
Beyond the Rainbow: Self-Adaptive Failure Avoidance in
Configurable Systems

Jacob Swanson, Myra B. Cohen, Matthew B. Dwyer, Brady J. Garvin and Justin Firestone
Dept. of Computer Science and Engineering

University of Nebraska-Lincoln
Lincoln, NE 68588-0115, USA

{jswanson,myra,dwyer,bgarvin,jfiresto}@cse.unl.edu

ABSTRACT
Self-adaptive software systems monitor their state and then
adapt when certain conditions are met, guided by a global
utility function. In prior work we developed algorithms and
conducted a post-hoc analysis demonstrating the possibil-
ity of adapting to software failures by judiciously changing
configurations. In this paper we present the REFRACT
framework that realizes this idea in practice by building
on the self-adaptive Rainbow architecture. REFRACT ex-
tends Rainbow with new components and algorithms tar-
geting failure avoidance. We use REFRACT in a case study
running four independently executing Firefox clients with 36
passing test cases and 7 seeded faults. The study show that
workarounds for all but one of the seeded faults are found
and the one that is not found never fails – it is guarded
from failing by a related workaround. Moreover, REFRACT
finds workarounds for eight configuration-related unseeded
failures from tests that were expected to pass (and did under
the default configuration). Finally, the data show that when
a failure and its workaround are found, configuration guards
prevent the failure from appearing again. In a simulation
lasting 24 hours we see over 150 guard activations and no
failures with workarounds remaining beyond 16 hours.

Categories and Subject Descriptors
D.2.5 [Software Engineering]: Testing and Debugging

General Terms
Verification, Experimentation

Keywords
Self-Adaptive Software, Configurable Software

1. INTRODUCTION
Many programs provide users with the option of selecting

a custom set of features that can be combined, almost arbi-
trarily, at runtime. For instance, a web server like Apache
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provides options to configure, for example, permissions, server-
side include support, access logging, host name lookup, buffer
sizes, and server capacity. Adding or removing features may
improve the robustness of a system, improve performance, or
simply improve the user experience. A typical configurable
system may have hundreds or thousands of options, and
this leads to billions or trillions of possible customizations;
Apache has more than 1055 possible configurations [11].

Research on testing configurable systems has focused on
a particular type of fault called a feature interaction fault.
Such a fault triggers only under a specific combination of fea-
tures [11,22,27,37,39,45]. The problem of feature interaction
faults has existed for years [46]. These types of faults are
difficult to detect, and therefore often hide in released soft-
ware. Once deployed, they may trigger infrequently making
them hard to reliably detect and repair.

Self-adaptive software systems are a new breed of software
that provide adaptation mechanisms that allow continued
operation when the system environment changes. For exam-
ple, if an application utilizes too much CPU, it may reconfig-
ure resource settings to achieve a desired maximum utiliza-
tion. Most work on self-adaptation has focused on contin-
uous quality attributes allowing techniques from feedback-
control to be applied [6,9, 12,16,20,24,40]. Recent work by
Carzaniga et al. [2] uses self-adaptation in a different way
– to avoid executing faulty code after a failure is observed.
Their code adaptation automates a kind of workaround –
avoiding rather than repairing the fault by modifying the
code to use alternative libraries. This approach suggests
that self-adaptation may successfully utilize discrete events
to drive adaptation, in addition to using continuous mea-
sures of quality attributes.

In prior work we also explored the use of failures to drive
adaptation [21]. In our approach, adaptation is performed
by reconfiguring the system through its pre-defined config-
uration options. We developed several algorithms for adap-
tive reconfiguration and performed a case study using the
fault history of the GNU gcc compiler – accessed through
its bug database. Our findings demonstrate that the al-
gorithms we developed are able to avoid failures in config-
urable systems through adaptive reconfiguration. In this
paper, we take this work further by building a flexible frame-
work for failure avoidance via reconfiguration on top of an
existing self-adaptive system. Our framework, REFRACT
(REconfiguration-based FailuRe AvoidanCe Technique), ex-
tends the Rainbow self-adaptive system [7] with new meth-
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Figure 1: REFRACT MAPE Loops

ods to monitor for discrete failures, strategies for reconfig-
uring to avoid failures and to guard against future failures.

REFRACT is able to observe and drive fault-adaptation
in a set of simultaneously executing target applications. In
this paper, we use REFRACT to avoid failures in indepen-
dently executing instances of Firefox. REFRACT is instan-
tiated with a model of the Firefox configuration space and
failure avoidance strategies, as well as methods that restart
the application in a new configuration. In a case study we
evaluate the effectiveness of REFRACT on a set of real faults
for the Firefox web browser. We show that self-adaptation
for avoidance of configuration dependent failures does find
and then subsequently avoid failures in the system.

While REFRACT is not yet highly optimized, it demon-
strates the feasibility of the approach – failures are diagnosed
and Firefox is reconfigured to avoid them in a matter of min-
utes. Moreover, over time REFRACT can collect informa-
tion from a set of deployed Firefox instances and distribute
that information back to those instances. This allows all of
the deployed instances to be protected against future failures
when just a single instance encounters a failure. We also see
protection derived from one workaround that incidentally
protects against a different failure.

The contributions of this paper are: (1) a framework (RE-
FRACT) for self-adaptation to avoid feature-related failures;
(2) a prototype instance of REFRACT that supports the
Firefox browser; and (3) the results of a case study using
REFRACT to avoid failures in Firefox that uses real faults
to show the feasibility and potential of the approach.

We describe the main use cases and background for our
work in the next section. We follow that with a description
of our framework in Section 3. We then present our case
study and results in Sections 4 and 5. We discuss related
work in Section 6 and conclude and present future work in
Section 7.

2. OVERVIEW AND BACKGROUND
Consider a configurable target application, such as Fire-

fox, running under the control of REFRACT, which we
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Figure 2: REFRACT Rainbow Extension

will call Firefox-REFRACT. Figure 1 illustrates the three
self-adaptive behaviors that REFRACT supports as MAPE
(monitor, analyze, plan, and execute) loops [6].

The top two rows, with solid arrows, depict Firefox-
REFRACT reacting to a failure, starting with the client-side
Firefox encountering the bug. There, REFRACT monitors
Firefox by observing inputs and outputs during execution
and checking for failures; we focus just on failures in this
explanation for simplicity. When a failure is detected, the
recorded inputs and the current configuration are sent to the
server, where the problem is analyzed by replaying it under
sampled configurations. If the failure can be recreated as re-
ported, but the execution passes under some configurations
in the sample, the server prepares a guard on configurations
based on the differences between the passing and failing con-
figurations. Finally, it distributes the guard to all running
Firefox-REFRACT clients so that they can use it to avoid
both the original and similar failures. Because of the way the
guard is encoded, it can also suggest reconfigurations that
will take a client out of the situations it deems dangerous.

While the server is characterizing the issue, the client
looks for a single alternative configuration in which it can
retry the problematic inputs. Choosing an untried reconfig-
uration can either mean requesting a reconfiguration from
historically effective guards, or – if the client can afford to
wait for the server – pausing until the new guard’s sugges-
tions are available. Once a reconfiguration is chosen, the
client reconfigures and retries the failure-triggering inputs.
Monitoring is still in effect, so if the same failure recurs, the
client-side portion of the process may be repeated. (As long
as the server optimizes away analysis of duplicate failures,
the server-side portion will not repeat.)

The bottom row, with dashed arrows, depicts the proac-
tive portion of Firefox-REFRACT. In the monitor phase,
the client code detects configuration or guard changes, which
may indicate that the client is now in violation of one of its
configuration guards. Accordingly, it consults those guards,
and, if necessary, chooses a reversion from those that the
guards suggest. Then it immediately reverts its configura-
tion, bringing its configuration back to a state the guards
consider safe.



The flows in Figure 1 execute many times and for many
Firefox-REFRACT clients. This will drive the system to
accumulate a set of guards that characterize the failing con-
figurations for a population of potentially diverse clients.

2.1 Building on Rainbow
REFRACT’s use of the MAPE loop led us to to leverage

an existing MAPE-oriented infrastructure – Rainbow [7].
Rainbow was designed to check the conformance of sys-
tem execution against architectural and design assumptions.
Rainbow is organized, as shown in Figure 2, into two lay-
ers: (a) a translation layer which is embedded into the tar-
get system and (b) an adaptation and strategy layer which
is decoupled from the target. The translation layer distin-
guishes three components: probes monitor the target system
to gather information, gauges measure that information to
facilitate judgments at the adaptation layer, and effectors
modify the target system’s behavior. The higher-level layer
captures relevant knowledge that is needed to drive adap-
tation. Typically Rainbow keeps a model of the execution
environment and the system architecture; the latter defines
how the target system can be restructured. The knowl-
edge and measurements reported by gauges are evaluated
to determine if adaptation is warranted, e.g., gauge mea-
surements may lie below thresholds that trigger adaptation.
If adaptation is required, a manager selects from a suite of
adaptation strategies and tasks the executor with achiev-
ing an adaptation. We describe REFRACT’s extensions to
Rainbow in Section 3.

2.2 Finding Workarounds
An important component of REFRACT is finding work-

arounds. We discuss our prior work in this domain here.
Figure 3 is a simplified feature model for the Firefox web
browser. There are three optional features (keyword.enabled,
privacy.SanitizeOnShutdown, and browser.autofocus). We
also have a feature (browser.startup.page) that is required in
all instances, but that must take only one of three values (1,
2 or 3).

Suppose the system has the following starting configura-
tion. It has enabled both privacy.SanitizeOnShutdown and
browser.autofocus, but has disabled keyword.enabled. In ad-
dition, browser.startup.page is set to 3. If a failure is encoun-
tered at runtime, we want to move to another configuration
to avoid this problem. Garvin et al. [21,23] proposed a brute
force n-hop algorithm, that tries each possible configuration
n-hops away from the starting one. For instance, a 1-hop
variant of this algorithm would first include keyword.enabled,
leaving all other features as-is. Then it would remove this
feature again and remove privacy.SanitizeOnShutdown, etc.
At each step it would re-run the use case to determine if
it now passes and keep track of all passing configurations.
These are possible workarounds.

Assume that the setting of 3 for browser.startup.page is
a faulty configuration option. Two passing configurations
would be detected by the 1-hop algorithm. This would
include two configurations with the original settings, but
browser.startup.page set to either 1 or 2. Thus the setting
of 3 is determined to be potentially faulty, and it can be
guarded against it in future runs. Reconfiguring the browser
to one of the two passing configurations allows execution to
proceed from the failure. This single option configuration is
a simple case, for illustration purposes, but configurations

Firefox 

keyword.enabled! privacy.sani,zeOnShutdown! browser.autofocus! brrowser.startup.page!

1! 2! 3!
Optional 
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Figure 3: Example Feature Model

requiring as many as 5 option changes have been found in
our studies [43].

One of the advantages of a brute force approach is that
we stay close to the original configuration and will main-
tain most system functionality from prior to the failure. In
preliminary work [43], we found the 1-hop algorithm to be
effective in avoiding a large number of failures. The 2-hop
variant found additional workarounds, but only for failures
that already had 1-hop solutions. However, scalability is
limited. The n-hop algorithm grows exponentially with re-
spect to n; 2-hop applied to a large configurable system was
233 times slower than 1-hop.

REFRACT is designed to run online and to be applied to
clients with large complex feature models. Consequently, we
explore the use of new configuration sampling algorithms to
better balance cost-effectiveness in searching for configura-
tion workarounds in the next section.

3. IMPLEMENTING REFRACT
In this section we first present REFRACT as pseudocode

and elaborate on the sub-algorithms responsible for char-
acterizing failures and suggesting workarounds. Then we
detail how REFRACT is realized within Rainbow, building
on the concepts in Figure 2.

3.1 Failure Avoidance in REFRACT
Algorithm 1 shows REFRACT at a high level. The sys-

tem as a whole maintains a set of deployed clients (line 1), a
feature model (line 2), and a set of guards (line 3); the client
and guard sets are initially empty. When clients come on-
line, their probes and gauges are initialized (line 4) and their
guard sets are synchronized with the server’s (line 5) before
they are added (line 6). Likewise, probes and gauges are torn
down (line 8) after clients are removed (line 7). Failures are
handled by verifying replicability (lines 9 and 10) and calling
a customizable sub-algorithm findGuards (line 11) (which
we discuss in Section 3.2) to create new guards. The guard
update triggers a reaction to the failure on the correspond-
ing client, as well as proactive avoidance on other clients, via
a test for guard-violating configurations (line 13). The sub-
algorithm suggestions corresponding to the findGuards
implementation produces possible ways out of such configu-
rations, the best chosen according to a client-specific fitness
function (line 14) and applied (line 15).

3.2 Sampling Techniques to Find Workarounds
For findGuards we have explored four different sampling

strategies. One, outlined in [23], considers all configurations
within a fixed number of hops (single-feature configuration
changes) from the reported failing configuration. In this



Algorithm 1 REFRACT Failure Avoidance

Initially:
1: let D ← ∅ (the set of deployed client systems)
2: let M ← the feature model
3: let G ← ∅ (the set of configuration guards)

When a client d comes online:
4: instantiate an error probe and gauge on d
5: match d’s copy of G to the server’s
6: let D ← D ∪ {d}

When a client d goes offline:
7: D ← D \ {d}
8: tear down the error probe and gauge on d

When a client d encounters a failure from inputs
I under configuration C:

9: replay I under C on the server
10: if a failure is observed then
11: let G (on both the server and the clients) ←

G∪findGuards(I, C,M) (computed on the server)
12: end if

When a client d changes to configuration C or a
client’s copy of G changes:

13: if C violates a nonempty set of guards G′ ⊂ G then
14: let r ← a reconfiguration chosen from

suggestions(G)
15: apply r to C
16: end if

strategy we systematically change all n-feature options one
by one. Two more, random sampling and covering array
sampling initially sample independently of the failing config-
uration (either randomly or using a covering array) and then,
if a workaround is found, move to reconfigurations closer to
the original via a reconfiguration minimization step. The
last, a genetic algorithm whose fitness function aimed for
configurations near the failing one, did no better than ran-
dom sampling with minimization, and so is not presented
here.

Random Sampling.
Random sampling repeatedly generates a random config-

uration from the feature model (ignoring the current config-
uration), resampling in cases where feature constraints are
violated. In preliminary work [43], we experimented with
this algorithm and found that small samples (around 10 con-
figurations) found fewer workarounds overall than a one-hop
sample, but occasionally found some workarounds that nei-
ther one- nor two-hop samples could find. While three times
slower than the one-hop algorithm, random sampling was
118 times faster than two-hop exploration. Increasing the
number of iterations up to 150, random found more work-
arounds overall than either one or two-hop sampling and
still maintained an order-of-magnitude performance advan-
tage over the two-hop approach. Thus, for the types of con-
figuration spaces we experimented with, random seemed to
strike a good cost-effectiveness trade-off.

Covering Array Sampling.
Covering arrays have been used extensively for testing

highly configurable software systems [37, 45]. A covering
array is a sample that ensures at least one t-combination of
configuration options for all possible (valid) t-combinations
in the configuration space. In the simplest case, t is 2, and
such a sample is often called a pairwise sample.

For the covering array variant of our failure avoidance
algorithm, we generate a t-way covering array for the feature
model, and this constitutes our sample of workarounds to
try. There has been research on combining delta debugging
with covering arrays [28] and using covering arrays to find
a minimal failing test [34], for which reason we believe that
this approach makes sense. In our preliminary work [43],
we found that 2-way covering arrays did not work as well
as random sampling. But when we combined two different
2-way arrays together, more workarounds were found than
with random sampling and in less time. Our best sampling
strength for finding new workarounds consistently was a 3-
way covering array, but this significantly increased cost. As
with the number of iterations for random, here sampling
strength exposed a cost-effectiveness trade-off.

Minimizing Workarounds.
Because the random and covering array sampling tech-

niques can move a client arbitrarily far away from the con-
figuration it started in, we have implemented a minimizer
using the delta debugging technique [47], but adjusted to
seek a minimal reconfiguration that passes, not fails, a test
case.

To illustrate minimization, consider the feature model in
Figure 3 and a failure caused by browser.startup.page set to
3. Suppose we randomly select a configuration where pri-
vacy.sanitizeOnShutdown and browser.autofocus are toggled
and browser.startup.page is changed to 2. Since browser.
startup.page must be 3 for failure, this configuration allows
the system to pass the test case. Unfortunately, it is three
hops from the starting configuration.

The minimizer divides the reconfigurations into two groups.
In this example, the workaround the leaves a value of 3 for
browser.startup.page from the starting configuration will fail;
the other configuration will pass. In that latter configura-
tion, some of the previously changed values were left un-
touched, so the hop count is decreased. The process is re-
peated until the minimal one-hop workaround is found. In
this simple example, the minimization is actually more ex-
pensive than one-hop sampling. But as the feature model
scales, sparse sampling and minimization scales better than
the direct n-hop technique.

3.3 Modifications Made to Rainbow
REFRACT extends Rainbow to support detection of sys-

tem errors and failures, their evaluation, and their avoidance
via system reconfiguration.

REFRACT extends Rainbow’s translation layer. New
probes, Pfail, can either detect system failures, e.g., un-
caught exceptions, oracle violations, or internal errors which
might be caught as contract or assertion violations that re-
main enabled during deployment. This arrangement pro-
vides a means of avoiding failures by reconfiguring before
errors propagate to output. New gauges, Gfail, assess the
severity of a failure/error. For failures a binary measure
might be appropriate, but finer measures may be appropri-



ate for internal errors or when developers have information
about the impact of classes of failure/error. Finally, con-
figuration effectors, Econfig, function by modifying config-
uration settings, e.g., in files, and performing micro-reboot
of affected system components [1] or by modifying target
configuration through programmatic APIs [26]. One of the
major benefits of the effector is that the results of search-
ing for a workaround, can be shared across all clients. This
means that if one client encounters an error, and finds a
workaround, another client will gain knowledge of the work-
around and improved its guard. Sharing information allows
for failure avoidance without needing a user to actually en-
counter the failure themselves.

REFRACT enriches the knowledge sources to include the
target feature model, local preferences of configurations to
avoid, and accumulated global information on faulty config-
urations. Unlike Rainbow, in REFRACT this knowledge is
maintained by communication among multiple REFRACT
instances; there can be a set of distributed communicating
client-side REFRACT components.

To date, REFRACT has evaluated failures, Evalfail, to
determine the need for adaptation by applying an eager
strategy – the presence of any failure gauge reading triggers
adaptation. Failure evaluation that incorporates error/fail-
ure severity measures and history permits controlling trade-
offs between the cost of reconfiguration and the exposure to
future failures. This is also supported.

REFRACT might select from a range of configuration
strategies. For example, REFRACT may also compute a
safe configuration based on all target client failure reports
that could be switched into for rapid failure adaptation. To
date, REFRACT has focused on executing a failure avoid-
ance strategy that seeks to find failure avoiding configura-
tions that are close to the current target configuration. The
intuition is that this will preserve behavior while avoiding
failures. This behavior can also be modified.

4. CASE STUDY
In this section, we present a case study to evaluate the

feasibility of REFRACT. We answer three primary research
questions. Associated artifacts from this study can be found
on our website.1

RQ1: How effective is REFRACT in finding work-
arounds for failures?

RQ2: To what extent can guards protect against pre-
viously seen failures?

RQ3: How does the number of system failures vary
over time with REFRACT?

4.1 Client Program
We selected a highly configurable system for this study,

Firefox version 18 [32]. Firefox is widely deployed, has a
large bug database and automated testing framework and
has been used in prior research on testing configurable sys-
tems [22]. It also has an automated testing framework,
Mozmill [31], that comes with regression tests and can sim-
ulate clients running Firefox use cases.

1http://cse.unl.edu/~myra/artifacts/Refract_2014/

We extracted the Firefox feature model (see our webpage
for the complete model) by pruning from the configuration
options found in the preferences page, about:config. Op-
tions removed from this set were the hardware-specific, secu-
rity (we leave evaluation of security features as future work
within a controlled sandbox), plugin, extension, and font
options, as well as string- and integer-valued preferences for
which a clear set of allowable values was not obvious, such as
those that change storage space, or time delays. A core set
of 311 options remained – 291 binary and 20 ternary. The
total configuration space therefore has an order of around
1.4× 1097.

4.2 Client Use Cases
Each client use case in our study is based on a Firefox

test case. We selected the functional category of tests from
the most recent version of Firefox, version 26, and ran all
66 tests on Firefox 18. 30 did not pass due to requirements
changes between the two versions; 36 applicable tests re-
mained. To these we added seven that include assertions
about which features are enabled, tests that give the same
effect as a seeded configuration-dependent fault. Each as-
sertion corresponds to a fault in version 18 whose report in
the Firefox bug repository [33] included a reconfiguration
workaround, some of which were taken from [22].

The full set of 43 test cases is on our website. As an
example, one of the added seven is based on Firefox Bug
306208, in which Firefox displays a tab bar on popups when
browser.tabs.drawinTitlebar is set to true (the tab bar
should only be displayed on a main window).

4.3 Failure Avoidance Algorithms
In our initial study on GCC [43], the random algorithm

and a 3-way covering array were the two top contenders
when combined with the minimizer. We also found that the
brute force one- and two-hop algorithms work well, but can
be more costly time-wise. But our GCC feature model had
only 166 options, and the test cases averaged less than 0.10
seconds, whereas Firefox has nearly twice as many options
and tests taking roughly 20 seconds each. The hop-based
algorithms would not be suitable when the clients wait for
replies from the server. Therefore, we chose random sam-
pling stopping at the first workaround found in up to ten
iterations and a 2-way covering array with 23 configurations.

Additionally, our setup prefaces each server-side analysis
with a loop over the already found workarounds. If one
succeeds, then the effector will report that a workaround
has already been discovered and bypass the failure avoidance
algorithm.

4.4 Simulation Details
We implemented a prototype of REFRACT using four

Firefox clients, each with its own instance of Mozmill, built
on top of a version of Rainbow provided by the developers at
CMU [41]. In the simulation the rainbow master starts first,
followed by each of the clients. Once all of the delegates are
instantiated, the gauges activate, and the monitoring be-
gins. Whenever a Mozmill instance reports a failure, the
corresponding monitor creates an error file and records the
configuration under which that failure occurred. The file’s
update triggers the analysis phase, and the MAPE loop pro-
ceeds as described before.



Algorithm 2 Algorithm for Running Simulation on Client

1: let C ← the current configuration
2: let G ← ∅ (the set of guards)
3: let f ← false (a failure has not been discovered)
4: while time remains do
5: update G from the server
6: let r ← a random single-option reconfiguration

applying to C
7: if G permits r then
8: change C by r
9: end if

10: let m ← a random Mozmill test
11: let f ← whether m fails under C
12: if f (a failure has been discovered) then
13: send m and C to the server and wait for a reply
14: if a workaround configuration c′ was found then
15: log c′ as workaround for m
16: else if the failure could not be replicated then
17: log the failure of m under C as not replicable
18: else if a workaround could not be found then
19: log that m under C has no current workaround
20: end if
21: let f ← false
22: end if
23: end while

We ran the simulation on a cluster of 1440 AMD CPUs
running CentOS Linux. Each Firefox client and the master
were run on different nodes and housed in separate directo-
ries to ensure independence of configurations.

Algorithm 2 shows the client-side portion of the simulation
process. Each client keeps track of its current configuration
(line 1), the known guards (line 2) and whether a failure has
been encountered (line 3). To simulate gradual changes in
client configurations, random single-option reconfigurations
are periodically applied (line 6), though they may be pre-
vented (and thus effectively reverted) by the known guards
(lines 7–9), which are kept up to date (line 5). To simu-
late ongoing use cases, clients randomly select and run tests
from the Mozmill test suite (lines 10 and 11). In case of a
failure, the client opts to wait for a guard from the server
(line 13), logging the corresponding workaround if it exists
(lines 14 and 15), or the reason why one was not found if not
(lines 16–20). The whole process repeats until the allotted
time expires (line 4).

We note, that it is possible in a real scenario for a user
to continue working once a failure has been encountered,
however for the purpose of this simulation we wanted to keep
the clients with failed tests isolated to ensure we can analyze
the data with more accuracy. Future work will implement
this additional aspect of the work. We are also only using a
single master and one failure avoidance algorithm per run.
This means that failures can only be addressed one at a time
in the order they are received. This can cause performance
bottlenecks, but the algorithm can be parallelized in the
future.

The starting configuration is kept as default for one of
the clients and randomly varied by up to five configuration
options for the other three clients. We want to simulate what
we consider a realistic user client base and do not think that
real users will be very far from the default configuration.

Table 1: Count of workarounds found for the seeded
failures by technique. Data is accumulated over five
runs, except the 24 hour run which was run once.

Firefox Bug# R10-3HR R10-24HR 2CA-3HR
344189 5 1 5
306208 2 1 5
797945 5 1 5
808290 2 1 4
840411 3 1 3
442970 1 1 3
505548 0 0 0

As workarounds are found the configuration information is
deployed to each of the clients, which allows them to update
their own personal guard.

4.5 Metrics
To answer each of our questions, we mine the logs to

keep track of the the run time, the errors encountered and
whether a workaround is found. We also count the num-
ber of guards associated with particular failing combinations
and map these back to the test that would have created
that guard (guards are not necessarily related to a specific
use case, but we can tell which use case created them). In
addition, when a non-seeded failure is found, we evaluate
whether or not it is a real failure/workaround (if not we
consider this a false positive).

4.6 Threats to Validity
We have several threats to validity of this study. First,

we have only run this on Firefox so we do not know if it
will generalize. However, we have evidence from the prior
work on GCC [23] that it behaves similarly with respect
to a post-hoc analysis. Second, our faults are seeded and
most are due to a single configuration option. But these
are all based on real faults that have been reported in the
field, and the last seeded fault (see our discussion of this
threat later) is caused by the combination of two options.
To reduce the threat that our implementation is in error, we
re-ran experiments several times and three of the co-authors
cross-checked results manually. Our data is available online
so that the community can check our results as well. Finally,
different metrics could have been used, but the ones we have
selected address our research questions in a very direct way.

5. RESULTS
We ran simulations for both the random with ten itera-

tions (R10), and 2-way covering array (2CA) workaround
algorithms five times for three hours. We also ran a longer
24-hour run of the R10 algorithm. We use this data to an-
swer each of our research questions in turn.

5.1 RQ1: How effective is REFRACT in find-
ing workarounds for failures?

We first examine data from the seeded test cases (labeled
by the Firefox bug number that they simulate). Table 1
shows the data from random failure avoidance with 10 it-
erations, on five 3-hour runs (R10-3HR) as well as a single
24-hour run (R10-24HR), and 2-way covering array failure
avoidance on five 3-hour runs (2CA-3HR). For each run we
evaluate whether or not it found at least one workaround
and total across all five runs. For the 24-hour run we have



Table 2: Unexpected failures with workarounds for
Mozmill tests. An FP indicates a false positive. The
number indicates how many times this was found
across all runs of the technique.

Mozilla Test# # Workarounds (# FPs)
R10 R10 2CA
3HR 24HR 3HR

PlockupsBlocked 1 0 0
PopupsAllowed 2 1 0
ClearFormHistory 2 1 2
SSLDisabledErrorPage 1 (FP) 0 0
AddMozSearchProvider 1 1 0
OpenSearchAutodiscovery 2 0 2
RestoreHomepageToDefault. 0 1 (FP) 0
SubmitUnencryptedWarning 0 0 1
AutoCompleteOff 0 0 1
PasteLocationBar 0 0 1 (FP)
SetToCurrentPage 0 0 1 (FP)
EnablePrivilege 0 0 1

Table 3: Time in minutes to first workaround and
to workaround not found for 3-hour runs. There are
23 configurations in the 2CA.

Sim Run# Time to W Time to N

R10-3HR 1 7.58 N/A
R10-3HR 2 7.95 N/A
R10-3HR 3 6.13 11.88
R10-3HR 4 8.43 7.32
R10-3HR 5 7.22 N/A
Avg. R10-3HR 7.43 9.60

2CA-3HR 1 8.82 14.78
2CA-3HR 2 14.78 49.38
2CA-3HR 3 10.62 15.98
2CA-3HR 4 9.93 N/A
2CA-3HR 5 12.92 19.24
Avg. 2CA-3HR 10.20 24.05

only one data point. For six of the seven bugs workarounds
are found at least once. The 24-hour run using random
reconfigurations finds six of these. The R10-3HR and 2CA-
3HR always find workarounds for the first and third bug.
The 2CA also finds workarounds every time for the second
bug (306208). For the others, some of the runs find work-
arounds, and others do not. The covering array has slightly
better consistency.

The last bug in the list (505548) never ran a test that
failed during our simulations, and therefore it never looked
for a workaround. In fact, in each instance where we did
not find a workaround, it was because the test did not fail
during the span of the simulation. Finding a failure requires
the user to select a configuration and test combination that
will fail. Like a long-running deployed execution, the longer
simulation provided more chances for this to happen.

We examined bug 505548 more closely. First, this bug
requires two configuration options to be used together be-
fore it will fail. Therefore, it may take longer to trigger a
failure. We also saw that one of the configuration options
that is required to make this test fail is in the guard cre-
ated by bug 442970 – specifically the configuration setting of
browser.startup.page as 3. This means that once bug 442970
has been seen and a workaround is found, bug 505548 will
always be prevented from failing, so we should not expect to
see it fail as long a 442970 has put this guard in place. This

concurs with the results in Garvin et al. [23] on feature local-
ity, i.e., that failures will be localized among a small number
of feature options. Therefore, one failure guard should help
prevent other failures as well.

In addition to the workarounds we found for the seeded
failures, we also obtained a set of workarounds for tests
that were not supposed to fail (these were from the pass-
ing Mozmill regression test suite). We examined each work-
around (reproducing the tests several times) to determine if
it is a true workaround (i.e. the test actually fails, and then
the new configuration allows it to pass). In some cases, we
determined that the original test should not have failed dur-
ing a run, and its failure was an anomaly (for some reason
it did not setup and run correctly). We mark these as false
positives. In the case of a false positive, the first change to
a new configuration will pass (since the test should not have
failed anyway) and will create an unnecessary guard. We
want to avoid these, since it might reduce the usable con-
figuration space by guarding valid configurations. Table 2
shows the tests that failed and indicates whether or not they
are real failures or false positives. Over all of our runs, we
found workarounds for 12 tests that were unexpected; four
were false positives. We also see an interesting locality re-
sult here as well. The guard for AddMozSearchProvider and
OpenSearchAutodiscovery both fail with bidi.direction set to
2, and pass when the value is set to 1. Therefore, once we
find one workaround, we guard against the other.

Table 3 shows the time to find a workaround (W) or the
time taken to find no workaround (N) for the 3-hour runs in
minutes. The top half of the table shows the time to work-
around for each of the R10 runs with an average of 7.43 min-
utes. To determine that a workaround is not found we need
on average 9.60 minutes. This can be a performance bottle-
neck and suggests the need for parallelism in the execution
of tests for our samples; fortunately this is embarrassingly
parallel so we would expect the R10 times to be reduced
by a factor of 10 or better. If we now examine the data
for the 2CAs we see that the average time to workaround
is only slightly longer than the R10 samples. Considering
that the CA has more than twice as many configurations,
this is encouraging. Since we are stopping at the first work-
around, we seem to be able to find a passing one within a
similar amount of time. However, the time to workaround
not found is 24 minutes on average. Again, this implementa-
tion bottleneck can be alleviated through parallelism where
we would expect similar, or better, reductions than for R10
since there are more configurations here.
Summary for RQ1 Based on this data, we conclude that
we can find workarounds for all but one of the seeded failures
(but that one is guarded against) and in addition, we find 8
additional failures with workarounds that we can reproduce.
The 2CA is slightly more effective than the R10 runs when
the system runs for 3 hours. However, the time to find that a
workaround is not possible with the current implementation
is twice as expensive for 2CA than R10.

5.2 RQ2: To what extent can guards protect
against previously seen failures?

Tables 4 through 8 show data for our simulations broken
down into time blocks. We parsed the data for each of our
3-hour runs into 15 minute time blocks, and into 2 hour time
periods for our 24-hour run. We show two runs for the R10-
3-hour and 2CA-3hour runs and for the R10-24-hour run



Table 4: Random-10 3-hour, Run Two (Worst). 15 minute intervals shown. P - pass, F - failure, W -
workaround, A - workaround already found, N - no workaround found, G - Guard.

Test 0:15 0:30 0:45 1:00 1:15 1:30 1:45 2:00 2:15 2:30 2:45 3:00 # Guards
Expected to Fail

344189 FW 2P 4P 5P - PG 4P 2P 8P G7PG3P 3P 4PG2P 4
306208 P 2P P 5P 5P 3P 3P 4P 2P P 5P 5P 0
797945 - FWP 3P2GP 2P 3P 5P 3P 5P 2P 6P 2PGP PG5PG 5
808290 P 3P P 4P 5P P P 3P 4P 4P 6P P 0
840411 2P 4P 2P 3P - 4P 6P 3P 8P 4P 2P 6P 0
442970 P 2P 4P P 4P P 3P 2P 5P 2P 2P 5P 0
505548 7P 7P - 4P 5P 4P 4P 3P 2P 6P 6P 3P 0

Not Expected to Fail
ClearFormHistory 4P 3P 4P 3P FPW5P 3P P 5P P 3PG 4P GP 2

PopupsBlocked 5P 3P P 4P P PF2PWP 6P 3P 5P 6P 2P 5P 0
AddMozSearchProvider 3P 3PF PW2P P 4P 4P 7P 6P 5P 4P 4P 3P 0

Total Guards 11

Table 5: Random-10 3-hour, Run One (Best). 15 minute intervals shown. P - pass, F - failure, W -
workaround, A - workaround already found, N - no workaround found, G - Guard

Test 0:15 0:30 0:45 1:00 1:15 1:30 1:45 2:00 2:15 2:30 2:45 3:00 # Guards
Expected to Fail

344189 FW 2P 2P P P 2P 3P 3P G 3P 5P 3P 1
306208 F FWAPG 3P P PG 4P 4P 4P 2P PG 2P 6P 3
797945 FWPG G 5P 3P 4P 2P 2P 2P 4P 3P 3P PG 3
808290 − P P 2P P 4P P PFW 2P 3P P − 0
840411 3P 2P 5P FPW2P 3P − 6P P PG − 3P PG 2
442970 3P − 2P P 2P 2P 2P 2P P 3P 2P 4P 0
505548 − 3P 4P 3P 4P 2P − P 2P 2P P 2P 0

Not Expected to Fail
OpenSearchAutodiscovery P P 6P 5P 3P 2P 3P 2P 5P PF W3P 2P 0

SSLDisabledErrorPage FP PA − 2P 3P 2P 2P 5P 4P P 3P 3P 0
UntrustedConnectionErrorPage FN P 3P 4P 3P P 2P P 2P 3P 2P 2P 0

Total Guards 9

(other data is online and appears to be similar). We tried
to pick one run that was best in terms of finding the most
workarounds and one that was worst, for each technique.
In these tables we use a P to mean that a test ran and
passed, an F to mean that a failure occurred during that
time, an N, to show that no workaround was found and a W

to mean that a workaround was found. Finally, we use a G

to represent that a guard was activated. We use numbers
to summarize the times each occurred within that block of
time. For instance, FW2G would indicate that during this
period a failure was seen once, a workaround was found and
the guard was activated 2 times. We only show data for the
seven seeded faults and any additional unexpected failures
with or without workarounds that were seen.

We have shaded the cell where the first workaround (or a
workaround already found) is seen to help visually see the
timeline. In most cases, once we find a workaround, we do
not see a failure again. We often do see the guard activated
at least once showing us that the guard is working. One
anomaly in this data is seen in the first of the two 2CA
tables – Table 6. For bug 344189 and bug 306208, work-
arounds are found within the first 30 minutes. In 344189
we also see a guard activated at 45 minutes. But we see
a new failure with no workaround for these in the 2:15 and
2:30 time periods. We examined our logs and saw that these
are both on the same client. We ran the failing tests and
configurations manually several times, and we could not re-
produce the failure. We do not know what caused this to
happen, but we were able to confirm that these failures were

not related to configurations that should have been guarded.
Consequently, we consider these false failure reports.

We show the sum of guards activated for each test during
the simulation in the last column. We see at least 3 and
as many as 11 guard activations in a 3-hour period. In the
24-hour run we see 158 guard activations. This indicates
158 times that a client was prevented from entering a bad
configuration.
Summary for RQ2 We can conclude that the guards are
activated and appear to be preventing target applications
from experiencing failures after a workaround was previously
found.

5.3 RQ3: How does the number of system fail-
ures vary over time with REFRACT?

To answer our last research question, we examine Tables 4
through 8 again. We see that the number of failures is re-
duced over time (as the guards start to activate). In particu-
lar, for the 24-hour run, after 6 hours all of the workarounds
are found for the seeded faults; one more workaround is
found at 16 hours for an unexpected failing test that is dif-
ficult to expose. There are some failures (lower part of the
table) for which we do not find workarounds, and these are
the only remaining failures after 16 hours.

Figure 4 depicts the trends of these data aggregated across
all 10 of the 3-hour runs. The trends are clear. Early in the
runs failures occur, but they are reduced rather quickly and
the activation of guards can be seen as the mechanism for
achieving that reduction.



Table 6: 2CA 3-hour, Run One (Best). 15 minute intervals shown. P - pass, F - failure, W - workaround, A
- workaround already found, N - no workaround found, G - Guard

Test 0:15 0:30 0:45 1:00 1:15 1:30 1:45 2:00 2:15 2:30 2:45 3:00 # Guards
Expected to Fail

344189 F WP 2PG 5P - 2P 3P P 2PF3PNP 5P 5P PG 2
306208 FW P P 4P 2P 4P 2P 3PFP PN3P 3PG 3P 5P 1
797945 F 2F W2A5P 2PGP 4P 2P 7P 2P 5P 2P 6P 2P 1
808290 P P 3P 2P FWP P 2P 3P 4P 2P 5P PGP 1
840411 FW 2P - G4P GP 5P 3P 3PG PG2P G4P GP 2P 5
442970 - P FWP 2P 5P 2P P P 3P 2P 6P 2P 0
505548 2P - 2P 3P 2P 5P 4P P 3P 3P 2P 4P 0

Not Expected to Fail
ClearFormHistory 4P P 2P 2P 3PF 3P PN2PFP PW3P 4P PG 2P 4P 1

SubmitUnencryptedInfo - - P 6P 3P P 6P 3P 3PF PW 6P 3P 0

Total Guards 11

Table 7: 2CA 3-hour, Run One (Worst). 15 minute intervals shown. P - pass, F - failure, W - workaround,
A - workaround already found, N - no workaround found, G - Guard

Test 0:15 0:30 0:45 1:00 1:15 1:30 1:45 2:00 2:15 2:30 2:45 3:00 # Guards
Expected to Fail

344189 - FW - - P 3P 2P 2P 2P 3P P 0
306208 - - - - - - P 2F WPA GP 2PG 2P 1
797945 - 2FWA - - - - 3P 2P 3P 2P P 3P 0
808290 2P - - - - - 2P P - 2PF2P WP 2PGP 1
840411 3P - - - - - P 2P P 3P 2P 3P 0
442970 3P P - - - P 2P - P 2P - 2P 0
505548 - - P - - - P P P 3P - P 0

Not Expected to Fail
AutoCompleteOff P - 2P - - - FPW3P P - P P 0

DisableFormManager 3P - FN - - - 2P - P - 4P 2P 0

Total Guards 3

Summary for RQ3 We conclude that REFRACT’s com-
bination of failure-adaptive reconfiguration and guarding of
configuration changes reduces the failures experienced by
target applications over time. Moreover, this study suggests
that the failure rate for configuration related faults drops
relatively quickly over time and stabilizes with executions
that are free of configuration related failures

6. RELATED WORK
There is a large body of research on both self-adaptive

systems [3,4,8,9,12,14,16,20,24,40], and on testing highly-
configurable software [27, 29, 37, 38, 45]. Self-adaptive soft-
ware came out of research on autonomic computing [18].
Early work focused on self-healing such as that of Dashofy
et al. [12]. Other work aims to improve the adaptation pro-
cess [17], particularly in dealing with uncertainty [14]. The
work of Georgas et al. [24] looks at support fo architec-
tural configurations, and Zhang et al. [48], and Garlan et
al. [8, 19, 20] focus on validation. In the work by Elkhodary
et al. [16] they adapt based on features. While these features
are similar to ours, the adaptation uses quality of service at-
tributes.

Rainbow is a framework that uses the MAPE loop and
architectural constraints to adapt [7, 8, 19]. The work of
[42], uses self-adaptation in software product lines, a type of
configurable software system. The most closely related work
on configuration-aware adaptation, is our own [21, 23], but
we did not implement our techniques on a running system.

Fixing faults automatically is a related thread of work.
Perkins et al. [35] deploys patches to running systems. There
has also been work on adapting software to avoid failures
using standard APIs [13] or using alternative but equivalent

execution sequences [25]. Weimer et al. [44] finds faults in
systems using test cases, and then uses an extended form
of genetic programming to fix the code. Carzaniga et al [2–
4], find workarounds which are code-level alternate library
calls. This technique is similar to ours in its goal and the
requirements to find a workaround. But our technique uses
a feature model and is external (we do not touch the code).
In recent work, Casanova et al. [5], use Rainbow to diagnose
faults on web pages. This is closely related, however they
are not using configurations as a workaround strategy.

There is also research on testing highly-configurable sys-
tem [10, 11, 22, 27, 37, 39, 45, 45]. Many sampling techniques
have been used for selecting a subset of configurations for
testing such as covering arrays for sampling configurable
systems [37, 45] and software product lines [36], Reisner et
al. [38] use symbolic execution of configurable software sys-
tems to gather evidence that we have a much smaller feasible
configuration space possible then previously thought.

Last, there has been work on distributed quality assur-
ance [15,30] that uses a central client to distribute tests and
gather data on faults across many sites and locations. The
work of Yilmaz et al. [45] uses this for fault characterization,
but does not adapt to find new, passing configurations.

Our framework is unique in that we do not target the
client code (but adapts externally), we use discrete failures
to trigger adaptation, and we guard against future recon-
figurations into known bad states by using the distributed
nature of our system to improve community knowledge. Fi-
nally, we have built a working implementation that uses the
MAPE loop to monitor, analyze, plan and execute.



Table 8: R10 24-hour, 2 hour intervals shown. Passes are not shown. F - failure, W - workaround, A -
workaround already found, N - no workaround found, G - Guard

Test 2:00 4:00 6:00 8:00 10:00 12:00 14:00 16:00 18:00 20:00 22:00 24:00 #Guards
Expected to Fail

344189 2FWAG − G 2G G G − − 2G − G 2G 11
306208 2FWAG 3G − 5G 3G − G 4G 2G − 3G 2G 24
797945 2FWAG 2G − G − G G − G G 3G - 11
808290 − − FWG 5G 2G G 2G − 3G 2G − 2G 18
840411 − FW 4G G − − − − − − G - 6
442970 F WG G 4G G 2G 2G G G G G G 16
505548 - - - - - - - - - - - - 0

Not Expected to Fail
ClearFormHistory FWG 3G − 5G G G G 3G 3G 2G G 3G 24

PopupsAllowed − F W2G 2G G 4G G G 3G G 2G 4G 21
AddMozSearchProvider 2G FWF A2G 4G 2G G − 3G − 3G 3G - 20

RestoreHomepageToDefault − − − − − − − FW G G − 5G 7

Not Expected to Fail - No Workaround Found
GoButton.js − − − − − − − − − − − FN 0

CloseDownloadManager − − FN − − − FN − − − − FN 0
AutoCompleteOff − − FN − − − − − − − − - 0

DisableFormManager − − − − F NFN FN − FN − − - 0
OpenSearchAutodiscovery − − − FN − − − − − − − − 0

DefaultSecurityPrefs FN − − − − − − − − − − − 0
SearchViaFocus − − − − FN − − − − − − - 0

SSLDisabledErrorPage − FN − − − − − − − − − − 0
HomeButton − − − − − − FN − − − − - 0

Total Guards 158

Figure 4: Percent passing and failing tests over time. Line shows number of guards activated. All data
accumulated over 10 runs.

7. CONCLUSIONS
In this paper we have presented REFRACT, a self-adaptive

framework for avoiding failures in configurable systems. RE-
FRACT monitors the system for failures, and then triggers
an algorithm to search for a passing reconfiguration, close
to the original. It then updates a guard which prevents fu-
ture clients from reconfiguring into known bad states. In
a case study using 4 Firefox clients, we were able to find
workarounds for all but one of our seven seeded faults and
for eight native failures. The only missed seeded fault never
manifested as a failure in our study. That missed fault was
related to another, and by encountering the other failure,
guards would be put in place to block clients from the con-
figuration necessary to expose the missed fault.

In future work we will explore ways to parallelize the work-
around algorithm so to use more clients and to come to a

steady state sooner. We will also explore alternative algo-
rithms, examine making the utility function continuous by
weighting the error rather than using a binary value, and ap-
ply REFRACT to other client applications. Finally, we plan
to incorporate user input into our decisions with respect to
guards.
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