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Abstract— Remote sensing by Unmanned Aerial Vehicles
(UAVs) is changing the way agriculture operates by increasing
the spatial-temporal resolution of data collection. Micro-UAVs
have the potential to further improve and enrich the data
collected by operating close to the crops, enabling the collection
of higher spatio-temporal resolution data. In this paper, we
present a UAV-mounted measurement system that utilizes a
laser scanner to compute crop heights, a critical indicator of
crop health. The system filters, transforms, and analyzes the
cluttered range data in real-time to determine the distance to
the ground and to the top of the crops. We assess the system in
an indoor testbed and in a corn field. Our findings indicate that
despite the dense canopy and highly variable sensor readings,
we can precisely fly over crops and measure its height to within
5cm of measurements gathered using current measurement
technology.

I. INTRODUCTION

UAVs are improving modern agriculture production and

research by providing data at higher temporal and spatial

resolution scales, and lower cost, than traditional collection

methods, such as manned aircraft and satellites [1], [2].

Micro-UAVs offer further potential benefits as they lower

costs and operator risks, accelerate deployment times, and are

able to operate closer to crops to increase spatial resolution.

Operating close to the crops also allow UAVs to utilize new

sensors, such as low power, passive devices, that are not

effective with high flying aircraft.

In this work, we develop a crop height measurement

system based on a micro-UAV platform, shown in Fig-

ure 1. Obtaining accurate and timely crop height estimates

is important to characterize plants’ growth rate and health.

Agricultural researchers use this data to measure the impact

of genetic variation in the crops on drought resistance and

responses to environmental stresses. Practitioners may also

use crop height information to assess crop development

and plan treatments [3]. These measurements are currently

obtained through manual measurement, or by driving heavy

equipment through the field. These collection methods are

time consuming and damaging to the crops, and as such, are

not regularly used [4], [5], [6].
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Fig. 1. Micro-UAV measuring crop height

Measuring crops requires height estimates of the tops of

the crop and the ground, the difference of which is the

crop height. Measuring crops from the air to characterize

the top of the canopy benefits from unobstructed movement

that does not damage the crops, but locating the ground is

more challenging as layers of plants’ leaves can obscure the

ground. There are two ways to overcome this challenge. One

way is to increase sensing power by using, for example,

radars or powerful LiDARs. An alternative approach, the one

we have chosen to reduce risk and cost, is to fly a micro-UAV

equipped with less powerful sensors but operating closer to

the crops to exploit small gaps in the crop canopy to directly

sense the ground and the lower levels of the vegetation.

The autonomous crop height measurement system pre-

sented in this work is being developed in conjunction with

agronomy researchers with the goal of computing corn

crop height within 5cm of manual measurements, while

increasing the areas and frequency of measures by two orders

of magnitude. The system utilizes low-cost sensors and a

UAV platform to reduce costs and operator risks, increase

operating ease, and be highly portable. The system is built

using a commercial micro-UAV, laser scanner, barometer,

IMU, and a GPS receiver to effectively operate the UAV over

crops, estimate the UAV altitude, and accurately measure

the crop’s height by applying a series of onboard filters and

transformations. By operating at a low altitude, the system

greatly increases the spatial resolution of the collected data,

when compared to traditional approaches. Furthermore, the

small size and weight of the system limits the risks of

operating the unit.

The contributions of this work are:

• Design and implementation of a micro-UAV mounted

crop measurement system. The system leverages a

downward mounted laser scanner to help maintain the



UAV close to the crops and to characterize the crops

profile. This profile is then processed through a series

of transformations and filters to compute the UAV’s

altitude and the crop’s height.

• Assessment of the system on an indoor testbed and a

field. Our findings show that the system has the potential

to significantly increase the data obtained versus current

mechanisms and still operate within the margin of error

acceptable by agricultural scientists,

II. BACKGROUND

Before discussing the details of our work, we review

related work in using UAVs in agriculture and related fields.

A. UAVs in Agriculture

The use of UAVs in agriculture is an active research

topic [7]. Existing work mostly utilizes UAVs to deliver

aerial imagery of fields in a more timely and lower cost

manner than traditional methods, such as manned aircraft

and satellite imagery. Using a large UAV, it is possible to

classify different vegetation in a field [8]. Differentiating

between vegetation types is used for weed management prac-

tices and coordinating ground robots [9]. Small rotorcrafts

operating at altitudes of 200m above the ground and speeds

of 30km/h are capable of surveying up to 70ha/hr [1]. A

smaller UAV operating at ranges of 10m above the ground

is capable of surveying rice paddies with a multi-spectral

camera [10]. By operating close to the crops, the impact

of atmospheric distortion is reduced, but fast and accurate

altitude measurements are needed.

In our approach, we fly even closer (within 1-2m) to

the crops. This low-altitude operation increases the spatial

resolution of the collected information beyond the limits

of traditional aerial imagery techniques. Flying close to the

crops allows the UAV to exploit gaps in the crops’ foliage

to detect the ground and sense the multiple layers of leaves.

B. Tree Canopy Estimation

In forestry applications there has been a significant amount

of research using 3D LiDARs to measure canopy cover,

biomass, and tree heights. Tree heights have been assessed

using man-portable LiDAR systems [11], collecting data

similar to what we desire to collect for corn crops. This

system is cumbersome as it requires scientists to reposition

the system at all data collection points. Our use of micro-

UAVs significantly reduces the time needed to conduct an

experiment because the UAV can quickly survey a field

without requiring a human to relocate bulky equipment.

LiDARs have been used in conjunction with aerial plat-

forms for forestry experiments as well. LiDARs generally

require larger platforms that are difficult and risky to operate

close to crops, which means they are forced to fly at high

altitudes where the irregularity of the tree shapes makes

feature extraction difficult [12]. These conditions also push

LiDARs outside their recommended operating specifications.

UAVs can mitigate these problems [13] by flying at altitudes

between 10-40m, which produces information with a higher

spatial density. At these altitudes, a heavy and expensive

LiDAR is needed to achieve a high spatial information

density.

Existing work differs from our approach, in that we are

using a laser scanner (2D scan) instead of a LiDAR (3D

image) due to payload limits of micro UAVs. Furthermore,

we are interested in aggregate information about heights of

groups of plants, not individual plants, We also must fly

much closer to the crops to sense the ground between the

plants, which requires more precise altitude control than

these forestry approaches. Finally, the use of small laser

scanners reduces the size and cost of the combined system,

which makes it safer to use for operators.

C. SLAM

Simultaneous localization and mapping (SLAM) algo-

rithms have been an area of intense research. SLAM algo-

rithms using only a laser scanner in an urban environment

[14] are accurate for ground vehicle navigation. Outdoor

SLAM has been accomplished using a combination of vision

and laser ranging data [15], which can increase the accuracy,

at the cost of computational complexity. Actuated planar

laser scanners have been shown to work in unstructured

environments such as forests [16], but require extremely

intensive computation, and are not suitable for real time

navigation for aerial robots requiring precise height control.

SLAM approaches are ill-suited for our work, as we do

not seek to create a detailed map of the entire environment,

but only to extract group statistics, such as crop height from

fields. Furthermore, SLAM approaches do not work well

with the dynamic and complex field environment (e.g., plants

move with the wind, leaves appear different under changing

light conditions), making it more difficult to sense with high

enough precision to extract persistent features from sensor

data. Finally, the computing power necessary to make real

time navigation close to the crops is not viable in the micro-

UAVs. Instead, we rely on GPS to localize the UAV in the

field.

Fig. 2. Corn plant measurement
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Fig. 3. (a) Illustration of UAV measuring corn (b) sensor readings from corn field (c) distribution of sensor data (d) UAV with laserscanner with 90◦

scan angle in red

D. Corn Plant Structure and Measurement

Surveying agricultural fields requires an understanding

of the underlying vegetation. In this paper, we restrict our

studies to corn fields, but we discuss the generalization to

other types of crops in Section VI. A typical mature corn

plant has 12-22 leaves arranged along the stalk that grows

to a height of 2-3m [17]. The point at which a leaf joins the

stalk is referred to as a ‘node.’ As the plant matures, a thin,

long, tassel emerges from the top of the plant.

The structure of a corn plant makes it challenging to

survey fields, not only from the air, but also manually from

the ground. The corn is typically planted in rows that are

spaced 30 or 36 inches (76.2/91.44cm) apart. As the corn

grows, the leaves form a dense canopy between the rows,

which limits an aerial vehicle’s view of the ground. Typically,

the height of the plant is defined as the distance from the

top node to the ground. Figure 2 shows the standard method

of manually measuring the height of corn in a field. This

hand measurement process is labor intensive and error prone.

Tractors with specialized measuring devices can measure the

crops in a field, but will damage both the plants and the

ground [18]. Thus, it is only infrequently performed on a

small subset of plants in a field, despite the large impact

such measurements could have on crop production.

III. UAV ALTITUDE AND CROP HEIGHT ESTIMATION

We now present our measurement system that addresses

the difficulties of using a micro-UAV to survey crops, namely

locating the tops of the crops, and the ground.

A. Locating the top of the crops and the ground

Estimating crop height with an accuracy of 5cm requires

estimates of similar accuracy for the location of the ground

and the plants’ tops to compute their differential. 1

Determining the ground and crop top location, however,

can be challenging. The foliage of the corn fields makes

it difficult to directly sense the true ground location. An

illustration of the problem is shown in Figure 3(a). In this

figure, the UAV is attempting to sense the ground using

multiple sensor readings, represented by the dashed lines.

The layers of leaves block most of the sensor measurements,

1As we shall see in Section III-C, accurate ground measures are also
valuable to maintain a UAV altitude within a band that is safe but still close
enough to the crops to collect the required data.

represented by the dotted black lines. Only one sensor

measurement, shown in the red dashed line, finds a narrow

gap in the foliage to reach the ground. Similarly, without

enough readings the top of the crop may be missed. From

these readings, statistics such as the crop height can be

computed, and by georeferencing the scans with GPS, height

maps of the field can be constructed.

In practice, the measurements also include noise. Fig-

ure 3(b) shows a single laser scan obtained at a corn field.

The x-axis represents the sample angle in reference to the

UAV’s body. The y-axis represents the distance from the

scanner to a surface. As expected, there is some height

variation across the top of the plants, at some angles the

values are invalid (not plotted), and the corn leaves block

most of the scans at the upper layers of leaves. However,

the single scan reveals that some readings have reached the

ground which in the figure is consistently located at ≈ 3.5m

from the UAV. Clearly, more scans and readings per scan

increase the probability of sensing through the canopy and

better characterizing the crop’s top.

We now use the empirical cumulative distributed function

(CDF) of the scan in Figure 3(b) to get a better sense of how

to interpret it. The distribution in Figure 3(c) makes it easier

to identify the different elements of the crop. The upper layer

of leaves is represented by the sudden jump at the 0.5m mark

in the CDF. The multiple layers of leaves then smooths the

distribution until the 1.75m mark. At this point, the plants

are largely leaf free, so most scans then reach the ground at

around the 3.5m mark. This profile of CDF is characteristic

of the crop scans obtained from the micro-UAV operating

close to corn crops, and it hints at the potential of extracting

plants’ tops and ground estimates from it.

We formalize this problem by representing the scans as a

multinomial distribution. The ranges reported by the sensor

are discretized into a set of k ranges, hk. The leaves’ density

determines the probability pk of the sensor detecting one

of the leaves at height k. The number of readings reported

in each location is the set of n trials for the multinomial

distribution. We seek to find two percentiles, pg and pc,
which can be used to estimate the ground and crop top

location from the distribution of the laser scans.

Characterizing the plants in this way places certain re-

quirements on the sensor being used to gather the readings.

First, it must be able to quickly collect many samples from a



1: estimated crop height← 0
2: num scans← 0
3: procedure ESTIMATECROPHEIGHT(pg, pc)
4: while PendingWaypoints do
5: [L]← Scanner() ⊲ Get data from scanner
6: (r, p, y)← IMU() ⊲ Get data from IMU
7: b← Barometer() ⊲ Get barometric altitude estimate
8: (altitude, scan crop height)← ProcessScan([L], r, p, y, b, pg, pc)
9: UAV Control(altitude) ⊲ Control the UAV altitude

10: estimated crop height← estimated crop height+ scan crop height
11: num scans← num scans+ 1
12: end while

13: return estimated crop height/num scans ⊲ Return the estimate crop height for the field
14: end procedure

15:
16: procedure PROCESSSCAN([L],r, p, y, barometer, pg, pc) ⊲ Crop and UAV Height Estimation from laser scans [L],
17: ⊲ the roll, pitch, and yaw of the UAV, the barometric pressure derived UAV height estimate,
18: ⊲ and the parameters for estimate the location of the ground and the top of the crop
19: F ← ConeF ilter([L]) ⊲ Only keep center 90◦ of scans
20: Z ← F ∗ EulerRotation(r, p, y) ⊲ Transform from UAV frame to world frame
21: P ← Percentile(Z) ⊲ Assign a percentile rank p ∈ P to every range z ∈ Z
22: {g, h} ← Estimator(P, Z, pg, pc) ⊲ Ground and top of crop corresponds to specific percentiles in Z
23: filtered g ← MedianF ilter(g) ⊲ Pass ground estimate through median filter, length w
24: filtered h←MedianF ilter(h) ⊲ Pass crop top estimate through median filter, length w
25: scan crop height← filtered g − filtered h ⊲ Estimate the height of the crop in the scan
26: altitude = Kalman(filtered h, barometer) ⊲ Estimate UAV’s height based on barometer and laser
27: return {altitude, scan crop height} ⊲ Return the two values estimated by the procedure
28: end procedure

Algorithm 1: Crop height and altitude estimation system

given area, so that the probability distribution is meaningful.

Second, it must have a narrow sensing radius, so that the

measurements can pass through the small gaps in the leaves,

and thus sense the ground.

B. Platform

Figure 1 shows our complete system operating over crops.

It is based on an Ascending Technologies Firefly hexacopter

[19] which has a maximum payload of 600g, of which we

use 528g. We augmented the UAV with a Hokuyo URG-

04LX-UG01 laser scanner, which is mounted in a downward

facing configuration under the UAV, as shown in Figure 3(d).

The laser scanner produces a 240◦ scan at 10Hz, with an

angular resolution of ≈ 0.36◦, which creates 683 range

readings per scan. The scanner has a maximum range of

5.6m. The scanner has an integrated filter which indicates

which ranges are invalid. While the scanner is intended

for indoor sensing, our tests in Section V show that when

mounted in a downward facing configuration without a direct

view of the sun, it will function effectively in an outdoor

environment. An onboard Atomboard processor interfaces to

and processes data from the laser scanner. The onboard GPS

and IMU are used in conjunction with the laser scanner to

control the UAV height. The software on the Atomboard is

developed in ROS [20], and its functionality is described in

the next section.

We assume that the crops are no more than three meters

tall. By flying the UAV within one meter of the plants’ tops,

the spatial resolution of the laser scans enables stable height

control and accurate estimates of crop height, as we will see

in the following sections.

C. Crop Height and UAV Altitude Estimation

Converting the laser scan information into a crop height

and UAV altitude estimate is a multi-step procedure, as

outlined in Algorithm 1. The measurements from the laser

scanner must be converted to altitude estimates, filtered,

and transformed to extract estimates of the crop height and

UAV altitude. Algorithm 1 presents the high level algorithm

for this procedure. Procedure EstimateCropHeight collects

sensor readings from the onboard sensors and uses the

measurements to process each laser scan, using Procedure

ProcessScan. ProcessScan returns an estimate of the UAV

altitude and the height of the crop in the scan. Estimate-

CropHeight uses the two estimates to control the UAV, and

estimate the height of the crops in the area of interest. Next,

we describe the operation of ProcessScan in detail.

Cone Filter: The ConeFilter procedure on line 19 of

Algorithm 1 decimates each laser scan reading, leaving a

90◦ arc of samples that are within 45◦ of the z-axis of the

UAV. The full 240◦ scan range is shown as a black and white

arc in Figure 3(d), and the used samples are from the region

shown in red. Rejecting all of the scan information from

outside this region eliminates the readings from the UAV’s

body, samples where the ground is outside the maximum

range of the scanner, and other readings that do not sense

the crop. Since the UAV does not aggressively maneuver

during a surveying mission, filtering early significantly cuts

the computational burden of later stages without losing useful

information.

The cone filter, combined with the maximum range of the

laser scanner produce an upper limit to the UAV’s altitude.

Given the difficulties in sensing the ground, all of the scans

in the 90◦ need to have a chance of reaching the ground, in
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Fig. 4. (a) Indoor testbed (b) CDF of indoor scan data (c) autonomous flight height (d) average estimated altitude error

order to maximize the probability of detecting the ground.

Since the laser scanner has a maximum range of 5.6m, this

restricts the UAV to an altitude of 5.6 ∗ cos(45◦) = 4.0m.

Frame Transformation: Next, the remaining range data

is transformed from the body frame of the UAV, to the world

frame. On line 20 of Algorithm 1, roll, pitch, and yaw data

from the onboard IMU is used in a standard Euler rotation

matrix to extract the z-components of the range data in the

global frame, and to compensate for the pitch and roll of the

UAV.

Percentile Computation & Range Estimation: The

percentile rank of each z-component is then computed (line

21 of Algorithm 1). Since we assume that the ground and top

of the crop will be parameterized at a certain percentile of

the data, the percentile ranks are used to estimate where the

ground and crop is in each scan. On line 22, the Estimator

procedure uses the percentile ranks and z-components to

extract estimates of the UAV height and distance to the crops

for each scan. The Estimator procedure searches through

the percentile ranks, P , to find the closest percentiles to the

ground and crop top estimates, pg and pc. The distances in

Z that correspond to these percentiles are then returned as

the ground and crop top distance estimates.

pg and pc are user defined parameters that must be

experimentally derived. In the following sections, we show

that it is not difficult to find pairs of these parameters that

enable accurate altitude and crop height estimates.

Median Filtering: The crop top and ground range

estimates are noisy, and tend to have outliers. The outliers

are caused by infrequent scans where no range measurements

reached the ground, abnormal plant growths, and occasional

debris in the field. Each estimate of the ground and crop

top is passed through a median filter, of length w, on lines

23 and 24 of Algorithm 1. The filter length is empirically

determined. If it is set to a shorter length, the system is

vulnerable to outliers. A longer filter length rejects more

outliers, however, filter length introduces time lag in the

control system, and the UAV becomes less responsive to

altitude changes.

Flight Control: The filtered estimate of the ground dis-

tance is used in the flight control software. The laser scanner

derived height estimate is combined with the barometric

pressure height estimate, using a Kalman filter (line 26 of

Alg. 1). The Kalman filter produces the final height estimate

that is used by a PID control system to guide the UAV.

Crop Height Estimate: The crop height estimate for

each scan is estimated by taking the difference between the

estimated distance to the top of the crop, and the filtered

distance to the ground. The crop height estimates for an

area of interest are accumulated during the flight, and by

averaging the crop height estimate from several of these

scans, the crop height in an area can be estimated.

IV. ASSESSING AUTONOMOUS ALTITUDE CONTROL

OVER CLUTTERED GROUND

Before characterizing the system’s ability to measure crop

height in a field, we evaluate the accuracy of the system’s

altitude control described in the previous section in an

indoor environment. The testbed contains artificial plants

with multiple levels of long, narrow leaves to simulate corn

plants. The plants are placed in 12 different configurations

of rows spaced 0.5m apart. The configurations differ in the

plant arrangements to ensure the results are not dependent on

a particular ordering of plants. There are also two kinds of

configurations of different density. In configurations 1-10 the

plants are spaced between 40 and 50cm apart. Configurations

11-12 are denser, with plants placed 20cm apart within a row,

and are meant to assess the system’s ability to operate over

extremely dense foliage, where fewer laser measurements

reach the ground. The artificial plants have a mean height

of 0.967m and a standard deviation of 3.74cm. The indoor

testbed is shown in Figure 4(a). We used a Vicon motion

capture system to provide ground truth estimates of the true

UAV height [21].

For the evaluation we selected the 95th percentile of the

longest range reported by its scanner (pg in Algorithm 1),

with a median filter of length 3 (w in Algorithm 1) applied to

the altitude estimate to reduce noise. These values are empir-

ically determined from experimentation. The UAV maintains

a stable altitude with the filter length, and quickly reacts to

any perturbations. From Figure 4(b), we can see that the

system should not be sensitive to the exact choice of pg , and

our results confirm this intuition.

Figure 4(c) shows the ground truth altitude of the UAV

versus the pose calculated using our system estimate for one

trial. The estimated altitude follows the true height extremely

closely, and the UAV transitioned between the areas covered

by the plants, and bare floor with few significant changes

in altitude estimates. There are four instances where the

altitude estimate has a minor divergence from the ground

truth estimate, but the system quickly recovers. Increasing

the filter length w would mitigate these problems, but could



make the system less responsive to true changes in height,

and thus more difficult to control.

Figure 4(d) shows the average difference between the

true height and our system estimated altitude for all twelve

configurations. The system has an average error of 4.1cm

for the first ten sparse configurations, and an error of 3.6cm

for the final two dense configurations. The variance for all

configurations was 0.0003. This small error confirms that

the system is consistently tracking the true ground, and the

choice of pg is valid.

Our indoor evaluation indicates that the system is able to

accurately estimate and control its true altitude, even when

it is flying over cluttered ground. Since the system is able to

control its true altitude, it is able to consistently detect the

ground. We will use the parameterization of pg and w from

this section to estimate the crop’s height in the next section.

V. EXPERIMENTAL HEIGHT ESTIMATION RESULTS

We now evaluate whether the system is able to accurately

measure a crop’s height. The results of the prior section

demonstrate that the system can sense the ground through

severe clutter. If the system is able to reliably track the top

of the plants, it will therefore be able to estimate the crop

height, by taking the difference between the ground estimate

and the crop top distance estimate. The system is evaluated

using both the indoor testbed introduced in the prior section,

and the outdoor field shown in Figure 1.

A. Outdoor Testbed

An outdoor testbed is needed to assess the system’s ability

to measure a real crop, and to test the laser scanner’s

effectiveness outdoor. Initial tests revealed that the scanner

will not function when placed with a direct view of the sun.

However, by mounting the scanner in a downward facing

configuration, the 96.5% of the range measurements in each

scan were valid, on average.

To create the ground truth estimate for the outdoor testbed,

a trained researcher measured the height of 20 plants. The

height of the corn from the ground to the top of the corn

varies between 1.98m and 2.26m, with a mean height of

2.108m and a standard deviation of 8.28cm. The height from

the ground to the tassel of the same plants ranged between

2.33 and 2.65m, with a mean of 2.51m and a standard

deviation of 8.61cm. A 3 × 10m area was surveyed, which

is the size of a typical agronomy phenotyping trial.

To evaluate the scanner in an outdoor setting, a total of

1, 155 scans were taken above the corn field in a sunny

morning in August. The UAV is flown under manual control

multiple times over each row in the area, at approximately the

same speed. The laser scanner continuously scans the region,

and the results from the scans are combined to form an

estimate of the average height of the corn in the region. After

restricting the sample angles to the central 90◦ arc, 295, 680
individual range readings were collected. Of these samples,

over 96.5% are valid. The number of valid samples per scan

is shown in Figure 5, as reported by the laser scanner’s

internal filtering process. At least 75% of the possible 256
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range readings in the 90◦ arc are valid in each scan. Even

when the number of valid samples drops, it quickly recovers,

so the UAV did not encounter prolonged periods of bad

scanner performance. The large number of range readings

in each scan enables the construction of a well defined

distribution, and potentially allows many samples to reach

the ground in each scan. The number of valid samples in

each scan shows that the small laser scanner, when properly

placed, is effective in an outdoor setting.

B. Indoor vs. Outdoor Data Comparison

We first compare the distributions produced from scans of

outdoor data (shown in Figure 3(c)) to indoor data (shown in

Figure 4(b)), to check if the same features are present in both

testbeds. If both locations have similar types of distributions,

it is likely that the same procedure for estimating crop height

and UAV altitude will work in both locations.

Figure 4(b) shows the CDF of a scan taken in the in-

door testbed. This figure shows the same sharp increase in

readings, corresponding to the tops of the leaves, at a range

of 0.9m to 1.1m, as the outdoor corn does. The layers of

leaves cause the same gradual increase in the CDF, until the

last layer is reached, as is seen in Figure 3(c). Finally, the

samples that reach the ground cause a final sharp uptick in

the CDF at long ranges, just as in the outdoor data. The

similar shape of the two distributions suggests that the same

crop height and altitude estimates can be used in both cases,

even though the indoor testbed uses much shorter plants.

C. Crop Height Analysis

We now explore the effect of the input parameters pg and

pc on the estimates of the crop height. Recall that pg and pc
are parameters used to choose which samples represent the

ground and the top of the crop.

Table I summarizes the impact of different values for

pg and pc on the crop height estimate. The first row is

the result of taking the two extreme points of each scan,

highest and lowest, and using the difference as the crop

height estimate. This produces unacceptable results, as the

outdoor crop height estimate is 0.77m larger than the actual



pg . pc Est. Indoor Height (m) Est. Outdoor Height (m) Indoor Error (m) Outdoor Error (m)

100 0 1.0545 2.8810 0.0875 0.7730
99 1 1.0412 2.5026 0.0742 0.3946
99 2 1.0335 2.4601 0.0665 0.3521
99 5 0.9888 2.3808 0.0218∗ 0.2728
95 1 1.0219 2.1849 0.0549 0.0769
95 2 1.0133 2.1440 0.0463∗ 0.0360∗
95 5 0.9690 2.0625 0.0020∗ −0.0455∗
90 1 1.0040 1.9077 0.0370∗ −0.2003
90 2 0.9956 1.8609 0.0286∗ −0.2471
90 5 0.9514 1.7771 −0.0156∗ −0.3309

TABLE I

IMPACT OF ESTIMATION PARAMETERS ON CROP HEIGHT ESTIMATES. VALUES WITH A * ARE UNDER THE 5CM OF ERROR REQUIREMENT.

crop height. This is the result of the tassels of the corn

and tall corn leaves producing estimates of the plants’

tops that are closest to the UAV. The ground estimate is

also overestimated as it captures holes in the ground, and

furrows in the field, producing long range scan estimates. The

indoor data is similarly affected by noisy measurements, and

overestimates the artificial plant heights. The height estimate

is also unaffected by the imprecise manual control, which

caused the UAV to repeatedly change its altitude over the

field. Despite changing the UAV’s position relative to the

crop, the system was still able to form an accurate height

estimate.

As more data is filtered from the scans, the crop height

estimates converge to the actual values. Of particular interest

are the values around pg = 0.95, which produced a stable

flight from the UAV. Using this parameterization, we can see

that rejecting a small amount of the close scans to the UAV,

pc = 0.02, produces a crop height estimate that is within 4cm

of the true value for the outdoor field. This parameterization

also accurately estimates the indoor testbed’s height.

Table I shows that the system is more sensitive to changes

in pg than to pc in the outdoor setting. We conjecture that

this is due to the dense upper canopy returns many samples

that are a good estimator for the top of the crop. On the

other hand, very few samples reach the ground, so the few

samples reaching the ground have a high probability of being

corrupted by variations in the ground, holes, debris, or even

small plants growing in the field.

Intuitively, the parameters match the physical aspects of

the outdoor field. The top layers of leaves form a dense

canopy, with only a few protrusions by leaves and corn

tassels. Only a small number of measurements in each scan

will reflect from these surfaces, which means pc can be very

small. On the other hand, the ground readings are impacted

by furrows in the field, and the generally uneven ground.

This requires more noise rejection from the ground estimate,

results in pg = 0.95. Given that the corn was in good

health, and mature, the canopy in the field is representative

of the highly cluttered environments the UAV will operate

in. Future studies will examine the impact of different fields

on this parameterization.

VI. CONCLUSIONS AND FUTURE WORK

In this paper we have shown the feasibility of using a

low cost laser scanner, mounted to a small UAV platform,

to measure crop heights and control the height of the UAV

over fields. With appropriate filtering and computation, the

system is able to exploit small gaps in the crop foliage to

directly sense the ground, which enables the UAV to fly at

a fixed altitude, close to the crops. Flying close to the fields

dramatically increases the spatial resolution of the data when

compared to traditional measurements, and enables smaller

and cheaper UAVs to be used in these missions.

In the future, we will exploit the laser scanner’s ability

to sense multiple levels of the crop canopy to generate

multidimensional models of the field. These models can

then be used to evaluate crop development and health.

Additional sensors, such as a camera, will also be added to

the system to allow agronomy researchers a better view of a

field’s development and health. The system will be tested on

other crops to characterize the distribution of scan data for

different plants. These new models will be used to adapt the

existing hardware and software system to a larger variety of

crops. Geo-referencing the combined data will enable new

datamaps to be built, which will enable new insights into

crop development and health.
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