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ABSTRACT
We present a memory management scheme for Java based on
thread-local heaps. Assuming most objects are created and
used by a single thread, it is desirable to free the memory
manager from redundant synchronization for thread-local
objects. Therefore, in our scheme each thread receives a
partition of the heap in which it allocates its objects and in
which it does local garbage collection without synchroniza-
tion with other threads. We dynamically monitor to deter-
mine which objects are local and which are global. Further-
more, we suggest using profiling to identify allocation sites
that almost exclusively allocate global objects, and allocate
objects at these sites directly in a global area.
We have implemented the thread-local heap memory man-

ager and a preliminary mechanism for direct global alloca-
tion on an IBM prototype of JDK 1.3.0 for Windows. Our
measurements of thread-local heaps with direct global allo-
cation on a 4-way multiprocessor IBM Netfinity server show
that the overall garbage collection times have been substan-
tially reduced, and that most long pauses have been elimi-
nated.
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D.3.4 [Programming Languages]: Processors—Memory
management (garbage collection)

General Terms
Languages, Performance, Algorithms
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1. INTRODUCTION
Garbage collectors free the space held by unreachable ob-

jects so that this space can be reused for future allocations.
In a multithreaded system, several threads may perform pro-
gram tasks concurrently. If these program threads run in-
dependently, allocating and operating their own thread-local
objects, it is desirable that the garbage collector avoid syn-
chronization between these threads as much as possible. In
fact in an ideal scenario where all objects are thread-local,
each thread could collect its own garbage without any syn-
chronization at all with the other threads.
In this work, we present a design for thread-local heap

management for Java. Our goal is to allow separate memory
management work for local objects for each thread, so that
collection of local objects is quick and synchronization-free,
and to employ full heap collection, which reclaims objects
that are shared by the threads, infrequently. A thread-local
heap collector should be useful for programs that seldom
share objects between the threads.
An important advantage of thread local heaps is scalabil-

ity. Whereas parallel collection strategies usually don’t scale
well with the number of processors, thread-local heap col-
lection should scale quite well for applications using mainly
thread-local objects.

1.1 Memory manager main ideas
The heap is partitioned so that each thread gets a local

area in which it can allocate without synchronization. Using
dynamic monitoring via a write barrier, we can determine
when an object becomes global, i.e., accessible by more than
one thread. When a thread requires space, it may run a local
collection and reclaim all its local objects that have become
unreachable. Local collections require no cooperation what-
soever with the other program threads. Once in while, a
full collection is required. Such a collection stops all threads
and collects the whole heap, including global and local ob-
jects. A full description of the memory manager appears in
Section 3.

1.2 Dynamic vs. static monitoring
One important issue is how to determine if an object is

local or global. Several previous papers suggested running
escape analysis on the program code to conservatively distin-
guish between local and global objects at compilation time
(e.g. [3, 2, 6, 18, 15]). In this work, we dynamically mon-
itor the locality of objects at runtime. Static analysis has
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three drawbacks. First, it is conservative, i.e., if there exists
any path in the program that causes an object to become
global, then the object is treated as global. Second, it only
judges objects by their allocation site. If an allocation site
produces a million objects and 90% of them are local, the
site is identified as global. Third, an object that becomes
global long after allocation is considered global as of its cre-
ation. Employing dynamic (runtime) analysis, at the ex-
pense of a write-barrier, we achieve better monitoring since
an object becomes global only when it becomes accessible
to more than the creator thread. Our dynamic analysis is
also somewhat conservative. We only check that an object
becomes accessible to more than one thread and not that
it is actually used by multiple threads. Furthermore, if an
object becomes global, we never check whether it becomes
local again. Although our approach is also cautious, it is
far less conservative than static analysis. We believe that
more accuracy will require a high execution time overhead
and yield only slightly increased accuracy.

1.3 Allocating objects directly in the shared
part of the heap

There are some objects which are always global in scope.
These objects include threads and classes. Because it is
easy to identify these objects at allocation time, a perfor-
mance improvement is obtained by avoiding the allocation
of these objects in the allocating thread’s local heap. In
the local heap they would negatively impact the efficiency
of the thread’s local collection. Therefore, these objects are
allocated in areas designated for global objects only.
Expanding on this idea yields a further improvement for

some applications. In some cases there are certain locations
in the application code that allocate exclusively (or nearly
exclusively) objects which become global in scope. If these
sites can be easily identified at allocation time, then allo-
cating from these sites directly into the global area yields
a performance improvement. We denote this operation as
direct global allocation. It is possible to carry this analy-
sis further, i. e., to allocate objects directly into the global
areas depending on the function call path to the allocation
site. We elaborate on this idea and present a preliminary
mechanism for it in Section 4.

1.4 Our contribution
Our first contribution is algorithmic. We provide a design

for a thread-local memory manager and a way to dynami-
cally monitor local vs. global objects through a write bar-
rier. Next, we suggest the idea of direct global allocation
and show how it can be implemented. Finally, we discuss
the special considerations for compaction in this scenario.
Our second contribution is implementing the proposed

memory management and measuring how it runs for mul-
tithreaded Java benchmarks. We have implemented the
thread-local heap memory manager and a preliminary mech-
anism for direct global allocation on IBM’s 1.3.0 Java Vir-
tual Machine in interpreter mode and ran measurements on
a 4-way multi-processor IBM Netfinity server with 550Mhz
Intel Pentium III Xeon and 2GB memory. Note that this
version of the JVM is a highly optimized production JVM.
However we did not implement the write barrier in the JIT,
so we could not measure with the JIT.
Our measurements comparing thread-local heaps with di-

rect global allocation to the base version of the JVM show

that the overall garbage collection times have been substan-
tially reduced, and that most pauses have become extremely
short. Such benefits usually appear with generational col-
lectors. Here we show that they are also achievable with
thread-local heaps. The overall program execution time is
basically unchanged. There is a 2-3% gain due to the im-
provement in collection time and possibly by other factors
(such as locality of reference). However, the improvement
is offset by the costs of dynamic monitoring (via a write
barrier).

1.5 Related work
Several works have investigated detecting local objects via

static escape analysis [3, 2, 6, 18, 15]. The goal was identify-
ing, conservatively, at compile time, the objects that are only
accessed by their creating thread (and no other thread) and
thus can be allocated on the stack of their creating thread.
Synchronization can be avoided for these objects.
The only paper that actually suggests a memory man-

ager that uses the static analysis is by Steensgaard [15]. He
suggests using the results of a static escape analysis, that
identifies sub-heaps rooted at an object (i.e., an object and
all of the objects transitively reachable from it) that are
only accessed by their creating thread, for memory manage-
ment. He proposes to allocate a section of the heap for each
thread, where the thread allocates its local objects, and to
allocate another section of the heap for allocation of shared
objects. This memory manager is different from ours. Its
local collections are not run independently, but are run only
as part of the full collection. In particular, all shared objects
are traced and reclaimed by a coordinated full collection of
the shared area; after the full collection terminates, each
thread continues by tracing its own local heap and reclaim-
ing it. In contrast, our local collectors run independently
of other threads, without any cooperation or interruptions
to the other threads, and while minimizing the number of
full collections. The gain in Steengaard’s collector is the
additional parallelism of the collection in the final phase.
However, the number of full collections is not decreased, and
thus, the latency does not benefit over a parallel collector.
His results indicate that the separation of objects to local
and shared areas is a good direction for further research.
Steengaard remarks that his collector could be extended,
including extensions similar to the design presented in this
paper. However, he does not provide a design of such a col-
lector. Another major difference between these two works is
that we use dynamic monitoring of globality/locality rather
than static analysis (as discussed in Subsection 1.2 above).
We are not aware of any previous work that reports the

effects of thread-local heaps for Java on the throughput and
latency of program execution. A thread-local heap memory
manager has been used in two commercial JVM’s: JOVE
[11], and BulletTrain [4]. However, neither of them report
on the effect local heaps have on the execution of a program.
Doligez, Leroy and Gonthier [9, 8] use thread-local heaps for
immutable objects in their implementation of CAML. They
present some experimental results for pause times, however,
their thread-local mechanism is not appropriate for Java,
where almost all objects are mutable.
Our direct global allocation resembles pretenuring for gen-

erational garbage collection [5, 10, 1]. There, the memory
manager tries to assess which objects have long liftimes, and
allocate such objects directly in the old generation. Cheng
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et. al. [5] use profiling to determine allocation sites that
tend to allocate long-lived objects. This profiling is then
used to classify allocation sites with which pretenuring is
used. Harris [10] uses dynamic sampling to predict the life-
times of objects. Sampling reduces the cost of obtaining
statistics, thus, avoiding the need for a separate profile-
gathering phase and allowing pretenuring decisions to be
reversed during the run. Finally, Blackburn et. al. [1] im-
prove pretenuring by combining profiling results from mul-
tiple applications for common library code with results for
objects allocated by the runtime code.
Our direct global allocation uses profiling in a similar

manner to classify allocation sites. However, the classifi-
cation is different. We look for allocation sites that allocate
global objects (rather than long-lived objects). Also, we find
that the depth of the call chain is critical, whereas pretenur-
ing work has used depth of one in all cases.

1.6 Summary of contents
In section 2 we discuss the mechanism we employed for

monitoring locality. In section 3 we discuss memory man-
agement issues. This section includes an overall view of
the memory manger, discussion of data structures used, the
algorithms of the local and global collections, and issues
involved in synchronization. In section 4 we discuss the
method we used for identifying sites that allocate global ob-
jects and also the algorithm we used for direct allocation
into shared areas. In section 5 we discuss synchronization
between the local and global collections. In section 6 we
summarize the JVM compaction algorithm, discuss the is-
sues that thread-local collection introduces and present our
solution to these considerations. In section 7 we give a sum-
mary and analysis of the results we obtained on two bench-
marks. We finish with section 8, which is a conclusion of
our work and suggestion for future work.

2. MONITORING LOCALITY OF OBJECTS
In this section we briefly explain how we monitor the state

of objects and decide if they are local or global. For each
object we keep a flag denoted the global bit signifying that it
is global. All objects are initially local. However, some of the
objects in a Java program are global by nature, in the sense
that they can be accessed by any thread in the program. We
mark such objects as global before they become accessible
to threads other than their creator. A list of these objects
include Class objects, Thread and ThreadGroups objects.
Note that this list is specific to Java, but the overall idea is
not.
When an object cell containing a pointer is modified, a

check is made via a write barrier whether a local object
becomes a descendant of a global object. If this is the case,
then the local descendant becomes accessible by all threads
and we should mark it and all its descendants global. This
write barrier is executed just before the actual update. We
use DFS to traverse the descendants of the object. We stress
that no synchronization is required for the write barrier. The
reason is that before the update is actually performed, the
object is local and cannot be accessed by any thread other
than its creator. The same holds for all its local descendants.
Thus, the DFS is executed locally.
A similar write barrier is executed for roots accessible to

all threads, such as: static variables, creating JNI global
references and interning strings.

In our implementation, we choose to keep the global bit
in a separate bitmap. Each bit in the map represents 8
bytes in the heap. From our partition of the heap to areas
(see 3 below) we know that each word in the bitmap can be
written by one thread only. Thus, writing the bitmap does
not require synchronization either.
We present a brief analysis of the write barrier cost. For

each pointer modification we run a light-weight check to
determine whether a local object becomes accessible from a
global object. If so, a heavier trace marks all the object’s
children as global. Note that the light check runs much more
often then the heavy trace. The check runs during each write
barrier execution, whereas the trace runs just once for each
global object during its lifetime.

3. THREAD-LOCAL MEMORY MANAGE-
MENT

In this section we describe memory management with
thread-local heaps. We implemented a prototype of our
memory management for IBM’s 1.3.0 Java Virtual Machine
for Windows, which we call the base JVM. The thread-local
memory manager adopts the algorithm of the base JVM and
adapts it for thread-local allocation. We start with a brief
description of memory management in the base JVM.

3.1 Outline of management in the base JVM
The base JVM garbage collection uses a mark-sweep al-

gorithm. Allocation is based on local (and fast) alloca-
tion caches [7]. After collection, free chunks of memory in
the heap are linked to form a globally accessible free list.
Threads allocate local allocation caches from the global free
list. The allocation caches are at least 384 bytes. Since the
memory in them is contiguous, a thread allocates from its
cache by bumping a pointer. When the space in a cache
is insufficient for an object allocation, the thread allocates
another cache from the free list. Objects larger than 384
bytes are not allocated from local caches. Instead a first fit
search is done on the global free list.

3.2 Outline of thread-local management
We divide the heap into large areas of equal size. These

areas are on the order of 1 mb in size. The exact size can be
set by a command line parameter. Each thread is assigned
local areas in which it can allocate without synchronization.
As the program executes, a write barrier monitors pointer
updates, so that it can keep track of objects that become
global. Each thread may run a local collection and reclaim
all local objects that have become unreachable. Such a col-
lection requires no cooperation whatsoever with the other
program threads. Once in while, a full collection is required.
Such a collection collects the whole heap including global
and local objects.
More specifically, each thread initially receives an area for

the allocation of its objects. When the area is exhausted,
the thread may obtain another area from a global pool of
areas, or run a local collection (according to the triggering
policy). Running a local collection is done independently
of any other program thread, and we elaborate on the al-
gorithm in Section 3.5 below. Obtaining an area from the
global pool requires thread synchronization. When areas in
the global pool are not available, a full collection is initiated.
The full collection stops all threads and runs a parallel mark
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and sweep on the whole heap. We elaborate on the full heap
collector in Section 3.6 below.
Threads use local allocation caches as in the base JVM.

Instead of there being one global list of free chunks for the
entire applicaiton, each area has its own free list of chunks
which is used to allocate local allocation caches. When the
space in a local cache is exhausted, the thread allocates a
new cache from one of its areas. When the thread’s areas do
not contain enough contiguous free space for a new cache, it
executes a local garbage collection. This collection neither
traces nor sweeps the global objects. If the space freed in the
thread’s areas is insufficient to serve the current allocation
request, the thread allocates a new area from the global pool
of areas. When an area is not available from that pool, a
global (also called full) collection is initiated.
During a full collection the global collector stops all threads

and uses the original garbage collector of the base JVM.
This collector is a mark-sweep collector with a parallel mark
phase. One difference between the base JVM (full heap)
collection and our global collector is that freed spaces are
returned to local free lists rather than to one general free
list. Only complete areas that contain no local objects may
be returned to the global pool of areas.
On top of this algorithm, we have tested an important

improvement in which we allocate objects likely to become
global in a designated global area. This yields a noticeable
benefit and is described in Section 4 below.
Among other technical difficulties, we note the importance

of the coexistence of local and global collections. A global
collection cannot start while a local collection is sweeping.
Furthermore, a local collection cannot be stopped in the
middle for a global collection and then resume at the point
it was stopped. A mechanism for the coexistence of local and
global collection is described in Section 5. Such a mechanism
may be useful in other settings as well. We start with a
detailed description of the basic allocator and collector.

3.3 Allocation of objects
Objects are categorized by their sizes in three categories.

Small objects smaller than the minimum size of a cache;
medium objects with sizes between the minimum cache and
half an area; and large objects larger than half an area.
As described in section 3.2 we allocate small objects, which

are by far most frequent, by bumping a pointer in the local
cache. Medium objects are allocated from the free list by
first fit order. Failure to satisfy a medium object request
results in a local collection. Afterwards, if the request is
still unsatisfied, the thread will request a new area from the
global pool. For large objects we allocate one or more (if
necessary) consecutive areas from the global pool. The re-
maining part of the (last) area is inserted into the local free
list.

3.4 Data structures
The free list. Each thread has a local free list, organized as
a linked list. The list is address-ordered and the allocation
strategy is address-ordered first fit. Allocation of caches and
medium objects is done from the list. Each entry in the list
is large enough to serve as an allocation cache.

The local-free areas. Areas that contain global objects,
but no local objects, are kept in an array of linked lists
(buckets). They are ordered by the size of the largest con-
tiguous free space in the area. Such areas are obtained for

medium-sized objects or cache replacement by best fit strat-
egy when the free list cannot satisfy the request. Access to
the buckets is protected by a lock.

The free areas. Areas that are completely free from any
objects are kept in a binary search tree. They are sorted
by address, and a first fit strategy of allocation is used here
as well. When all objects in an area are reclaimed, i.e., it
becomes free, then it is inserted into the tree after appro-
priate coalescing (to satisfy requests for objects bigger than
an area). Access to the tree is protected by a lock.

The area table. Finally, we keep a table with an entry
for each area containing information about the area (owner
thread, largest free chunk in the area, etc.)

3.5 Local collection
We use a mark-sweep collector for local collections. Mark-

ing is done only on local objects. Note that it is sufficient to
mark from the local roots (e.g., the thread’s stack). There
can be no pointer from a global object or from global or
foreign (e.g., local to other threads) roots to a local objects.
We employ the bitwise sweep strategy used in the base

JVM [7], modifying it to take into account global bits. Bit-
wise sweep takes advantage of the fact that we only need
free space large enough to accommodate an allocation cache.
The mark bits are kept in a bitmap where each bit repre-
sents 8 bytes in the heap. Only the bit corresponding to
an object’s header is used to indicate the object is marked.
During sweep we or the mark bits and the global bits. Thus,
the local thread may free spaces whose bits in the bitmap
are zero. In order to find free space at least the size of a
minimum allocation cache size, the bitmap must contain at
least two consecutive bytes of zero. Thus, we may go over
the bitmap in byte steps looking for a zero byte. When
we find one, we move forward in word-sized steps until we
encounter one that is not zero. Then we check the exact lo-
cation where the zeros begin and end, and subtract the size
of the last object preceeding the zeros. This method buys
us fast reclamation of large free spaces and it ignores small
free spaces.
The thread adds the free spaces that it finds to its local

free list. This requires no synchronization. In case the sweep
discovers an area that is completely free of local objects,
or completely free of any object, it puts the area in the
respective global data structure of local-free or free areas.

3.6 Global collection
A global collection is initiated when a free area cannot be

obtained for an allocation of a medium object, large object,
or allocation cache. The global collector collects the full
heap, including the local areas. Special care must be taken
to handle synchronization between the local collectors and
the global collector. We discuss this issue in Section 5 below.
The sweep procedure uses the same ideas as in the local

sweep. Namely, it ignores small free spaces and finds larger
free spaces quickly.
Freed spaces are put in free lists in the following manner.

Areas which are fully freed are inserted into the tree of free
areas. Areas containing only global objects are added to the
structure of local-free areas. Finally, areas containing local
objects are added to the free list of its owning thread. The
association of an area with its thread is done through the
area table recording for each area the thread owning it.
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For the global mark we employ the existing parallel mark-
sweep collector from the base JVM. All threads are stopped
while the collector works.

4. DIRECT ALLOCATION INTO SHARED
AREAS

Usefulness of the thread-local collector relies on the as-
sumption that the great majority of objects remain local
through their lifetimes. Applications for which this assump-
tion does not hold may see poor performance as a result of
the thread-local collection algorithm.
However, there are ways address this problem so that

thread-local collection may work beneficially in such appli-
cations. A way which works especially well is the allocation
of global objects directly into shared areas which are desig-
nated exclusively for global objects.
Direct allocation of objects to global areas requires a priori

knowledge that the object will become global. One could use
dynamic profiling at runtime to determine the likelihood of
the different allocation sites to allocate global objects. Sites
with a sufficiently high likelihood to allocate global objects
would allocate objects directly into a global area. Imple-
menting low-cost dynamic profiling is complex. Thus, to
check the benefits of direct allocation, we built a prototype
by profiling during a training run and patching the appro-
priate new bytecodes to do direct global allocation. The
technique we used to build the prototype is not suitable for
a production JVM.
Direct global allocation reduces the fragmentation with

benefits of better utilization of heap space and reduced col-
lection times (especially for sweep). One could think that
simpler solutions would work. For example, using a “pro-
motion” procedure during local collection to move all global
objects out of the local space. However, in order to move the
global objects we would need to stop other threads in order
to find and modify all pointers referencing the moved ob-
jects. This would require substantial synchronization, elim-
inating the local nature of local collections. Another solution
that might have seemed reasonable is to move global objects
out of the local space when they become global (via the write
barrier). This solution would not require much synchroniza-
tion with other threads since all the moved objects are still
local. However, there is another problem. Moving objects
during the write barrier requires knowledge of all the local
references to the moved objects. Finding these references
would be an unacceptable cost for the write barrier.

4.1 Implementation
pBOB, one of the benchmarks we tested, has a very high

rate of global object creation. It creates global objects at
a rate of about 30% of all object creations. We ran pBOB,
recording the percentage of global allocations at each alloca-
tion site. Sites that had a rate of at least 99% we designated
”global sites”, that is, sites where we would automatically
allocate new objects into a global area.
Having identified the global sites, we needed some way

of passing this information to the allocator during runtime.
To do this, we stored information in the bytecodes of the
methods. We replaced the bytecodes for new, newarray,
anewarray, new quick and anewarray quick at global sites
with unused bytecodes, which we used to call routines to
allocate directly into the global areas.

Bytecode replacement works well when an allocation site
is always global. However, there is another category of al-
location sites suitable for global allocation. This category
is sites that allocate globally conditionally on the sequence
of methods calling the allocating method. In these cases a
work around can be done, where duplicate methods are cre-
ated, calls to them are inserted in the first method in the
sequence, and the bytecode in the final method in the se-
quence is replaced. We used this technique in the case of
string constructors whose calls to construct arrays of char-
acters were global when the strings themselves were global.

4.2 Global Allocation Algorithm
Using a single global allocation area for all the threads

would require synchronization on every global allocation.
In order to guard the benefits from the regular allocation
algorithm, we created a separate allocation track for global
allocations for each thread. The new track is essentially
identical to the original allocation path. The only difference
is that threads do not receive a full area for global alloca-
tions. Instead, in order to optimize heap usage, they receive
part of an area. The section of area they receive is reason-
ably large as to avoid frequent requests for more sections.
Other than that, the algorithms for regular and direct allo-
cation to global areas are identical, and even use the same
code.

5. SYNCHRONIZING GLOBAL AND LO-
CAL COLLECTIONS

The coexistence of the global and the local collections
requires some synchronization to maintain the integrity of
the shared data structures and ensure that heap objects are
properly classified as reachable or unreachable. For exam-
ple, we cannot start a global collection while a local collector
is sweeping, because the free list of the local heap is not co-
herent. On the other hand, we may stop local tracing in
the middle to let the full collection start working. How-
ever, when the full collection ends the local collector cannot
continue from where it stopped without a correction since
objects have been reclaimed.
Thus, we need a mechanism that allows the following op-

erations:

1. The global collector is able to check if it is not safe
to stop any of the threads for a full collection. If it is
not safe to stop a thread for a full collection, we will
say that the local thread is executing a forbidden code
segment.

2. The global collector is able to notify all threads that it
wants to start a collection. After getting such a notifi-
cation, threads will not enter forbidden code-segments.

3. A thread that finishes executing a forbidden code seg-
ments is able to tell the global collector it has done
so.

4. The collector is able to tell when all threads have fin-
ished executing forbidden segments.

We remark that all forbidden code segments appear during
allocation or local collection. Code segments where the al-
locator and collector can simultaneously modify the free or
area list are defined forbidden. In terms of efficiency, we set
the following guidelines:
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1. Wherever possible, we refrain from using locks.

2. Overhead on normal execution of the program threads
is minimal.

3. The global collector may be delayed, and pay more in
terms of synchronization cost, but the delay is as low
as possible.

Note the asymmetric cost preference we make: program
threads should not suffer during normal execution since that
would have a negative impact on the overall execution time.
On the other hand, the global collector is seldom run, and
thus, it may pay some synchronization cost without a no-
ticeable change in program execution time. Of course, this
cost should be reasonable.
Let us describe the synchronization mechanism. The col-

lector sets a global flag, gc pending, to inform the mutators
that it wants to collect. For its part each mutator has a
local flag, gc ready, which it cleared upon entering a forbid-
den code segment. Clearinging the gc ready flag prevents
the collector from suspending the mutator. Afterwards the
mutator checks the collector’s flag. If it is set, the mutator
will block on a condition variable which is signaled by the
collector at the end of the collection. Threads that are not
in a forbidden segment at the start of a global collection are
halted by the collector. Special synchronization care must
be used to ensure that each thread agrees with the collec-
tor on their common state. For example, while the collector
discovers that a thread is not executing forbidden code, the
collector must be sure that the thread will not start execut-
ing forbidden code afterwards.
To describe in more detail the synchronization mechanism

we start with the mutators. When a mutator enters a for-
bidden segment, it starts by clearing the gc ready flag and
continues cooperating with the collector by checking if a col-
lection is pending. If it is, the mutator sets the gc ready
flag and suspends itself (by waiting on a condition vari-
able). When the collection is complete the collector notifies
all waiting threads (by broadcast) and the mutator thread
resumes and clears the gc ready flag. Upon leaving the seg-
ment the mutator sets the gc ready flag. We have two kinds
of forbidden segments, short and long. For a short segment
(such as allocation) the mutator cooperates with the collec-
tor only at the entrance to the segment. For a long segment
(such as a local collection), the mutator cooperates at the
beginning and in the middle at some appropriate points. In
some cases, such as in the middle of a local collection, the
mutator checks whether a full collection has occurred while
it was suspended. If this is the case, the mutator leaves the
local collection and tries allocating again. Such checks are
performed after each cooperation point. The cooperation
points are chosen to balance minimizing delaying the global
collector against frequent checking of the gc pending flag.
When a global collection is invoked, the global collec-

tor sets the gc pending flag. Afterwards it runs a loop
until it ascertains that each thread’s gc ready flags is set
and then it suspends them all. When all threads are sus-
pended, the global collector collects the whole heap. When
the global collection is done, the collector resumes the sus-
pended threads, clears the gc pending flag, and signals all
the threads that are waiting for completion of the collection
by disabling the event.
Note that we have used both a flag, gc pending, and a

condition variable since it is much more efficient to check a

flag then a condition variable. Recall that one of the main
goals is to keep the overhead on the mutators as low as
possible during normal execution. Thus, it is desirable to
let the mutators check a flag.
Figure 1 presents our synchronization of local and global

collections. We would like to point out an interesting race
condition that requires the use of a while statement (instead
of an if statement) as the mutator checks the gc pending
flag. The race is as follows. Suppose the global collector
raises the gc pending flag. A mutator checks the flag, finds
it set and suspends itself on a condition variable. Later, the
collection ends and the mutator resumes. But before it does
anything, it looses control over the CPU and waits. Later,
another global collection starts. The gc ready flag is still set
because the mutator hasn’t had the CPU cycles required to
clear it. Now the collector thinks the mutator is safely out of
a forbidden code. But the mutator, without checking, may
start working on a forbidden segment at the same time that
the global collector initiates the collection. This will foil the
rest of the execution. Such a scenario is eliminated by the
use of the while statement. After resuming, the thread will
test the gc pending flag again before entering a forbidden
segment.

6. COMPACTION
We believe compaction is a worthwhile extension to our

algorithm. Compaction affords an opportunity to remove
long-lived global objects from the local heaps, which in-
creases the efficiency of local collection. Below we provide a
design for incorporation of compaction into the algorithm.

6.1 The basic algorithm
An interesting enhancement to the collector is a com-

paction mechanism. We use the algorithm currently im-
plemented in the JVM which was presented by Morris [12].
This algorithm requires no extra space, keeps the order of
the live objects, and requires only two passes on the heap.
It assumes that each object has a pointer to its class, and
this pointer is distinguishable from other pointers in the ob-
ject. In the first pass, the compaction algorithm identifies
and modifies all the “forward” pointers in the heap. We call
a pointer a forward pointer if it points to an address in the
heap that is higher than its own address. Other pointers are
denoted backward pointers. In the second pass we modify
all the backward pointers and move the objects.
Both passes proceed from the lowest to the highest ad-

dress in the heap. During the first pass, we create for each
object, A, a linked list of the pointers that reference it. The
linked list head replaces A’s class pointer which is temporar-
ily stored at the end of the list. As each pointer to A is
encountered it is linked at the head of the list. Note that
this linked list requires no extra space. During the first pass
when we get to an object, we have a list of all the forward
pointers to it. We also can calculate where this object will
reside after compaction, because we have seen all the live
objects before it. Thus, we modify all the pointers in the
current linked list and “clear” it by restoring the object’s
class pointer. As we go on with the pass we create a linked
list of all the backward pointers to the object in the same
manner. When we are done with the first pass, all forward
pointers have been properly modified and each object is as-
sociated with a list of all backward pointers that point to
it. In the second pass we move each object to its new loca-
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Global Collector:
mutex lock
set gc pending
mutex unlock
wait while there are threads whose gc ready flag is cleared
suspend all threads
collect the whole heap
resume all suspended threads.
clear gc pending
mutex lock
signal to all waiting threads (broadcast) /* allowing waiting threads to resume */
mutex unlock

Any Other Thread:
/* Its gc ready flag is normally set. */
/* It is cleared upon entrance to no-global-GC segment, and set again upon exit */
/* When entering a forbidden segment or during checks inside a long forbidden segment do:*/
while (gc pending is raised)

set gc ready flag
Wait on condition variable
Raise a flag to inform the allocator that global gc happened
mutex lock
clear gc ready flag
mutex unlock

Figure 1: Global and Local Collection Synchronization Scheme

tion, modify all the backward pointers to reference the new
location, and restore the class pointer to the object. By the
end of the second pass all objects have been moved and all
pointers have been updated.
Remark. Note that if we were using extra space for each

object, we could finish all the work in one pass. We could
keep for each object a translation between the old and new
locations, and move the object to the new location. After-
wards we could update backward pointers using the trans-
lation table.

6.2 Modification for our collector
In our setting, we would like to compact local objects

in the local areas of the thread. We start with presenting
local compaction and then continue with global (full heap)
compaction.

Local compaction. Local compaction cannot move global
objects or objects which are pinned or dosed (Pinned ob-
jects are those that cannot move because the JNI has given
native code direct access to the contents of the object, e.g.,
an array. Dosed objects are objects that may not move
due to the conservative scan of the thread stacks.). Thus,
each object is moved to the lowest address possible without
moving these objects. Also, we insist that objects do not
spill from one area to another (unless they are larger than
the size of one area). Thus, an object that moves must fit
completely into an area. Recall that global objects do not
contain pointers to local objects. Thus, they need not be
modified and we disregard them through the passes.
The local compactor moves through the local areas by

traversing a linked list of areas that belong to the local
thread. Only local objects are checked for forward and back-

ward pointers. We keep a read pointer that goes over the
live objects in the heap. As the read pointer passes over the
heap we organize free chunks it discovers by putting them
in an address ordered linked list. Each object encountered
is assigned a new address by employing an address-ordered
first fit strategy using the linked list. Note that this tends
to keep the order of objects in the heap, but does not guar-
antee it. However, all the other properties of the algorithm
hold, most importantly the end result: the pointers are all
correctly updated when compaction is finished.

Global compaction. When we do a global collection, we
may move all objects that are not pinned or dosed. However,
we have the requirement of keeping local objects in their
local areas. Thus, we keep a free list as before for each of
the local threads as well as one for global objects. Global
objects are moved from local heaps to global areas. The
traversal of the heap is done area by area, as the read pointer
goes over the heap. Each object encountered may be either
global or local. A free space for it is allocated using the free
list of the thread that owns the current area or using the
global free pointer.
When a new global area is required, an area is taken from

the list of free areas of the collector. It is preferable to use ar-
eas that are local-free rather than areas that are completely
free. In the case a new global area is required but cannot
be allocated, we keep the global objects in the current local
area of the thread. After compaction is done, freed areas
are inserted to the local-free or free areas data structures.
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7. RESULTS

7.1 Implementation
We implemented the algorithm on IBM’s Java Virtual Ma-

chine version 1.3.0 and ran measurements on an IBM Netfin-
ity server with 550Mhz Intel Pentium III Xeon and 2GB
memory. We modified the interpreter and ran the original
and the modified JVM in an interpreted mode without the
JIT. This JVM is highly optimized production JVM.
We ran measurements on two multithreaded benchmarks,

pBOB2.0a and Trade 2 on WebSphere under AKStress. The
first application is the kernel application of the SPEC2000jbb
benchmark, which is described in detail in SPEC web site
[14]. We chose to use pBOB over SPECjbb because of the
greater flexibility it offers in setting parameters, particularly
the number of threads. The second application is the Web-
Sphere [17] webserver application driven by AKStress uti-
lizing Trade2 [16]. We used version 4.0 beta of WebSphere
and DB2 version 7.2 as the database. AKStress spawns a
configured number of threads to make repeated requests to
the WebSphere server for web page retrieval. The Trade 2
benchmark is an IBM internal benchmark that measures the
performance of servers running the IBM WebSphere Appli-
cation Server software. The Trade 2 application was built to
emulate an online brokerage firm. It is implemented using a
collection of Java classes, Java Servlets, Java Server Pages
and Enterprise Java Beans (EJBs).
We implemented a preliminary version of direct global al-

location for the pBOB benchmark only. The reason we did
not prototype it for Trade2 on WebSphere as well is that
our manual modification of the relevant allocation sites is
not feasible for the abundant number of relevant sites in
WebSphere (when running Trade2). We start by presenting
our results running the implementation with and without
direct global allocation for pBOB. We then provide the mea-
surements for Trade2 on WebSphere without direct global
allocation and infer from the improvement seen on pBOB
how direct global allocation might improve performance for
Trade2 on WebSphere.

7.2 Measurements

7.2.1 Full measurements for pBOB
In this subsection, we report our findings for pBOB. We

start with statistics comparing global and local object pop-
ulations. In Table 1, we report the percentage of allocated
local objects surviving a global collection (on average), the
percentage of allocated global objects surviving a collection
(on average), and the percentage of allocated objects which
are global before and after a collection. All measurements
are reported both in terms of the number of objects and
the accumulated space they require. We see in Table 1 that
during a typical collection more than 99% of the local ob-
jects die. A much lower death rate (63-80%) is measured for
the global objects. The difference in the death rate explains
why the fraction of global objects rises from less than half
before a collection to almost 99% after the collection.
Next, we report collection time statistics. In all tables we

abbreviate thread-local, TL, and direct global, DG. Note
that we must compensate since local collections are run
on one processor (out of the four in our machine) and the
global collections are run on all the four processors. In or-
der to compensate we can either divide the local collections

heap/ calculated gc time improvement
threads base TL DG DG vs Base
128/4 597 1589 582 2.4%
128/12 1352 2536 891 34.1%
128/20 2955 4688 1226 58.5%
256/4 421 1597 366 13.1%
256/12 663 2206 381 42.5%
256/20 947 2252 433 54.3%
256/40 2559 3681 1051 58.9%

Table 2: Garbage collections times (in ms): a sum-
mary (pBOB).

by 4 (meaning that they only take 1/4 of the CPU overall
strength) or multiply the full collection times by 4 (to sig-
nify that they run on 4 processors). We chose to divide the
local collection times by 4 and this is how the measurements
are reported. The collection times so derived can be fairly
compared with the times from a run of the garbage collector
in the original JVM in which the four CPU’s are used by the
collector.
The summary of the measurements of collection times is

given in Table 2 and the detailed information appears in
Table 3. Thread-local heaps with direct allocation of global
objects yields a reduction of 2-60% in the overall collection
times. Note that direct global allocation is crucial for pro-
gram sites that mostly allocate global objects. Relying on
the thread-local heap scheme alone actually yields worse col-
lection times. Looking into the more detailed measurements
in Table 3, we see that the main cost of collection is due to
the sweep. In our version of the JVM the cost of sweep is
proportional to the number of discontiguous free spaces in
the heap. Global objects in the local heaps partition free
spaces, decreasing the total number of available bytes while
greatly increasing the number of free spaces. Allocating ob-
jects directly in a global heap substantially ameliorates the
sweep efficiency and provides an improvement in overall col-
lection time.
We now turn to reporting pause times. Since this is a stop-

the-world collector, the pause times are the lengths of the
collections and the number of pauses is the number of collec-
tions. Looking at Table 4 we see pauses for full collections
(and original collections) on the order of 100ms. Local col-
lections using thread-local heaps are one magnitude smaller
(around 10ms) and direct global allocation reduces the local
collection times to approximately 1ms. The reduction of two
orders of magnitude in the pauses makes pauses for the local
collections unnoticeable for the user. To see the reduction of
the number of long pauses (due to full collections) look again
at Table 4. We see that when using direct global allocation,
the number of long pauses is cut by 38-76% depending on
the heap size and number of threads running.
Let us now check the cost of the running the program

with dynamic monitoring. Recall that the write barrier that
marks objects global just before they become global during
program execution. It turns out that the cost of executing
the write barrier as a percentage of the overall execution
time is between 2.1-2.8% (see Table 5). Running with the
JIT this figure most likely will rise sgnificantly. This cost ex-
plains why we do not see improvements in overall execution
times. Although the collection times have been reduced sig-
nificantly (sometimes by more than a half), the cost of the
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heap/ % surviving locals % surviving globals % global before gc % global after gc
threads obj byte obj byte obj byte obj byte
128/4 0.1 0.9 19.1 23.5 34.4 43.0 98.6 95.0
256/20 0.4 2.2 37.1 44.2 40.0 50.3 98.3 95.3

Table 1: Fraction of globals objects in pBOB

heap/ Base TL full GCs TL local GCs DG global GCs DG local GCs
threads mrk swp tot mrk swp tot mrk swp tot mrk swp tot mrk swp tot
128/4 327 270 597 254 348 603 134 853 987 121 149 270 221 92 313
128/12 839 514 1352 763 753 1516 145 876 1021 331 265 596 165 131 296
128/20 1947 1008 2955 1941 1685 3626 164 898 1062 619 415 1034 86 106 192
256/4 191 230 421 148 309 458 147 993 1140 48 95 142 154 70 224
256/12 362 301 663 372 512 884 168 1155 1328 89 109 198 99 84 183
256/20 557 390 947 533 609 1143 158 951 1109 129 125 254 91 89 180
256/40 1662 897 2559 1437 1300 2737 156 788 944 457 331 787 124 140 264

Table 3: Garbage collections times (in ms): details (pBOB)

heap/ Cost of
threads Write barrier
128/4 2.5%
128/12 2.7%
128/20 2.6%
256/4 2.2%
256/12 2.6%
256/20 2.1%
256/40 2.8%

Table 5: Write Barrier cost (pBOB)
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Figure 2: Throughput (pBOB)

write barrier prevents an improvement in the overall pro-
gram throughput.
Figure 2 provides throughput measurements for the origi-

nal JVM, the thread-local memory manager and direct global
allocation. Throughput is measured in units of transactions
per minute (tpm) as reported by pBOB. It turns out that
throughput is reduced by around 2% when using thread-
local heaps without direct global allocation. However, the
throughput of the JVM with thread-local heaps and direct
global allocation is very close to the original JVM. In general
the improvement in pause times does not cause a noticeable
loss in throughput, and there are performance gains in sce-
narios with high amounts of collection activity.
Let us now investigate direct global allocation. Recall that

we select the program sites we use for allocating directly to
the global areas. Since some sites allocate both global and
local objects there is a trade-off. The more global objects

direct tpm number GC time
allocation full GCs
50% -1.2% 0% -9.4%
70% -1.3% 0% -15.8%
90% -0.2% -50% -50.9%
99% 0.4% -75% -77.7%

Table 6: Improvement of direct global allocation
over thread-local heaps as a function of percent
global objects directly allocated as global (pBOB -
20 thread 256m heap)

we allocate directly to the global areas the more local ob-
jects get allocated to the global areas as well. Table 6 shows
us that it is not useful to go part way with global alloca-
tion. The full benefits are obtained only when nearly all
of the global objects are identified during allocation. The
table presents the improvement of throughput, latency and
garbage collection times obtained by direct global allocation
over the normal thread-local heap memory manager. The
improvement is presented as a function of the number of
global objects that get allocated directly to the global ar-
eas. When 50% of the global objects are directly allocated as
global, we see a deterioration in the throughput and almost
no improvement otherwise. With 90% direct global alloca-
tion, we see GC times and the number of long pauses cut in
half. Another cut in half is obtained when we increase the
percentage to 99%, which is the percentage we have used in
our algorithm and measurements.
Finally, we provide some measurements on how we se-

lected the area size. See Table 7.
The collector which employed an area size of 512kb per-

formed consistently well on both pBOB and Trade2 on Web-
Sphere.

7.2.2 Partial measurements for Trade2 on WebSphere
driven by AKStress

In this section we report measurements for Trade2 on
WebSphere driven by AKStress. As explained above, we did
not implement direct global allocation for this benchmark.
Therefore, we report measurements with thread-local heaps
and in the next section infer how direct global allocation
would affect this case.
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Full GCs Local GCs
heap/ number avg gc time (ms) number avg gc time (ms)
threads base TL DG base TL DG TL DG TL DG
128/4 8 6 3 74.6 100.4 90.1 315 910 12.5 1.4
128/12 10 9 4 135.3 168.4 149.0 724 963 5.6 1.2
128/20 15.4 15 5 191.9 241.7 206.8 1062 821 4.0 0.9
256/4 4 3 1 105.4 152.6 142.4 230 627 19.8 1.4
256/12 4 4 1 165.7 220.9 198.0 597 567 8.9 1.3
256/20 4.2 4 1 225.6 285.7 253.6 731 534 6.1 1.3
256/40 7 6 2 365.6 456.2 393.7 964 840 3.9 1.3

Table 4: Latency measurements (pBOB)

heap/ Area full local GC
threads size (mb) TPMs GCs GCs time (ms)
128/4 1/2 2422 3 898.2 563.3

1 2442 3 697.8 460.3
2 2431 5.2 329.8 599.4

128/20 1/2 2396 5 811.6 1229.6
1 2398 6 736.4 1400.1
2 2383 8 281.8 1752.6

265/4 1/2 2453 1 636.2 365.5
1 2457 1.2 556.8 332.5
2 2459 2.8 324.6 489.5

256/20 1/2 2375 1 531.6 439.1
1 2371 2 858.2 753.8
2 2366 3 323.0 858.0

Table 7: Choosing area size (pBOB)

heap calculated gc time
size base TL
192 34028 38460
256 23252 31874
512 12028 27062

Table 9: Garbage collections times for WebSphere
(Trade2) - summary

We start again (in Table 8) by measuring the fraction
of global objects in the heap. The behavior seen in pBOB
shows up here in a stronger manner. Almost no local objects
survive a collection.
Next, we look at the collection times while compensat-

ing, as for pBOB for the fact that local collections are run
on one processor and not 4 as the global collection. The
summary of the measurements is given in Table 9 and the
detailed information appears in Table 10. The pattern seen
in pBOB is echoed here. The introduction of thread-local
heaps increases both full collection time and total collection
time. Similarly to pBOB this has a negative effect on over-
all throughput, which is shown in Table 3. The overhead of
the write barrier, which again is around 2%, also contributes
to the decline in performance (see Table 12). However, in
contrast to pBOB, even without direct global allocation we
obtain a clear benefit in terms of reducing the number of
long pauses, as seen in Table 11.

7.2.3 Estimating the effect of direct global allocation
We did not implement direct global allocation for Web-

Sphere and therefore can only estimate what its effect may

heap Cost of
size Write barrier
192 2.1%
256 2.2%
512 1.5%

Table 12: Write Barrier cost

be. We first recall the effect of direct global allocation for
pBOB. The greatest percent gain from direct global allo-
cation is in the total time used by local sweep. The local
sweep time dropped by more than an order of magnitude,
decreasing to just 7-18% of its former time. As a percentage
of the local mark time, the local sweep time dropped from
being 5 to 7 times greater than the local mark time to being
on average less than the local mark time. Another big gain
was in the global gc time. However, this is a reflection of
the drop in the need for global gc. The number of global
collections fell between 50-75% due to direct global alloca-
tion. We note also that the sweep time for full GC is on
average less than the mark time for the original and direct
global versions, but greater on the thread-local version.
We now consider some differences between the gc behavior

of the two applications with thread-local collections. One
difference is that for Trade2 on WebSphere, unlike pBOB,
thread-local heaps alone cause the number of full gcs to drop
sharply. Another difference is that the sweep time for local
gc is about four times the mark time rather than five to
seven times as great.
We recall two large benefits of direct global allocation.

One is the need for gc is reduced because the collections
recover more of the heap. This effect is due to the great
reduction in fragmentation of the free space. The second
benefit is that collections are more efficient in terms of the
time they take to sweep (we discussed the reason for this
in the previous section). For the sake of caution we esti-
mate the effect from the second benefit only. We estimate
that the least benefit from direct global allocation would be
that local sweep times are reduced to the local mark times.
This would give total gc time of approximately 21, 17 and
12 second for the 192, 256, and 512 megabyte heap sizes re-
spectively. The effect would be that the overall total gc time
would be reduced to as little as 62% of the original. The re-
duction in gc time amounts to approximately 2% of total
execution time. This is enough to offset the effect degrada-
tion in execution and bring about a net gain of around 1%
in the cases of the 192 and 256 heap sizes.
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heap % surviving locals % surviving globals % global before gc % global after gc
size obj byte obj byte obj byte obj byte
256 0.0 0.0 63.9 70.7 34.8 30.2 99.9 99.9

Table 8: Fraction of globals objects in WebSphere running Trade2

heap Base TL full GCs TL local GCs
size mrk swp tot mrk swp tot mrk swp tot
192 22119 11909 34028 4373 3737 8110 6916 23435 30351
256 14212 9039 23252 2896 2519 5414 7103 20607 27710
512 6545 5484 12028 1338 1891 3229 4539 19295 23884

Table 10: Garbage collections times for Websphere (Trade2)
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Figure 3: Overall performance - Trade2

8. CONCLUSIONS
We have presented a memory manager for local heaps, and

a method of dynamically monitoring objects that are thread-
local. We have implemented the algorithm for IBM’s 1.3.0
Java Virtual Machine and ran measurements on an IBM
Netfinity server with 550Mhz Intel Pentium III Xeon and
2GB memory. The overall garbage collection time was cut
on average by about 50%. The number of long pauses de-
creased dramatically, by a factor of 3 to 4. The short pauses
introduced are on the order of 1 ms and hence unnoticeable
to the user. The improved latency did not cost in terms
of throughput, which was not noticeably affected. The im-
provement in collection was offset by the cost of the write
barrier. We believe it would be worthwhile to check how
well static determination of object locality works with our
memory manager.
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