Adaptive Decentralized Control of Underwater Sensor Networks for Modeling Underwater Phenomena

Carrick Detweiler^{‡†}, Marek Doniec[†], Mingshun Jiang^{*}, Mac Schwager[†], Robert Chen^{*}, Daniela Rus[†]

† Massachusetts Institute of Technology
‡ University of Nebraska-Lincoln
* University of Massachusetts–Boston

SenSys 2010, Zurich, Switzerland

Motivation: Underwater Sensing

• BP oil spill - riser pipe

Image from reuters.com

Motivation: Underwater Sensing

• BP oil spill - extent is unknown

Motivation: Underwater Sensing

Boston Harbor sewer pipe output

Image courtesy Mingshun Jiang, UMass Boston SenSys 2010–Carrick Detweiler (carrick@cse.unl.edu)

System Approach

- Many inexpensive sensors
- Networked for real-time feedback
- Collaborate with robot
- Adjust depth for sensing using decentralized depth control algorithm (*this talk*)

SenSys 2010-Carrick Detweiler (carrick@cse.unl.edu)

Depth adjustment enables:

- Easy deployment
- Easy recovery
- GPS or radio on surface
- Optimizing position for:
 - Sensing
 - Communication

Related Work

Water column profilers

- Glenn et al.. The leo-15 costal cabled observatory phase II for the next evolutionary decade of oceanography. Scientific Submarine Cable, 2006.
- Howe and McGinnis. Sensor networks for cabled ocean observatories. International Symposium on Underwater Technology, 2004.
- Joeris. A horizontal sampler for collection of water samples near the bottom. Limnology and Oceanography, 1964.

Coverage and sensor placement

- Bullo, Cortés, and Mortínez. Distributed Control of Robotic Networks. Applied Mathematics Series. Princeton University Press, 2009.
- Guestrin, Krause, and Singh. Near-optimal sensor placements in gaussian processes. International Conference on Machine Learning, 2005.
- Ko, Lee, and Queyranne. An exact algorithm for maximum entropy sampling. Operations Research, 1995.
- Schwager, Rus, Slotine. Decentralized, adaptive coverage control for networked robots. IJRR, 2009.

Simulated underwater depth adjustment algorithms

- Akyildiz, Pompili, and Melodia. State-of-the-art in protocol research for underwater acoustic sensor networks. WUWNet, 2006.
- Cayirci, Tezcan, Dogan, and Coskun. Wireless sensor networks for underwater survelliance systems. Ad Hoc Networks, 2006.

Related areas

- Drifting floats
- AUVs adjusting relative positions

Outline

Motivation and Overview

2 Related Work

3 Approach

- Occentralized Sensing Optimization Algorithm
 - Simulation Results
 - AquaNode Underwater Sensor Network
 - Experimental Results

5 Future Work

6 Conclusions

SenSys 2010-Carrick Detweiler (carrick@cse.unl.edu)

Contributions

- Decentralized depth control algorithm
- Optmizes depths for sensing
- Based on covariance measurements
- Provable convergence
- Low processing and communication
- Tested in simulation
- Implemented and tested on AquaNodes

Decentralized Depth Adjustment for Improved Sensing

- Measurement of water column properties
 - Temperature, salinity, pH, dissolved O₂, etc.
 - Images
- Capture time-varying properties
- Constraints
 - Power
 - Minimize motion
 - Minimize communication
 - Acoustic communication bandwidth
 - 11 bytes per packet
 - Transmit just position, depth, and sensor reading

- Measure q_1 from constrained path
- Changes at q_1 correlated to changes at p_1
- Highest correlation when p_1 close to q_1 :

 $Min(Dist(q_1, p_1))$

• More generally use covariance:

 $Max(Cov(q_1, p_1))$

• Allows different sensing functions

- Measure q_1 from constrained path
- Changes at q_1 correlated to changes at p_1
- Highest correlation when p_1 close to q_1 :

 $Min(Dist(q_1, p_1))$

• More generally use covariance:

 $Max(Cov(q_1, p_1))$

• Allows different sensing functions

	1
	1
	1
	1
	1
	1
	<u> </u>
- 11	
. L	
-	
יר	1
~ 1	1
-	1
	1
	1
	1
	1

- Measure q_1 from constrained path
- Changes at q_1 correlated to changes at p_1
- Highest correlation when p_1 close to q_1 :

 $Min(Dist(q_1, p_1))$

• More generally use covariance:

 $Max(Cov(q_1, p_1))$

• Allows different sensing functions

1	q ,

p₁

Covariance Model

- Assume Gaussian
- Different variance along surface
- Better models with more knowledge

Covariance Model

- Assume Gaussian
- Different variance along surface
- Better models with more knowledge

Multiple Points Problem

$$\sum_{Q}\sum_{i=1}^{N}Cov(q,p_i)$$

• Problem: left and right are same: .5 + .5 + .5 = 1.5 .25 + .25 + .5 + .5 = 1.5

Multiple Points Solution

Algorithm Approach

• Objective function:

$$\mathcal{H}(p_1,...,p_N) = \int_Q \left(\sum_{i=1}^N Cov(q,p_i)\right)^{-1} dq$$

• Decentralized gradient controller:

$$\dot{p}_i = -k \frac{\partial \mathcal{H}}{\partial z_i}$$

- **-** -

$$\frac{\partial \mathcal{H}}{\partial z_i} = \int_Q g(q, p_1, ..., p_N)^2 f(p_i, q) \frac{(z_i - z_q)}{\sigma_d^2} dq$$

$$g(q,p_1,...,p_N) = \left(\sum_{i=1}^N f(p_i,q)\right)^{-1}$$

$$f(p_i, q) = Cov(p_i, q) = Ae^{-\left(\frac{(x_i - x_q)^2 + (y_i - y_q)^2}{2\sigma_s^2} + \frac{(z_i - z_q)^2}{2\sigma_d^2}\right)}$$

• Each node moves according to:

$$\dot{p}_i = -k \frac{\partial \mathcal{H}}{\partial z_i}$$

- Theorem: decentralized controller converges to local minimum
- Proof: convergence proof using Lyapunov criteria
 - \mathcal{H} must be differentiable;
 - $\frac{\partial \mathcal{H}}{\partial z_i}$ must be locally Lipschitz;
 - \mathcal{H} must have a lower bound;
 - $\ensuremath{\mathcal{H}}$ must be radially unbounded or the trajectories of the system must be bounded.
- Verified in simulation, pool, and river experiments

Simulation Results: Versus Matlab's fminsearch

- fminsearch: Matlab's nonlinear unconstrained solver
- Much faster runtime
- Typically lower objective value

Posterior Variance

- Posterior variance
 - Variance given sensor positions, assuming Gaussian process

•
$$\sigma_{q|P}^2 = Cov(q,q) - \Sigma_{q,P} \cdot \Sigma_{P,P}^{-1} \cdot \Sigma_{P,q}$$

- Requires matrix inversion $(O(n^2)$ memory for *n* sensors)
- Decentralized depth control algorithm
 - Tends to reduce posterior error
 - Constant memory requirements

Simulation Results: Data Reconstruction

Top row: Original data Bottom row: Depth adjustment algorithm

Outline

Motivation and Overview

2 Related Work

3 Approach

- Occentralized Sensing Optimization Algorithm
 - Simulation Results
 - AquaNode Underwater Sensor Network
 - Experimental Results

5 Future Work

6 Conclusions

Underwater Sensor Network: AquaNodes

- Multi-purpose underwater sensor network
- Acoustic, optical, and radio communication
- Easy to use and deploy
- Dynamic depth adjustment

Dynamic Depth Adjustment

Dynamic Depth Adjustment

Video: Winch in Pool

AquaNodes: Platform Overview

- LPC2148 60MHz ARM7
- SD Card for logging
- Temperature, pressure, CDOM, salinity, dissolved 0₂, camera
- Digital and analog inputs
- Depth adjustment: 2.4m/min
- Communications
 - Acoustic (FSK modulation): 300b/s up to 200m
 - Radio (1W 900MHz Aerocomm): 57kb/s up to 1km on surface
 - Optical (DPIM modulation): 3Mb/s up to 5m

Decentralized Depth Adjustment Results

- Four AquaNodes running depth control algorithm in pool
- Three iterations of depth control algorithm
- Algorithm converges within 10 minutes
- Nodes spread out

Decentralized Depth Adjustment Communication

- Communication data from part of previous experiment (4 nodes)
- Nodes do not hear all other nodes
- Algorithm handles communication dropouts

Decentralized Depth Adjustment Communication

Changing Covariance

- Changing covariance over time
- For example tidal changes
- Objective value returns to minimum after algorithm adjusts

Outline

Motivation and Overview

2 Related Work

3 Approach

- Occentralized Sensing Optimization Algorithm
 - Simulation Results
 - AquaNode Underwater Sensor Network
 - Experimental Results

5 Future Work

6 Conclusions

- Collect scientific data
- Long-term deployments
- Determine maximum water current
- Examine impact of bio-fouling
- Leverage depth adjustment for other applications
 - Optimize Acoustic Communication
 - Multi-modal communication (acoustic, radio, optical)

Neponset River Experiment

- Summer deployment in Neponset River w/ 4 nodes
- Nodes performed column scans, sensing temp, pressure, CDOM
- Collecting data for future depth optimization experiments

Neponset River Experiment

• Deployment for half tidal cycle

Acoustic Communication Example

- Placement is critical for acoustic comms
- Short-range river experiment between walls

Contributions and Conclusions

- Algorithms in an underwater sensor network
 - Decentralized depth control for sensing
 - Provable convergence
 - Verified in simulation and field experiments
- System implementation and experiments
 - Underwater sensor network
 - Dynamic depth adjustment
 - Tested in pools, lakes, and rivers
- Future work taking advantage of depth adjustment
- Leverage sensor networks to improve environmental understanding

contact me at: carrick@cse.unl.edu SenSys 2010–Carrick Detweiler (carrick@cse.unl.edu) $http://cse.unl.edu/{\sim}carrick$

Questions?

- Algorithms in an underwater sensor network
 - Decentralized depth control for sensing
 - Provable convergence
 - Verified in simulation and field experiments
- System implementation and experiments
 - Underwater sensor network
 - Dynamic depth adjustment
 - Tested in pools, lakes, and rivers
- Future work taking advantage of depth adjustment
- Leverage sensor networks to improve environmental understanding

contact me at: carrick@cse.unl.edu SenSys 2010–Carrick Detweiler (carrick@cse.unl.edu) $http://cse.unl.edu/{\sim}carrick$

Outline All

Conclusions

Radio Communication

- Uses winch to go to surface
- 900MHz Aerocomm radio
- Built-in broadcast protocol
- 1 Watt transmit power
- 20km max range
- 1km typical range

Acoustic Communication

- Developed in our lab
- Broadcast protocol
- 600MHz DSP
- 27-33 KHz
- Frequency-Shift Keying (FSK)
- 300b/s
- 45mJ/bit (2W transmit power)
- 400m range
- Ranging between modems
 - 4cm resolution
- Time Division Multiple Access (TDMA)
 - Self-synchronizing

- Developed in our lab
- Point-to-Point
- 5 meter 90° cone
- 3Mbit/s
- $7\mu J/bit$
- 532nm wavelength (green)
- Digital Pulse Interval Modulation (DPIM) modulation

