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ABSTRACT

Acoustic communication typically dominates the power us-
age in underwater sensor networks. To balance the conflict-
ing needs of communication and power usage, we utilize a
sensor network platform with underwater acoustic commu-
nication, surface level radio communication, and a depth
adjustment system to switch between them. We focus on
determining which nodes should surface to create a radio
communication route for situations where, for the message
size, it is more energy efficient to transmit via radio yet
acoustic messaging and the depth adjustment system still
dominate the overall energy usage. For a given path in 2D
or 3D, we develop and examine a set of eight algorithms
to select these nodes while taking energy usage and packet
loss into account. We perform an analysis of the algorithms
and show that a decentralized approach where nodes know
their two-hop neighbors provides the most energy efficient
method.

1. INTRODUCTION

Underwater sensor networks struggle to balance the need
for communication with the limitations of fixed energy sys-
tems. Without the ability to recharge their batteries, un-
derwater nodes decrease their lifetime with every action:
sensing, computation, and communication. Of these opera-
tions, communication uses the most energy yet is necessary
for any system-wide actions including transmitting the data
to off-shore sites.

Typically acoustic communication provides the transmis-
sion method underwater; however, its slow data rate and
high energy limit message size and quantity. Combining
acoustic with other methods (surface nodes with radio or
satellite, data muling AUVs, and others) allows for balanc-
ing the energy and communication needs. This still has
some limitations as it requires differing types of nodes -
those underwater using acoustics and different nodes (or
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robots) using alternative communication methods.

However, it is possible to use nodes with two forms of
communication: (1) slow data rate, underwater acoustics
and (2) higher data rate, surface radio. Our AquaNode sys-
tem utilizes both communication methods [7]. The AquaN-
odes communication via the radio through surfacing using a
depth adjustment system. This still provides a challenge as
surfacing has a high initial energy cost. To balance the ini-
tial energy output with the significant increase in data per
Joule when using the radio, the system needs to optimize
the number of nodes surfacing during message communi-
cation. The system also needs to ensure that this number
of nodes creates a connected path between the nodes that
want to communicate. Therefore, we need algorithms that
achieve this minimization of energy while ensuring connec-
tivity.

This work builds on our prior work that developed equa-
tions to determine trade-offs between the different energy
uses [10]. In that work, we determined that, for typical
depths of operation, once a message exceeds 1328bits, it is
more energy efficient to transmit the message via the surface
radio system instead of acoustically. We began to explore
how to create a surface radio route to transmit the mes-
sage, developing four different algorithms and performing a
preliminary analysis based on time and movement.

In this paper, we develop a set of eight algorithms to ex-
plore different approaches from fully decentralized to cen-
tralized. We focus on the situation where our message
is larger than 1328bits, but smaller than approximately
1920Mbits. Within this range, finding the most energy ef-
ficient route depends on the acoustic communication and
depth adjustment systems as they dominate the energy us-
age. Once the data transmission exceeds 1920Mbits, how-
ever, the radio communication begins to dominate the en-
ergy usage, leaving an acoustically expensive approach
(e.g. Dijkstra’s shortest path) as the most efficient.

Our eight algorithms attempt to balance acoustic commu-
nication with depth adjustment to find the best approach.
We begin by exploring the two-dimensional scenario where
the nodes exist in the same line on the y-axis. We then
expanded this scenario to include packet loss. This impacts
the algorithms differently as some require more communi-
cation than others. We examine the algorithms with no
packet loss, 44% loss (typical for the AquaNodes), and 80%
loss. We also explore the algorithms when extended to full
three-dimensional scenarios.



Overall, we examine both centralized and decentralized
algorithms. The centralized algorithms are used to establish
performance baselines, but are less useful in practice as they
require global knowledge. All scenarios provide approxi-
mately the same algorithmic ordering. Of the decentralized
algorithms, if we want to minimize acoustic communication
and node movement, our best approach is Look-Ahead, a
decentralized approach relying on prior knowledge of neigh-
bors and the neighbors’ neighbors. In the absence of this
two-hop information, we can use Furthest Radio, which is
also decentralized, but only requires knowledge of one-hop
neighbors.

We organize the paper as follows. Section 2 outlines re-
lated work. Section 3 describes the hardware system we use
to experimentally determine real world parameters and Sec-
tion 4 describes our algorithms and simulation environment
that allows us to explore a range of scenarios. Section 5 ex-
plains the test results of the algorithms in two-dimensional
topologies and analyzes the algorithm performance. Sec-
tion 6 explores the impact of acoustic packet loss. Sec-
tion 7 then expands the simulator to deploy the nodes in
three-dimensional topologies and determines the impact of
this change. Finally, Section 8 summarizes the results and
future work.

2. RELATED WORK

In this section we discuss related work in surface nodes
as part of underwater systems and route planning. Many
underwater sensor networks leverage surface nodes for long-
range, high-throughput communication channels [2]. One
example is the US Navy’s SeaWeb system that had a num-
ber of radio/acoustic (“Racom”) nodes at the surface that
could communicate both acoustically and with radio to satel-
lites, ships, or shore [11]. For systems with underwater
nodes, using a surface gateway node is one of the more
practical methods to obtain information from an underwa-
ter network [5]. Placement of the gateway nodes in order
to minimize energy and end-to-end delay for a given set of
underwater nodes has been examined using, for example,
integer linear programming [15]. With these types of sys-
tems, the overall bandwidth of the system is limited by the
acoustic channel, since all nodes need to transmit acousti-
cally to a radio gateway node. Another option for obtaining
data from an underwater sensor network is to use an under-
water vehicle to collect the data and transmit it back when
at the surface. This has been demonstrated with energy ef-
ficient underwater gliders that surface periodically to send
back data and obtain position fixes [3].

Our system differs from these in that our underwater
nodes can choose to surface to send large sets of data them-
selves or to act as a relay for other nodes. This eliminates
the acoustic channel bottleneck, but requires significant en-
ergy to surface and surfacing also removes the node from
its desired depth for sensing.

In addition to looking at platforms, we also examine prior
work on routing. Underwater, there has been a significant
amount of work focused on acoustic route creation [4, 14].
On land, there is also significant work on creating energy ef-
ficient routes within sensor networks. Stojmenovic et al. ex-
amined a wide variety of routing protocols and found that
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Figure 1: (a) AquaNode (left) and (b) Depth Adjustment
System Details (right) [6]

greedy algorithms have performances that rival an optimal
shortest path algorithm for dense graphs, but low deliv-
ery rates for sparse graphs [12] . Additionally, Stojmen-
ovic et al. determined that algorithms with delivery guar-
antees may have high communication overhead for sparse
graphs. Tan et al. studied the problem of shortest-path ge-
ographic routing in static sensor networks and developed
an algorithm based on the construction of a reduced visibil-
ity graph to find near optimal paths [13]. We utilize their
results to develop similar approaches in our underwater sce-
nario.

3. AQUANODE PLATFORM

In our prior work we developed the AquaNode under-
water sensor network [6, 7]. One of the key features is
that the AquaNodes can adjust their depth in the water,
communicate using three different methods (acoustic, ra-
dio, and optical), and utilize multiple sensors. In normal
operation, an AquaNode anchors to the seafloor and floats
in the water mid-column in order to sense the environment.
However, in order to measure the entire water column or
surface for radio communication, AquaNodes have a depth
adjustment system that allows the node to dynamically rise
and descend in the water column.

Figure 1(a) shows the full AquaNode and the winch based
depth adjustment system while Figure 1(b) shows the de-
tails of the depth adjustment system. Theoretically, the
AquaNodes are capable of radio communication at 57kbit/s
within 3km, acoustic communication at 300b/s within 400m,
and optical communication at 3Mb/s within 3m [6]. In
practice we obtain significantly smaller ranges. We per-
formed basic radio tests between two nodes and found that
the first packet losses started after 150m, more major losses
occurred after 200m with 50% loss after 300m, and a max-
imum range of slightly over 500m with high packet loss. In
this paper, we assume a 200m range, but, for simplicity of
analysis, while we consider packet loss for acoustic commu-
nication, we do not for the radio channel as it has no impact
on the algorithms.

Acoustic communication is more difficult to characterize
and is highly dependent on positioning and channel charac-
teristics. Figure 2 shows the acoustic communication suc-
cess rate for a pair of AquaNodes placed 36m apart in 10m
deep water [7]. The depths of the AquaNodes were changed
between 2.0m to 7.0m for Node 0 and 2.0m to 6.0m for Node
1. As seen in the figure, changing the depth can cause
packet success rates ranging from under 50% to 95%. In-
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Figure 2: Acoustic Modem Success Rate at 36m [7]

terestingly, when both nodes were mid-column, a common
deployment strategy, the success rate was at the low end of
the spectrum. In typical environments we have found our
acoustic modems can work at 100m range with packet-loss
of 44% [8], but this is highly dependent on the configura-
tion, so we explore the impact of acoustic packet loss on our
algorithms in this paper.

We also measured energy use to define constants used
to calculate the energy usage of the different algorithms,
depending on how many bits are sent through radio/a-
coustic communication and how many meters it travels us-
ing its depth adjustment system. Table 1 defines the con-
stants [10].

Variable
RADIO_TX_ENERGY
RADIO_RX_ENERGY
ACOUSTIC_TX_ENERGY
ACOUSTIC_RX_ENERGY 0.063.J/bit
WINCH_ENERGY 15J/m
Table 1: AquaNode Power Constants

Value
0.00016.J/bit
0.0000457J /bit
0.1136.J/bit

4. ALGORITHMS

In this section, we describe the simulator and the various
communication algorithms we developed.

4.1 Simulator Overview

The simulation environment models multi-hop communi-
cation in an underwater sensor network that utilizes AquaN-
odes. The simulation environment routes a packet of data
between two AquaNodes that are on opposite sides of the
network. It uses underwater acoustic communication to
calculate a multi-hop path between the nodes, the nodes
rise, and then use radio communication to send the packet
of data across the network. While calculating the path of
the packet, the simulation environment tracks a number of
metrics such as energy consumption, messages sent, and
run-time of the entire process.

We implemented the simulator as a MATLAB procedural
environment consisting of a set of scripts and functions [9].
Figure 3 shows the general flow of the simulation environ-
ment. There are two main phases of the simulation envi-
ronment: preparation and execution. In the preparation
stage, the simulator defines and initializes constants such
as the number of nodes, communication power, and com-
munication range. Then it creates node positions based
on a linear topology that follows rules set by the defined
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Figure 3: Flowchart of Simulator

constants. The next step creates two connectivity matrices
that describe nodes’ communication connectivity for radio
communication and acoustic communication. These con-
nections are based on AquaNode communication range con-
stants and simulator-created node positions. The commu-
nication range constants are based on the communication
analysis in Section 3; we use a radio range that is greater
than the acoustic range, although this is a configurable pa-
rameter. The simulator ensures that each node has at least
one acoustic neighbor, which also implies that they are in
radio range (since the radio range is larger than the acous-
tic). The final step of preparation is initializing the message
queues.

In the execution stage, the simulator first determines
which communication routing algorithm the user specified.
If it is a centralized algorithm, the simulator determines the
full multi-hop communication path, has the nodes rise, and
sends the radio message across the surfaced nodes. If it is a
decentralized algorithm, the simulator calculates the multi-
hop communication path node by node. The starting node
determines the next node in the sequence, communicates
its selection to that node, and then rises. Each selected
node continues these operations until the destination node
is reached. Finally, the simulator forwards the message via
radio communication.

4.2 Algorithms

The simulator has eight different communication routing
algorithms: Greedy Furthest Acoustic, Greedy Furthest Ra-
dio, Min-Hop Furthest, Greedy Shallowest Acoustic, Greedy
Shallowest Radio, Min-Hop Shallowest, Greedy Look-Ahead,
and Greedy Look-Back.

Our algorithms are divided into two different categories:
acoustic-centric and radio-centric. Algorithms are consid-
ered acoustic-centric if they make decisions based on neigh-
boring nodes within acoustic communication range and radio-
centric if they make decisions based on neighboring nodes
within radio communication range. There are two acoustic-
centric algorithms: Greedy Furthest Acoustic and Greedy
Shallowest Acoustic. Greedy Furthest Acoustic looks for the
acoustic neighbor furthest away from the transmitting node
and closest to the destination to minimize the number of
nodes surfacing; Greedy Shallowest Acoustic looks for the
acoustic neighbor closest to the surface to minimize energy
costs of surfacing.

We will use Greedy Furthest Acoustic to describe the gen-
eral behavior and basic analysis of each algorithm. This
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Figure 4: Graph of Start and End Positions for Greedy
Furthest Acoustic

algorithm operates using a decentralized approach and a
message we call a rise command. Rise commands are acous-
tic messages that contain no data; the fields of the packet
are destination, source, and a protocol/command field cor-
responding to “rise.” Upon receiving a rise command, a
node will compute the next node to rise and send it a rise
command. This process repeats until the destination node
receives a rise command and completes the path for the ra-
dio message. Algorithm 1 outlines the high-level process
and the computation of the next node for Greedy Furthest
Acoustic. All greedy algorithms behave the same way; the
only change between algorithms is how next-neighbor’s are
selected.

Algorithm 1 Overview of Greedy Furthest Acoustic
loop
receive rise command P
if P.Destination = Self then
exit
else
queue P for delayed-transmission
find furthest acoustic neighbor
send rise command
end if
rise
end loop

Figure 4 shows a sample topology and the path Greedy
Furthest Acoustic created. If each node has only one forward-
neighbor available, one neighbor closer to the destination,
then this algorithm would require all nodes to rise. Nodes
being spaced evenly near the edge of acoustic range would
create a worst-case topology for this algorithm, as this is
the definition of having only one forward-neighbor. Nodes
placed close together or acoustic range long enough to allow
for multiple forward-neighbors allow this algorithm to see
significant improvement in performance.

Number of Nodes

25 50 75 100
Avg. Dist (m) 6.5131 6.7744 6.7548 6.6132
Avg. Depth (m) | -10.1220 | -9.9952 | -9.9465 | -10.0011

Avg. Energy (J) 90.53 89.50 88.57 88.26
Avg. Time (pus) | 62.2138 | 62.6475 | 61.9471 | 61.8014

Table 2: Sample Statistics for Greedy Furthest Acoustic

Table 2 summarizes the performance of the model imple-

menting this algorithm, averaged over 500 runs. The Dis-
tance field represents the total distance traveled by nodes in
the network averaged across all nodes including those that
do not participate in routing. Depth is the average starting
depth for all nodes. Energy consumption is averaged for
all nodes in a network, with most energy being consumed
by node movement. Average time represents the amount
of time it took for each node to complete a single iteration
through the simulation.

Immediately clear is that the average depth is always
around -10 meters; we expect this as the range is from -20m
to Om depth and, after sufficient randomization, we should
observe an average depth of -10m. Somewhat surprising to
note is the relatively small change in average distance and
energy. This implies that the load on all nodes in the net-
work is agnostic to network size. Additionally, the energy
and time metrics scale well. We perform a similar anal-
ysis on Greedy Shallowest Acoustic and see similar results
(details in [9]).

The other six algorithms are radio-centric and consist of:
Greedy Furthest Radio, Greedy Shallowest Radio, Greedy
Look-Ahead, Greedy Look-Back, Min-Hop Furthest, and Min-
Hop Shallowest. Greedy Furthest Radio and Greedy Shal-
lowest Radio perform similar to their acoustic counterparts,
but using radio neighbors instead of acoustic.

Min-Hop Furthest and Min-Hop Shallowest are the cen-
tralized approaches where the starting node computes ev-
erything. Both use Dijkstra’s to determine the set of nodes
that rise with Min-Hop Furthest being the unweighted ver-
sion and Min-Hop Shallowest being the weighted version
that uses depth for the weights.

Since the centralized approach has a significant acoustic
communication cost, we also develop Greedy Look-Ahead,
which uses connection information spanning out to the fur-
thest radio neighbor’s furthest neighbor. With this informa-
tion, it calculates the optimal next step using Dijkstra’s al-
gorithm with link-costs being weighted by node depth. The
algorithm selects the minimum weight path, which serves
as an approximation of the globally optimal route. The
only requirements placed on the system are: no-backwards
traversals (messages always advance) and the path chosen
must have a length greater than two (not including the
sender). The path length requirement provides a safe-guard
against becoming a purely shallowest-neighbor approach.

Greedy Look-Back is a time saving version of Greedy Look-
Ahead. This algorithm sends a rise command to the furthest
radio neighbor. Upon receipt of a rise command, the receiv-
ing node will check to see if it was the shallowest neighbor of
the sending node. If so, it will rise and the algorithm contin-
ues forward. If not, it will invoke the look-ahead algorithm
on behalf of the original sender, determine the appropriate
node, and send a “forced-rise” command. The forced-rise
can not be further regressed; the receiving node is already
part of the locally optimal path.

5. 2D TOPOLOGY EXPERIMENTS

We first explore how the algorithms perform when the
nodes exist along the same y-axis line but at different depths.
The experiments measure and compare the energy efficiency
of the algorithms for a default set of settings.



System Default Values
Acoustic Range (m) 100
Radio Range (m) 200
Minimum X-axis Spacing (m) | 30
Maximum X-axis Spacing (m) | 60

Minimum Y-axis Spacing (m) 0
Maximum Y-axis Spacing (m) | 0
Maximum Depth (m) 20

Table 3: Default Values for System Variables for 2D Exper-
iments
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The simulator requires several variables to be defined be-
yond the number of nodes and length of message queues.
These variables include minimum and maximum lateral node
placement (x-axis), minimum and maximum node depth (z-
axis), and the range of the acoustic and radio modems. Ta-
ble 3 describes the default values used in the experiment for
these variables. These values ensure that each node has at
least one acoustic neighbor closer to the destination than
itself and, depending on a node’s placement in the network,
at least three radio neighbors closer to the destination than
itself.

We ran the eight algorithms on network sizes from ten to
100 nodes, in increments of ten, across 500 unique topolo-
gies. Figure 5 shows the average amount of motion any
node could expect to move for a certain network size. The
error bars on the plots represent standard deviation and
are only shown for algorithms that are significantly differ-
ent from each other. We choose to separate acoustic and
radio algorithms because the acoustic algorithms require
more movement, placing them on a different scale. The
upper plot contains data on the acoustic-centric algorithms
with Greedy Shallowest Acoustic showing estimates on er-
ror. We see minimal difference between the two acoustic
algorithms. The lower plot contains results on all but two
radio-centric algorithms (excluded are Greedy Look-Back
and Min-Hop Furthest as they are similar to Greedy Look-
Ahead and Min-Hop Shallowest respectively). In this plot,
we see that Min-Hop Shallowest and Greedy Look-Ahead
require the least movement, indicating a trade-off between
computational complexity and average node movement.

We might expect the energy comparison to mirror these
results as we know that the depth adjustment system uses
a large amount of energy. Figure 6 shows the average to-
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tal energy for all the algorithms, showing a different result.
Here we see the two centralized approaches (Min-Hop Fur-
thest and Min-Hop Shallowest) require significantly more
energy than any of the decentralized approaches. This is
due to the two centralized algorithms requiring much more
communication than the decentralized algorithms because,
for the centralized approaches, every message generated is
sourced from the first node. To examine the decentralized
algorithms more closely, we remove the two centralized ap-
proaches and see the result in Figure 7. The two acoustic
approaches, which both require more movement than the
other four, also require more energy. Of the remaining ra-
dio algorithms, Look Ahead performs the best for 30 and
60 nodes, but, once the number of nodes increases to 90,
performs marginally worse than Furthest Radio.

6. ACOUSTIC PACKET-LOSS

We now extend the simulation environment to include
acoustic packet-loss in order to provide more realistic re-
sults. On the AquaNode platform, our experimental results
showed 44% packet-loss at typical communication range [8].
In this section, we discuss our implementation of acoustic
packet-loss and then analyze its impact on the algorithms.

6.1 Implementation

We implement acoustic packet-loss by including a proba-
bility of the message not being received. If the message is



not received, the transmitting node resends until the mes-
sage is correctly received. This approach assumes that the
transmission will eventually succeed; to avoid infinite loops
in cases where this assumption does not hold, the simulator
will time out and fail. The rate at which acoustic pack-
ets are successfully transmitted is controlled by a variable
ACOUSTIC_SUCCESS. The user sets this variable at the
start of every simulation to a value ranging from 0-1 where
0 is a 0% success rate and 1 a 100% success rate.

The simulation updates acoustic transmit energy and acous-

tic message propagation time after each sent message. Equa-
tion 1 shows the acoustic transmit energy update equation
where ACOUSTIC_-TX_ENERGY is the energy used per
bit, pkt_len is the length of the data packet being trans-
ferred in bytes, and messaging overhead is accounted for by
the addition by 24 bits.

Eacs = Eacs+ACOUSTIC_TX_ENERGY (24-+8xpkt_len)
(1)

The constant ACOUSTIC_TX_ENERGY is set to 0.1136
joules based on experimental AquaNode results [8].

The simulator updates the acoustic message propagation
time based on the distance between the communicating
nodes multiplied by a constant TX_DELAY'; this can be
seen in Equation 2. The TX_DELAY value of 0.00067 s/m
comes from [1].

Tamp =Tamp + Nagiste *x TX_DELAY (2)

Currently, the acoustic message propagation time does
not account for acknowledgment time. We make this as-
sumption as acoustic message propagation time is a tool for
verifying correct operation and gaining an understanding of
the time needed for the network to calculate a communi-
cation path. We also added metrics to measure the total
number of acoustic messages sent and the total number of
failed acoustic messages.

6.2 Analysis

We analyze the modified simulation environment to en-
sure it operates as expected and to see if packet loss has any
effect on the ordering of the communication algorithms. In
our experiment, we use a network size of 60 nodes, skew
acoustic packet-loss rates at values of {0%, 44%, 80%}, and
average the results of 10 runs. We chose the acoustic packet-
loss rates of 0%, 44%, and 80% to gain an understanding of
the effect of the variable in the best case scenario (0%), ex-
perimentally measured scenario (44%), and near worst case
scenario (80%). Using 100% acoustic packet-loss renders
acoustic communication completely useless and, in turn,
breaks the simulation environment. After running the ex-
periment, we analyzed three different parameters: (1) the
acoustic message count of the eight different communication
algorithms, (2) the acoustic energy consumption of the six
decentralized communication algorithms, and (3) the total
energy consumption of the six decentralized communication
algorithms.

Acoustic message count with packet-loss We first
verify that the number of total acoustic packets sent in-
creases as the acoustic packet-loss rate increases.

Figure 8 shows the results, which see the same trend
across all algorithms. As the acoustic packet-loss rate in-
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Figure 8: Number of Total Acoustic Messages Sent with
Different Acoustic Packet-loss Rates
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Figure 9: Average Acoustic Energy with Different Acoustic
Packet-loss Rates

creases, the number of total acoustic packets sent increases
and scales to expected values. For example, the algorithm
Greedy Shallowest Radio transmits 77 packets with 0% loss,
326 packets with 44% loss, and 1079 packets with 80% loss.
To understand these results, we consider that, on aver-
age, each node has three neighboring nodes within acoustic
range and must successfully communicate with all of them.
This leads us to expect that the number of packets sent for
0% packet-loss will be approximately 18.67% of the number
of packets sent for 44% packet-loss; likewise, the number of
packets sent for 0% will be 6.67% of the packets sent for 80%
packet-loss. The results show that the amount of packets
sent for 0% packet-loss are 23.6% of the number of pack-
ets sent for 44% packet-loss and 7.1% for 80% packet-loss.
This experiment confirms our implementation of packet loss
and suggest some trends on network impact, which we now
explore.

Acoustic energy consumption with packet-loss The
second analysis compares acoustic packet-loss rates and the
average amount of acoustic energy used per node in the net-
work for six of the eight algorithms. We chose to remove
the centralized algorithms because their energy results were
so much larger than the decentralized algorithms that we
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see no reason to implement those on a network.

Figure 9 outlines the results. For all algorithms, aver-
age acoustic energy used per node increases as the acoustic
packet-loss rate increases. We expect this since the aver-
age acoustic energy used per node depends directly on the
amount of packets being communicated. In terms of acous-
tic energy efficiency, the two acoustic-centric communica-
tion algorithms are the most efficient as one would expect
since those algorithms intentionally maximize that metric.

Total energy consumption with packet-loss Our
next analysis explores the energy efficiency of the AquaNode
as a whole, considering all energy metrics. The total en-
ergy equation consists of processing energy, radio receive en-
ergy, acoustic receive energy, radio transmit energy, acous-
tic transmit energy, and movement energy.

The resulting order of the algorithms in this analysis, seen
in Figure 10, differs from the previous result seen in Fig-
ure 7. Since this considers all energy metrics, these results
reflect the fact that acoustic transmit energy is only a small
part of the total energy consumption. Once we consider all
energy sinks, the most energy efficient algorithm is a tie
between Shallowest Radio and Look Ahead. These results
confirm that acoustic packet-loss has a larger impact on the
algorithms that use more acoustic communication.

7. 3D NETWORK TOPOLOGIES

In this section, we discuss the expansion of the simulator
and algorithms to support 3D network topologies. Until
now, the simulator created only linear network topologies
with two dimensions: x (the node’s Euclidean x distance
away from the start node) and z (node depth). As not all
underwater networks are in this configuration, we added the
y dimension to explore three-dimensional network topolo-
gies.

7.1 Implementation

To add 3D network topologies to the simulation environ-
ment, we needed to modify how it generates the topologies
and the connectivity matrices. The initial simulator placed
nodes in a linear fashion along the xz-plane based on a pre-
existing topology or in a pseudo-random fashion according
to user specified parameters.
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Figure 12: Total Average Energy for Decentralized Com-
munication Algorithms in 3D Topologies

To extend the simulation environment to include 3D, we
add the y-axis and allow the user to specify the minimum
and maximum Euclidean y distance for a node. The sim-
ulator then randomly generates nodes with y coordinates
within those ranges (along with x and z as originally gen-
erated). Connectivity matrices now account for that y-
dimension to ensure nodes can reach each other; this is
simply an extension of the 2D equation.

7.2 Analysis

We now verify correct operation of 3D topologies and
analyze their impact on the ordering of the communication
algorithms.

To verify that the simulator correctly generates 3D topolo-
gies, we examine the node positions generated. Figure 11(a)
shows a typical 2D topology and Figure 11(b) shows a typ-
ical 3D topology. In the 2D topology, we see that the node
positions are all in a plane where the y position is 0. In the
3D topology, we see that the node positions vary between
30 and 60 meters along the y-axis, correctly generating a
3D topology.

We now analyze the communication algorithms for any
changes in their ordering. In these tests, we use network
sizes of 30, 60, and 90 nodes and average the results from 10
runs. We ignore the centralized communication algorithms
since we determined they were ineffective in Section 4.

Figure 12 shows the total average energy consumption for
all decentralized communication algorithms in 3D topolo-
gies. The results are nearly identical to the 2D results in
Figure 7 with small differences due to the randomization
of the network topologies and averaging. Therefore, inde-
pendent of 2D or 3D topology, our results show that Look
Ahead provides the most energy efficient algorithm for the
computational requirements. It only requires that nodes
know the full network topology in order to compute, in a
decentralized approach, an energy efficient set of nodes to
surface for high data rate communication.

8. CONCLUSION

This paper addresses the problem of determining which
subset of nodes should surface in underwater sensor net-
works with the multiple communication methods and the
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Figure 11: (a) 2D and (b) 3D Network Topologies

ability to adjust depth. We describe eight different algo-
rithms that determine which subset surfaces in order to
create a communication path for radio messages. We ex-
plore both two-dimensional and three-dimensional topolo-
gies with packet loss. All experiments result in the decen-
tralized Look-Ahead algorithm providing the most energy
efficient approach. If the system does not have the two-hop
neighbor information that this approach requires, Furthest
Radio provides a reasonable alternative.

While our simulation utilized experimental parameters,
in the future, we would like to implement the algorithm on
the AquaNode network. We also plan to expand the work
to support data muling options (both AUV and UAV) and
decide on the best approaches given four different options.
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