 5.4 discusses changing covariance
functions to account for tidal changes in a river.

5.2 Simulation Experiments
We implemented the decentralized depth controller in

Matlab to test the performance of the algorithm.
In these experiments, unless otherwise noted, we use a

“k” value of 0.001, capped with a maximum speed of ±2
m/s. Each node performs twenty iterations of the controller.
The nodes are placed in a line spaced 15m apart from each
other and are in “water” of 30m depth. A 1 meter grid is used
to integrate over for all operations. In Section 6, we provide
a detailed analysis of parameters used in the algorithm.

Figure 6(a) shows the results after running the decentral-
ized controller on a network of 20 nodes. Each iteration of
the algorithm took 8s per node with convergence occurring
after 6 iterations.

Figure 6(b) shows the result of an experiment with 16
nodes arranged in a 4-by-4 grid with 15m spacing in 30m
depth. Each iteration of the algorithm took 2min per node
with convergence occurring after 7 iterations.

0 2 4 6 8
0

0.5

1

distance [m / km]

co
va

ria
nc

e

covar xx [km]
covar zz [m]

0 1 2 3 4 5 6
−3

−2

−1

0

distance [km]

de
pt

h
[m

]

(a)

0 2 4 6 8
0

0.5

1

distance [m / km]

co
va

ria
nc

e

covar xx [km]
covar zz [m]

0 1 2 3 4 5 6
−3

−2

−1

0

distance [km]

de
pt

h
[m

]

(b)

Figure 4. Bottom: Model of the CDOM concentration in the Neponset river
when tide caused a river depth of on average 2m (a) and 3m (b). Top: The
corresponding numerically computed covariance.

0 200 400 600 800 1000

0

0.5

1

distance [m]

co
va

ria
nc

e

training data
network output
basis functions

Figure 5. The Gaussian basis function
elements for a fit with 6 basis functions.

0 50 100 150 200 250 300
0

5

10

15

20

25

30

(a)

10
20

30
40

50
60

0

20

40

60
0

5

10

15

20

25

30

(b)

Figure 6. The final positions after the distributed con-
troller converges for a (a)2D and (b)3D setup.

5.3 Lab and Pool Hardware Experiments
We performed experiments in the lab and in a pool using

four of our underwater sensor nodes. For both setups the sen-
sor network ran the decentralized depth controller. We tested
both the base covariance model discussed in Section 4.4 and
the model-based covariance discussed in Section 5.1.

We implemented Algorithm 1 on the system. For the im-
plementation of FDz(p_i,qx,qy,qz) (line 10) we use the
numerical gradient of F at that position. We use this to avoid
deriving the gradient for every covariance function. The two
different covariance models require different implementa-
tions of the function F (line 8).

For the base covariance model discussed in Section 4.4
we implemented the F as:
exp(-(((px-qx)*(px-qx)+(py-qy)*(py-qy))

/(2.0*SIGMA_SURF*SIGMA_SURF)
+((pz-qz)*(pz-qz))/(2.0*SIGMA_DEPTH*SIGMA_DEPTH)));

with SIGMA_DEPTH = 4.0 and SIGMA_SURF = 10.0. Some
additional optimizations were made to limit duplicate com-
putations. For the algorithm the node locations were scaled

to be 15m apart along the x-axis, the neighborhood size was
±20m along the x-axis, the virtual depth ranged in z from 0
to 30m, and a step size of 1m was used.

For the covariance based on the model data (CDOM co-
variance) we implemented F based on the Gaussian basis
function. Since we used Matlab’s newrb function to compute
the basis function, we used their documentation to determine
the reconstruction of F:
val = 0.0;
for(i = 0; i < NUM_BASIS; i++){

val += netLWX[i]
*exp(-pow(((fabs(px-qx)-netIWX[i])*netb1X[i]),2));

val += netLWZ[i]
*exp(-pow(((fabs(px-qx)-netIWZ[i])*netb1Z[i]),2));

}
val += netb2X + netb2Z;
Yme = Yme + net.b{2};

The value netLW is the amplitude and netIW is the center of
the Gaussian as reported by Matlab. The factor netb1 is the
inverse of the variance of the Gaussian. The actual values of
these variables are dependent on the model data. Figure 5
shows the fit of the Gaussian basis function as compared to
the actual data for the Neponset River CDOM covariance
data. For this setup, the node locations were scaled to 500m
spacing along the x-axis, the neighborhood size was±800m,
the depth ranged from 0 to 3m, used a step size of 40m along
the x-axis, and used a step size of 0.1m in depth.

With these two covariance models and implementations
we performed experiments in the lab and in the pool. Both
sets of experiments used four underwater sensor nodes. For
the lab experiments we placed the transducers of the acoustic
modem in a bucket of water and allowed the winch system
to operate freely in air. The lab experiments required the
same functionality as the pool experiment while providing
improved acoustic communication. For the pool experiments
we placed the four sensor nodes in a line in the deep end of
a 3m deep pool.

As the pool and bucket did not allow the node spacing
used in the setup, we manually set the positions of the nodes
to have the proper x-axis spacing. We also scaled each node’s
estimated depth to map the range of depth used in the covari-
ance model to a 1m depth range in the pool. This was to
keep the sensor nodes near the middle of the column of wa-
ter as the acoustic modems were not able to communicate
with each other if they were outside of the range.

0 100 200 300 400 500
10

−2

10
0

10
2

10
4

10
6

10
8

H
dz

time [sec]

Experiment 2

(a)

0 100 200 300 400 500
−30

−25

−20

−15

−10

−5

0

de
pt

h
[m

]
time [sec]

Node 1
Node 2
Node 3
Node 4

(b)

Figure 7. (a) The value of ∂H
∂zi

. (b) The depths over the
course of a experiment.

Node0 Node1 Node2 Node3
Bucket 1 Start 10.0m 10.0m 10.0m 10.0m
Bucket 1 Final 10.3m 24.1m 5.9m 19.7m
Bucket 2 Start 20.0m 20.0m 20.0m 20.0m
Bucket 2 End 19.8m 5.9m 23.8m 10.2m
Bucket 3 Start 3.7m 7.8m 12.2m 15.9m
Bucket 3 End 9.5m 22.9m 23.9m 9.6m
Pool 1 Start 10.2m 9.9m 10.1m 9.8m
Pool 1 End 20.6m 6.9m 24.1m 10.2m
Pool 2 Start 20.0m 20.1m 20.3m 20.1m
Pool 2 End 9.5m 23.9m 5.6m 18.8m
Pool 3 Start 20.2m 19.9m 20.3m 20.1m
Pool 3 End 9.6m 24.0m 5.8m 19.7m

Table 1. Selected start and end configurations with the
base covariance function.
5.3.1 Results

We successfully ran multiple iterations of both covariance
models in the bucket and the pool. For the Gaussian we ran
4 trials in the pool. Each trial converged within 12 minutes
with each iteration averaging 14s. For the CDOM covariance
we ran 5 pool trials. Each trial converged within 20 minutes
with each iteration averaging 35s.

Figure 7(a) depicts the absolute value of the cost func-
tion, ∂H

∂zi
, for each node in the pool while using the Gaussian

covariance on a log-scale. Initially, the gradient of the ob-
jective function was high; however, over the course of the
experiment the value on each node decreased until it reached
a stable state. The dip in the objective function for one node
seen in Figure 7(a) is caused by a temporary configuration
that was slightly better from the standpoint of the one node
and is amplified by the log-scale of the plot.

Figure 7(b) shows the depths of each of the nodes over
the course of the same experiment. Initially, the nodes were
started at 20m. All of the nodes approached the center of the
water column after 200s. From here Nodes 1 and 3 contin-
ued up in the water while Nodes 2 and 3 returned to a lower
depth. The total time to convergence in this experiment was
approximately 8 minutes.

Table 1 shows the start and end configurations for some
of the experiments we performed using the Gaussian covari-
ance function. In most of the experiments the controller con-
verged to a configuration where the nodes were oriented in a
zig-zag configuration. An exception to this is trial Bucket 3
where the nodes initially started in a diagonal configuration.
In this case, the nodes converged to a down-up-up-down con-
figuration, a local minimum.

0 100 200 300 400 500
0
1
2
3

N
od

e
1

time [sec]

0
1
2
3

N
od

e
2

0
1
2
3

N
od

e
3

0
1
2
3

N
od

e
4

(a)

0 100 200 300 400 500

−25
−20
−15
−10

−5
0

de
pt

h
[m

]

time [sec]

−25
−20
−15
−10

−5
0

de
pt

h
[m

]

−25
−20
−15
−10

−5
0

de
pt

h
[m

]

−25
−20
−15
−10

−5
0

de
pt

h
[m

]

(b)

Figure 8. (a) Number of neighbors used to calculate ∂H
∂zi

.
(b) One node’s estimate the others’ depths versus actual.

Node0 Node1 Node2 Node3
Bucket 1 Start 1.0m 1.0m 1.0m 1.0m
Bucket 1 Final 1.6m 0.7m 0.6m 2.4m
Bucket 2 Start 1.0m 1.0m 1.1m 1.0m
Bucket 2 End 2.5m 1.5m 1.7m 0.5m
Bucket 3 Start 1.0m 2.0m 1.0m 2.0m
Bucket 3 End 0.8m 2.4m 0.6m 2.1m
Pool 1 Start 1.0m 1.0m 1.0m 1.0m
Pool 1 End 2.4m 1.5m 0.5m 2.4m
Pool 2 Start 2.0m 2.0m 2.0m 2.0m
Pool 2 End 0.7m 2.3m 0.7m 2.2m
Pool 3 Start 2.0m 2.1m 2.0m 2.0m
Pool 3 End 0.7m 2.8m 0.8m 2.8m

Table 2. Selected start and end configurations with river
covariance function.

Similarly, Table 2 shows the start and end configurations
for some of the pool and bucket experiments for the river
model covariance function. A different local minimum of
up-mid-down-up can be seen in trial Pool 2. Section 6.2.1
explores how different start configurations effect the final po-
sitioning of the nodes.

5.3.2 Communication Performance
The acoustic channel is a very low bandwidth, high noise

environment. Despite being placed close together in the
pool, the communications were similar to what we typically
find in river experiments in that all nodes hear single-hop
neighbors and some nodes hear further nodes. This is due to
the highly reflective and therefore challenging acoustic envi-
ronment in the pool [27, 34, 36].

In our implementation, each node only used depth infor-
mation from neighboring nodes whose last depth message
was received within the past two minutes. Figure 8(a) shows
the number of neighbors each node used in the calculation of
the decentralized depth controller, ∂H

∂zi
. The nodes were in a

line in numerical order. Node 1 typically only heard Node
2; Node 2 heard 1, 3, and 50% of the time heard 4; Node 3
heard 2, 4; and Node 4 heard 3 and 20% of the time heard 2.

Figure 8(b) shows the lag in Node 2’s estimate of the
depths of the other three nodes. As we use a TDMA com-
munication algorithm, we expect to receive an update from
each node every 16 seconds. However, due to packet loss
the updates may arrive less frequently. Thus, the algorithm
may use somewhat old data to calculate the controller output,
although never older than two minutes. The experiments in
this section show that despite sometimes poor communica-
tion, the decentralized controller converges and is robust.

6400 6600 6800 7000 7200 7400 7600 7800 8000
0

50

100

150

200

250

300

350

400

Time (s)

O
bj

 V
al

ue
 a

nd
 D

ep
th

 (
cm

)

Node 0
Node 1
Node 2
Node 3
River Depth (cm)

Figure 9. Objective value for 4 nodes
when changing the depth-based co-
variance function.

0 2 4 6 8 10

x 10
−3

0

5

10

15
x 10

5

k Value

O
bj

 V
al

 (
sm

al
le

r
be

tte
r)

0 2 4 6 8 10

x 10
−3

0.72

0.74

0.76

0.78

P
os

te
rio

r
E

rr
or

distributed controller

(a)

0 0.5 1 1.5 2 2.5

x 10
−3

0

5

10

15
x 10

5

k Value

O
bj

 V
al

 (
sm

al
le

r
be

tte
r)

0 0.5 1 1.5 2 2.5

x 10
−3

0.72

0.74

0.76

0.78

P
os

te
rio

r
E

rr
or

distributed controller

(b)

Figure 10. The objective value and posterior error found when different “k”
values are used in a system with 20 nodes. (a) Shows the full range of values
explored. (b) Shows a zoomed in section of (a).

5.4 River Hardware Experiment
With Changing Covariance

We performed experiments to characterize the perfor-
mance of the decentralized depth adjustment algorithm
when the covariance function changes periodically. Fig-
ure 4(bottom) shows the concentration of CDOM along the
Neponset River based on the model described in Section 5.1
for 2.0m and 3.0m of water. Changes in water level are due
to tidal effects. Figure 4(top) shows the numeric covariance
for each of these plots normalized to fall between zero and
one.

We deployed 4 nodes in the Charles River in Cambridge,
MA and simulated updating the covariance function to de-
termine the effect of periodic covariance function updates.
We used five different covariance functions based on 3.25m,
3.0m, 2.75m, 2.5m, and 2.25m of average water depth. Fig-
ure 9 shows the results. This figure plots the value of the ob-
jective function that each node computes over time as well
which covariance function is currently in use (step function
at top of Figure).

In this experiment, the nodes initially had very high ob-
jective functions. They then moved, which lowered the ob-
jective function. After the nodes stabilized we changed the
covariance function from the 3.25m data to the 3.0m data.
Interestingly, the objective function did not change signifi-
cantly. Similarly, the transition from 3.0m to 2.75m objec-
tive function did not have much impact. When moving to
2.5m, however, the objective function increased greatly. This
caused the decentralized controller to adjust the depths of the
nodes to again reduce the objective value. A final change in
the covariance function from 2.5m to 2.25m also resulted in a
spike in the objective function, which the decentralized depth
controller quickly minimized by changing the depths of the
nodes.

This experiment provides initial verification of the hard-
ware system in a river environment. In addition, it veri-
fies that the decentralized controller handles changes to the
covariance function in a river environment. Interestingly,
some changes to the covariance function result in very mi-
nor changes to the value of the objective function, however,
others cause significant changes.

6 Analysis and Discussion
Several practical considerations arise in implementing

this controller on real hardware. In this section we discuss
parameter sensitivity, positioning sensitivity, comparison to
other methods, and data reconstruction.
6.1 Parameter Sensitivity

We analyze k, neighborhood size, and grid size.
6.1.1 Changing k

Figure 10 show the affect on the objective value, H , on
changing the k value for a system with 20 nodes. Recall that
each node moves according to:

−k
∂H
∂zi

(18)

Increasing the value of k causes the nodes to move down
the gradient of H more quickly. Values that are too large
can lead to oscillations around the final configuration or lead
to instabilities in the system. If the value of k is too small,
the system may not move fast enough to converge within a
reasonable number of steps.

Figure 10(a) shows the range of k’s explored, while Fig-
ure 10(b) zooms in on k values less then 0.003. Using a k
value of less than 0.0005 yields very poor results since the
system does not converge within the 20 iterations of the al-
gorithm that we allow. However, values larger than this per-
form well.

In Figure 10(b) we see that k values between 0.002 and
0.003 perform well. In general the exact value of k has an
impact on the results, however, it tends to be minimal as long
as a sufficiently large value of k is used.

One reason that large values of k yield good results is that
the nodes are limited in how fast they can move. Recall that
in our simulations we limit the maximum speed of the nodes
to 2m/s. Thus, even with large values of k they system tends
to converge and not oscillate.
6.1.2 Changing Neighborhood Size

We examine the effect of changing the neighborhood size.
The neighborhood size is the size over which each node in-
tegrates when computing the numeric integral (Algorithm 1,
line 10). The decentralized controller assumes that it has in-
formation about the depths of all nodes in the system. In
practice we can only know the depths of our neighbor nodes

15 22.5 30 45 60 90 120 150
0

2

4

6

8

10
x 10

5

Neighborhood size [m]

O
bj

 V
al

 (
sm

al
le

r
be

tte
r)

distributed controller

(a)

15 22.5 30 45 60 90 120 150
0

5

10

15

20

25

Neighborhood size [m]
M

in
ut

es

distributed controller

(b)

Figure 11. The (a) objective value and (b) runtime for a
15 node network when changing the size of the neighbor-
hood over which the integration occurs.

0.5 1 1.5 2 2.5 3
3.6

3.8

4

4.2

4.4

4.6

4.8

5
x 10

4

O
bj

 V
al

 (
sm

al
le

r
be

tte
r)

Step Size (meters)

distributed controller

(a)

0.5 1 1.5 2 2.5 3
0

50

100

150

200

M
in

ut
es

Step Size (meters)

distributed controller

(b)

Figure 12. Changing the grid size. (a) Objective value
and (b) total search time as the step size changes.

due to poor acoustic communication. The covariance func-
tion decays rapidly with distance, reducing the affect of far
away sensors, allowing nodes to ignore the sensors they can-
not hear. This means that multi-hop messaging is not needed
to communicate information for the depth controller, en-
abling very large deployments without communication over-
head.

Figure 11 shows the results of changing the size of the
neighborhood over which we integrate. For this simulation
the nodes were placed 15m apart. The neighborhood size
varied from ±15m to ±150m. As can be seen from Fig-
ure 11 (a), using a neighborhood of just 15m results in very
poor performance. However, a slight increase in neighbor-
hood size drastically increases performance. This indicates
that near-neighbors have the largest impact. Thus, the neigh-
borhood size should be chosen to include all one-hop neigh-
bors. Figure 11 (b) shows that the total runtime required for
the algorithm increases in a linear fashion as the neighbor-
hood size increases. This experiment verifies the intuition
that nodes only need to hear direct neighbors to have good
performance.
6.1.3 Changing Grid Size

We examine the impact of changing the size of the grid
over which we numerically integrate. In simulation we uni-
formly change the step size in the x and z axes. Using a large
step size reduces the computations needed to perform the de-
centralized controller, however, if the step size is too large,
important regions may be overlooked, causing a degradation
in performance.

Analyzing Algorithm 1 we see a runtime of O(|X | · |Y | ·
|Z| ·N), where |X | represents the number of steps in the grid

0 20 40 60 80 100
2.8

3

3.2

3.4

3.6

3.8

4
x 10

4

Iteration

O
bj

 V
al

 (
sm

al
le

r
be

tte
r)

Ideal Placement
Placement w/ Error
Post Depth Adjustment

(a)

0 5 10 15 20
3.2

3.4

3.6

3.8

4

4.2

4.4

4.6
x 10

4

Random Placement Error [m]

O
bj

 V
al

 (
sm

al
le

r
be

tte
r)

Original Value
Random Placement
After Depth Alg

(b)

Figure 14. Nodes deployed with random error in x-axis
placement. (a) Plot of 100 runs with 6m error. (b) Aver-
age over many runs and positions.

along the x-axis and N is the number of sensor nodes in the
system. As shown in Figure 12 (b) the runtime decreases in
a quadratic fashion as the step size increases. The quadratic
results from the 2D simulation; in the 3D case the runtime
would decrease cubically as the step size increases.

Figure 12 (a) shows the impact of changing the grid size
on the objective function. As step size increases the objective
function does as well. Thus, a grid size of 1m seems reason-
able as this is the minimum and results in a good runtime.
If the spacing of the nodes was closer a finer grid may be
needed and similarly if they are spaced further apart a larger
grid could be used. In our experience having between ten
and twenty steps between each pair of nodes yields a good
balance between runtime and algorithm performance.

6.2 Positioning Sensitivity
We analyze start configurations and placement error.

6.2.1 Changing Start Configurations
We examine how close the decentralized controller comes

to obtaining the global minimum of the system. To do this
we ran a number of simulations starting the nodes at different
depths and examining the results. Figure 13 (a-b) shows the
various starting and ending configurations, and (c) shows the
final objective value and posterior error for these trials.

We tested a number of start configurations. In all of these
experiments the final configuration ended up with nodes
roughly alternating. However, some local minimums occur
that result in a worse objective function value. In particu-
lar, the configuration in Figure 13(b).9, which alternated two
down and two up resulted in a similar final configuration. As
can be seen in Figure 13 (c) this configuration yielded the
worst objective value and posterior error of all the trials.

We can contrast this with the configuration in Fig-
ure 13(b).6, which resulted in the best objective value. The
remainder of the configurations fell somewhere in between
these two. Some configurations demonstrate that a local min-
imum can occur that is hard to overcome. Fortunately, while
this occurs occasionally, it is not often and when it does oc-
cur the system still obtains fairly good results. It is possible
to avoid local minima by starting with configurations that are
known to be near-optimal (for example, up-down-up con-
figurations). In addition, in situations where the covariance
function is periodically updated, the nodes can return to a
near-optimal configuration before performing the update.

0 50 100 150 200
0

10
20
30

0 50 100 150 200
0

10
20
30

0 50 100 150 200
0

10
20
30

0 50 100 150 200
0

10
20
30

0 50 100 150 200
0

10
20
30

(a)

0 50 100 150 200
0

10
20
30

0 50 100 150 200
0

10
20
30

0 50 100 150 200
0

10
20
30

0 50 100 150 200
0

10
20
30

0 50 100 150 200
0

10
20
30

(b)

2 4 6 8 10
3

3.2

3.4

3.6

3.8

4
x 10

4

O
bj

 V
al

 (
sm

al
le

r
be

tte
r)

Start Position

2 4 6 8 10
0.74

0.745

0.75

0.755

0.76

0.765

P
os

te
rio

r
E

rr
or

distributed controller

(c)

Figure 13. (a-b)The results of the running the depth adjustment algorithm on various node start positions (circles) and
(a) the resultant objective value and posterior error.

Figure 15. From top: model data, reconstructed data for
three manual configs, and for algorithm positioning.

6.2.2 Random Placement Error
As it is impossible to perfectly place nodes in a real-world

setup, we examine the effects of random variation in the x-
axis placement of the nodes. The nodes were deployed start-
ing in the ideal depth configuration. Figure 14(a) demon-
strates the results of 100 trials with±6m random error added
to the ideal node positions in the x-axis. The 100 trials are
sorted by the objective function in the plot. We then run
the depth adjustment algorithm on the mispositioned nodes,
which improves their overall depth positioning for sensing.

Figure 14(b) outlines this for errors in x-axis placement
ranging from 2m to 16m. Each point is the average of 100
random trials. Again the depth adjustment algorithm im-
proves the overall position. This experiment shows that the
decentralized depth adjustment algorithm can improve the
overall sensing even if the start depths (z-axis) are ideal and
x-axis placement is not.

6.3 Data Reconstruction
The ultimate goal of placing sensors is reconstructing the

complete data field, not just the points where sensors exist.
The distributed depth adjustment algorithm places sensors
in locations to maximize the utility of the sensed value for
doing this type of reconstruction. In this section we show
the results of simulations in reconstructing data fields given
point measurements at sensor node locations.

Figure 15 shows the results of reconstructing a field given
three manually configured sensor placements and the depth
adjustment algorithm. At top in Figure 15 we show the actual

0 50 100 150 200 250 300 350 400 450 500
0.78

0.8

0.82

po
st

er
io

r
er

ro
r

time [sec]

0.0 min 1.0 min 3.0 min 5.0 min 6.0 min 8.0 min

Figure 16. Posterior error.

field we attempt to recover. This field is a semi-randomly
chosen field that has similar covariance properties to the
Gaussian covariance. The manually chosen configurations
were: (1) sensors placed alternatively at the top and bottom
of the water column; (2) sensors placed in the middle of the
water column; (3) sensors placed a quarter of the way off
the top and bottom. Finally, at the bottom is the position-
ing based on the depth adjustment algorithm. While visually
similar to the manually chosen configurations, it slightly im-
proves upon the positions to better cover the region.

To quantify this we use the sum of squared error metric,
comparing the actual model data to the recovered using Mat-
lab’s ‘v4‘ version of griddata. The sum of squared error
values are shown in the right of Figure 15. The dynamic
depth adjustment algorithm outperforms the three manually
chosen configurations.
6.4 Comparison to Other Methods

We compare the decentralized depth adjustment algo-
rithm to posterior error methods and Matlab’s fminsearch.

6.4.1 Posterior Error
A common metric for defining how an area is covered by

sensors is to examine the posterior error of the system [18].
Calculating the posterior error requires that the system can
be modeled as a Gaussian process. This is a fairly general
model and valid in many setups. The posterior error of a
point can be calculated as:

σ
2
q|P =Cov(q,q)−Σq,P ·Σ−1

P,P ·ΣP,q (19)

The vector Σq,P is the vector of covariances between q and
the sensor node positions P = {p1, ..., pN}. The vector ΣP,q

10
0

10
1

10
2

10
3

10
4

10
3

10
4

10
5

10
6

10
7

Log(Number of Iterations)

Lo
g(

O
bj

ec
tiv

e
V

al
ue

)

fminsearch
distributed controller

Figure 17. The objective value versus
the number of iterations for the decen-
tralized controller and fminsearch.

0 5 10 15 20 25 30
1000

2000

3000

4000

5000

6000

Number of Nodes

O
bj

 V
al

 (
sm

al
le

r
be

tte
r)

fminsearch
distributed controller

(a)

0 5 10 15 20 25 30
0

50

100

150

200

250

Number of Nodes

M
in

ut
es

fminsearch
distributed controller

(b)

Figure 18. The objective value (a) and total search time (b) for the decentral-
ized controller and fminsearch.

is Σq,P transposed. The matrix ΣP,P is the covariance matrix
for the sensor node positions. The values of ΣP,P are Σpi,p j =

Cov(pi, p j) for each entry (i, j).
This computation, however, requires an inversion of the

full covariance matrix. This is impractical on real sensor
network hardware that has limited computation and mem-
ory. As such, we cannot calculate the posterior error on the
sensor nodes, but we can calculate it as a metric to evaluate
our own objective function and to compare different sensing
configurations. As shown in Figure 13(c), the posterior er-
ror and the objective function track each other, showing that
our metric has similar properties to that of the posterior er-
ror metric. Figure 16 (bottom) shows a plot of a run of the
decentralized depth controller and plots the normalized sum
of the posterior error at all points. Figure 16 (top) shows
snapshots of the plots of the posterior error as the algorithm
progresses. The algorithm performs well under this metric
as well as the objective function metric.

6.4.2 Distributed Controller Versus “fminsearch”
To analyze the performance of our distributed depth ad-

justment algorithm we compared it to Matlab’s standard un-
constrained non-linear minimizer, fminsearch. This adjusts
the depths of each of the nodes until it minimizes the ob-
jective function. fminsearch is completely centralized and
must know the positions of all nodes, it does not, however,
make use of the derivative of the objective function. In our
simulations we find that fminsearch and our algorithm op-
timize the objective function similarly for small numbers of
nodes. However, fminsearch has poor runtime and is thus
limited to running on systems with few nodes.

Figure 17 describes how the objective function de-
creases with each iteration of fminsearch and each itera-
tion of our distributed controller plotted on a log-log plot.
Both algorithms achieve similar objective function values
(fminsearch: 35707, distributed controller: 33114). How-
ever, the distributed controller did so in under 10 iterations
requiring 18min computation time, while fminsearch re-
quired nearly 200 iterations and 162min.

Figure 18(a) shows the final objective value achieved for
both algorithms for configurations of 3 to 29 nodes. The dis-
tributed controller performed 20 iterations for all configura-
tions. The results show that for under 17 nodes fminsearch

and the distributed controller achieve similar results; above
17 nodes the runtime of fminsearch was prohibitive. It is
not possible to compute the absolute minimum of the ob-
jective function for a given setup; given that the distributed
controller and fminsearch both find similar minimums, we
expect that the value found is very near the global minimum.

Figure 18(b) shows the number of minutes required by
fminsearch and the distributed depth adjustment algo-
rithm. The runtime of the centralized non-linear solver,
fminsearch, explodes as the number of nodes in the sys-
tem increases. The runtime of our decentralized depth ad-
justment controller only has a slight linear increase as the
number of nodes increases. Further limits on the size of the
neighborhood searched, as discussed in Section 6.1.2, show
that this linear increase can be bounded by only integrating
over a local neighborhood. Thus, the decentralized depth ad-
justment algorithm is able to perform well in systems with a
very large number of nodes.

These experiments show that the distributed depth adjust-
ment algorithm obtains similar or lower objective values in
most all cases than a standard nonlinear optimizer. In addi-
tion, the distributed depth controller provides a much more
reasonable linear increase in computation time per node
compared to fminsearch.

7 Related Work
The algorithm developed in this paper is closely related

to previous work in sensor placement and robot path plan-
ning to optimize sensing. Here we summarize a few of the
many related papers in this area. Cayirci et al. simulates
distributing underwater sensors to maximize coverage of a
region by breaking the region into cubes and filling each
cube [11]. Akkaya et al. simulate optimizing sensor posi-
tioning by spreading out the nodes while maintaining com-
munication links in an underwater sensor network with depth
adjusting capabilities [2]. Our approach is different in that
we account for sensing covariances, use realistic communi-
cation assumptions, and implement and test the algorithm on
a real underwater sensor network.

Ko et al. develop an algorithm for sampling at informative
locations based on minimizing the entropy [22]. Guestrin et
al. introduce the optimization criterion called mutual infor-
mation [18]. Mutual information finds sensor placements

that provide the most information about unsensed locations.
They prove that the problem of picking optimal sensor loca-
tion is NP-complete and provide a constant factor approx-
imation algorithm. Leonard et al. develop controllers to
create optimal ellipsoidal trajectories for mobile underwa-
ter sensors based on minimizing the posterior error assum-
ing a Gaussian process [24]. Yilmas et al. plan a path for
an AUV that will decrease measurement uncertainty using a
linear programming approach [37]. Rigby develops an algo-
rithm that uses Monte-Carlo simulations to pick a path for
an AUV that minimizes the trace of the posterior covariance
matrix assuming a Gaussian process [28].

Our algorithm differs from these works on sensor place-
ment and path planning in a number of ways. Our algorithm
is decentralized and runs in real-time on our underwater sen-
sor network, whereas much of the related work computes
placements and trajectories before the deployment. One of
the key components of our algorithm that allows us to run
in real-time is a choice of an objective function that is easier
to compute on a sensor network platform with limited mem-
ory and processing capabilities. Most current approaches are
based on the minimization of entropy, posterior error, or the
use of mutual information. All of these formulations require
the computation of the inverse or determinate of the full co-
variance matrix for the system. These computations exceed
the memory and processing capabilities of most sensor net-
work systems. Our system only relies on having the covari-
ance and thus we are able to implement it on our sensor net-
work platform. We show in Section 6.4.1, that our algorithm
also tends to minimize the posterior error criteria, while re-
quiring less computational complexity. Our algorithm also
runs continuously and can adapt to changing conditions.

Further, our algorithm uses a decentralized gradient-
descent controller. Cortes et al. use a decentralized gradi-
ent controller to perform Voronoi tessellations for a known
event distribution [12]. Details on these types of algorithms
can be found in the book by Bullo et al. [9]. Schwager et
al. extend these controllers to learn the underlying sensing
function through consensus [32]. Our work draws inspira-
tion from these techniques, but differs in problem specifi-
cation: our underwater sensors are only able to adjust their
depth and are extremely constrained by communication.

Obtaining a covariance function for an underwater sys-
tem is a problem that has been previously studied and is a
common technique. Leonard et al. use a multivariate Gaus-
sian function, similar to ours, to estimate the covariance in
their system [24]. Lynch et al. note the historic use of mul-
tivariate Gaussian functions to model underwater systems
and use stochastically-forced differential equations to ana-
lytically determine better covariance models for ocean envi-
ronments [25]. They use the covariance models they develop
as input into objective analysis models. Objective analysis
is statistical estimation under Gauss-Markov conditions. In
our system we use a multivariate Gaussian function as a first
estimate of the covariance for systems where detailed infor-
mation is unavailable. For systems with sensed or modeled
data, we numerically compute a covariance function based
on the actual data. These functions can be updated online as
the system runs to improve their accuracy.

A number of trial and longer-term underwater sensor net-
work systems have been deployed. MOON aims to create
an ocean observatory in the Mediterranean Sea for monitor-
ing and forecasting weather, environmental monitoring, and
marine research [1]. MOON is part of the Global Ocean Ob-
serving System (GOOS) which was created in the 1980s to
monitor all of the world’s oceans [3]. The Ocean Obser-
vatories Initiative (OOI) combines deep-sea buoys, cabled
underwater networks, as well as independent AUVs and sen-
sors [4, 19]. Jannasch et al. have developed a system of stat-
ically moored ocean sensors to monitor environmental pro-
cesses off the coast of California in Monterey Bay [20].

Our depth adjustment system is a novel contribution to the
field of underwater sensor networks. Other underwater sys-
tems have made use of column profilers, however, they have
not been integrated as a key component of the underwater
sensor network.

8 Conclusions and Future Work
In this paper we present a gradient-based decentralized

controller that dynamically adjusts the depth of a network of
underwater sensors to optimize sensing. We prove that the
controller converges. We implement two covariance mod-
els: a multivariate Gaussian and one derived from a physics-
based hydrodynamic model. We perform extensive simula-
tions and experiments on our sensor network platform veri-
fying the functionality.

Deploying underwater sensor networks entails numerous
challenges that are not found in most terrestrial sensor net-
works. First and foremost, the housings must be designed
to keep the electronics dry, while maintaining easy access
for adding sensors, debugging, and reconfiguring. Finding
suitable test locations is also challenging. Acoustic commu-
nication, already slow, has even worse performance in con-
fined pools. Rivers and near-shore ocean deployments are
difficult due to heavy boat traffic which make accessing the
sensors challenging and potentially dangerous. In addition, it
is nearly impossible to recharge the batteries once deployed.
Finally, the enormous size of the ocean makes full sensor
coverage unlikely. All of these challenges call for the devel-
opment of new algorithms and systems that optimize sens-
ing, communication, and energy usage simultaneously.

The depth adjustment system adds a number of capabili-
ties to our underwater sensor network that ease some of these
challenges. These include ability to: surface to use the radio;
surface to obtain a GPS location fix; surface to ease node
retrieval; surface to recharge via solar panels; go to the bot-
tom to avoid boat traffic; and change depth to optimize other
parameters such as communication.

We have performed deployments in the Charles River and
preliminary, larger scale deployments Neponset River (not
reported on here). In the future we plan to perform long term,
large scale deployments of the system to verify the longevity
of the system and collect detailed time series data. We are
also exploring variations of the algorithm that maintain com-
munication links while optimizing depth for sensing. Finally,
we are looking at algorithms to minimize the communication
and motion to maximize deployment time.

9 Acknowledgements
We are grateful to DSO Singapore, MURI Antidote

(138802), MURI SMARTS (N00014-09-1-1051), and NSF
ITR (IIS-0426838) for supporting parts of this research. We
also thank Elizabeth Basha, Bernie Gardner, and Francesco
Peri for their help on this project.

10 References
[1] Moon science and strategy plan. Technical report.

[2] K. Akkaya and A. Newell. Self-deployment of sensors for maximized
coverage in underwater acoustic sensor networks. Computer Commu-
nications, 32(7-10):1233–1244, May 2009.

[3] K. Alverson. Filling the gaps in GOOS. Journa of Ocean Technology,
3(3), 2008.

[4] M. Arrott, A. Chave, I. Krueger, J. Orcutt, A. Talalayevsky, and F. Ver-
non. The approach to cyberinfrastructure for the ocean observatories
initiative. In Oceans 2007, pages 1–6, 2007.

[5] W. P. Bissett, O. Schofield, S. Glenn, J. J. Cullen, W. Miller, A. Plud-
deman, and C. Mobley. Resolving the impacts and feedbacks of ocean
optics on upper ocean ecology. Oceanography, 14(4):30–53, 2001.

[6] N. V. Blough and R. D. Vecchio. Chromophoric dom in the coastal en-
vironment. In D. A. Hansell and C. A. Carlson, editors, Biogeochem-
istry of Marine Dissolved Organic Matter, pages 509 – 546. Academic
Press, San Diego, 2002.

[7] A. Blumberg, R. Signell, and H. Jenter. Modelling transport processes
in the coastal ocean. J. Marine Env. Engg., 1:31–52, 1993.

[8] A. F. Blumberg and G. L. Mellor. A description of a three-dimensional
coastal ocean circulation model. Three-Dimensional Coastal Ocean
Models, Coastal and Estuarine Sciences, (4):1–16, 1987.

[9] F. Bullo, J. Cortés, and S. Mortı́nez. Distributed Control of Robotic
Networks. Applied Mathematics Series. Princeton University Press,
2009.

[10] K. L. Carder, R. G. Steward, G. R. Harvey, and P. B. Ortner. Ma-
rine humic and fulvic acids: Their effects on remote sensing of ocean
chlorophyll. Limnology and Oceanography, 34(1):68–81, 1989.

[11] E. Cayirci, H. Tezcan, Y. Dogan, and V. Coskun. Wireless sensor
networks for underwater survelliance systems. Ad Hoc Networks,
4(4):431–446, July 2006.

[12] J. Cortes, S. Martinez, T. Karatas, and F. Bullo. Coverage control for
mobile sensing networks. In Robotics and Automation, 2002. Pro-
ceedings. ICRA ’02. IEEE International Conference on, volume 2,
pages 1327–1332, 2002.

[13] C. Detweiler, M. Doniec, I. Vasilescu, E. Basha, and D. Rus. Au-
tonomous depth adjustment for underwater sensor networks. In Inter-
national Workshop on Underwater Networks (WUWNet 2010), Woods
Hole, Massachusetts, USA, Sept. 2010.

[14] C. Detweiler, J. Leonard, D. Rus, and S. Teller. Passive mobile robot
localization within a fixed beacon field. In Proceedings of the 2006
International Workshop on Algorithmic Foundations of Robotics, New
York, aug 2006.

[15] C. Detweiler, I. Vasilescu, and D. Rus. An underwater sensor network
with dual communications, sensing, and mobility. In OCEANS 2007 -
Europe, pages 1–6, 2007.

[16] J. J. Dodson, J. C. Dauvin, R. G. Ingram, and B. d’Anglejan. Abun-
dance of larval rainbow smelt (osmerus mordax) in relation to the
maximum turbidity zone and associated macroplanktonic fauna of the
middle st. lawrence estuary. Estuaries, 12(2):66–81, 1989.

[17] G. B. Gardner, R. F. Chen, and A. Berry. High-resolution measure-
ments of chromophoric dissolved organic matter (cdom) in the nepon-
set river estuary, boston harbor, ma. Marine Chemistry, 96(1-2):137 –
154, 2005.

[18] C. Guestrin, A. Krause, and A. P. Singh. Near-optimal sensor place-
ments in gaussian processes. In Proceedings of the 22nd international
conference on Machine learning, pages 265–272, Bonn, Germany,
2005. ACM.

[19] A. Isern. The ocean observatories initiative: Wiring the ocean for
interactive scientific discovery. In OCEANS 2006, pages 1–7, 2006.

[20] H. W. Jannasch, L. J. Coletti, K. S. Johnson, S. E. Fitzwater, J. A. Nee-
doba, and J. N. Plant. The land/ocean biogeochemical observatory: A
robust networked mooring system for continuously monitoring com-
plex biogeochemical cycles in estuaries. Limnology and Oceanogra-
phy: Methods, 6:263—276, 2008.

[21] M. Jiang, M. Zhou, S. Libby, and C. D. Hunt. Influences of the gulf of
maine intrusion on the massachusetts bay spring bloom: A compari-
son between 1998 and 2000. Continental Shelf Research, 27(19):2465
– 2485, 2007.

[22] C. Ko, J. Lee, and M. Queyranne. An exact algorithm for maximum
entropy sampling. Operations Research, 43(4):684–691, Aug. 1995.
ArticleType: primary article / Full publication date: Jul. - Aug., 1995
/ Copyright 1995 INFORMS.

[23] J. LaSalle. Some extensions of lyapunov’s second method. IRE Trans-
actions on Circuit Theory, 7(4):520–527, 1960.

[24] N. Leonard, D. Paley, F. Lekien, R. Sepulchre, D. Fratantoni, and
R. Davis. Collective motion, sensor networks, and ocean sampling.
Proceedings of the IEEE, 95(1):48–74, 2007.

[25] D. R. Lynch and D. J. McGillicuddy. Objective analysis for coastal
regimes. Continental Shelf Research, 21(11-12):1299–1315, July
2001.

[26] J. Park and I. W. Sandberg. Universal approximation using radial-
basis-function networks. Neural Comput., 3(2):246–257, 1991.

[27] J. Partan, J. Kurose, and B. N. Levine. A survey of practical issues
in underwater networks. SIGMOBILE Mob. Comput. Comm. Rev.,
11(4):23–33, 2007.

[28] P. Rigby. Autonomous Spatial Analysis using Gaussian Process Mod-
els. PhD thesis, University of Sydney, 2008.

[29] M. R. Roman. Temporal and spatial patterns of zooplankton in the
chesapeake bay turbidity maximum. Mar. Ecol. Prog. Ser., 213:215–
227, 2001.

[30] J. R. Schubel. Turbidity maximum of the northern chesapeake bay.
Science, 161:1013 – 1015, 1968.

[31] M. Schwager. A Gradient Optimization Approach to Adaptive Multi-
Robot Control. PhD thesis, MIT, 2009.

[32] M. Schwager, D. Rus, and J. Slotine. Decentralized, adaptive coverage
control for networked robots. The International Journal of Robotics
Research, 28(3):357–375, Mar. 2009.

[33] R. Signell, H. Jenter, and A. Blumberg. Predicting the physical effects
of relocating boston’s sewage outfall. Estuarine, Coastal and Shelf
Science, 50(1):59 – 71, 2000.

[34] M. Stojanovic, J. G. Proakis, and J. A. Catipovic. Performance of
high-rate adaptive equalization on a shallow water acoustic chan-
nel. Journal of the Acoustical Society of America, 100(4):2213–2219,
1996.

[35] I. Vasilescu, C. Detweiler, and D. Rus. AquaNodes: an underwater
sensor network. In Proc. of 2nd WUWNet, pages 85–88, Montreal,
Quebec, Canada, 2007. ACM.

[36] B. Woodward and R. S. H. Istepanian. The use of underwater acoustic
biotelemetry for monitoring the ECGof a swimming patient. In IEEE
Engineering in Medicine and Biology Society, page 4, 1995.

[37] N. Yilmaz, C. Evangelinos, P. Lermusiaux, and N. Patrikalakis. Path
planning of autonomous underwater vehicles for adaptive sampling
using mixed integer linear programming. Oceanic Engineering, IEEE
Journal of, 33(4):522–537, 2008.

