
CSCE 236 Embedded Systems, Spring 2015
Lab 1

Thursday, January 29, 2015
Names of Group Members:

1 Instructions
This is a group assignment to work on during class. You only need to hand in one copy of this, but make
sure that the names of all of your group members are on this sheet to receive credit. Complete all of the
sections below and make sure to get the instructor or TA to sign off where required. You should keep your
own notes on what you complete since parts of future homework will build on this lab.

In this lab you will learn to connect and wire basic components on a breadboard. You will interface
with a button and a RGB LED and will explore how long it takes to perform various operations on different
integer types.

Before starting this lab, make sure you are familiar with the layout of the breadboard and
how each location is connected to each other. If you are unsure ask the instructor before you
break something!

2 Resistors
In this lab you will be using 100, 180, and 47,000 (47k) ohm resistors. These are identified by different color
stripes on them. You can refer to:

http://en.wikipedia.org/wiki/Electronic_color_code
to figure out the color coding scheme, but for your reference the 100 ohm resistor has the color code

brown-black-brown-yellow, the 180 ohm is brown-gray(blueish)-brown-yellow, and the 47k is yellow-violet-
orange-yellow. You should have three 100 ohm, three 180 ohm, and two 47k resistors in your packet.

3 LEDs

Figure 1: Schematic diagram for the LED connections.
Figure 2: RGB Common Cathode LED (YSL-
R596CR3G4B5W-F12).

For this section, you will be using a tri-color RGB LED. On the breadboard, implement the circuit defined
by the schematic in Figure 1, but do not connect it to the Arduino yet. You should refer to Figure 2 to
determine the pin-to-color mapping of the LED.

1

http://en.wikipedia.org/wiki/Electronic_color_code


Checkoff: Once you have completed wiring on the breadboard, have the instructor verify the connections
before moving onto the next section.

Now connect the circuit on your breadboard to the proper pins on your Arduino. The pins (PD5, PD6,
PD7) are given in terms of the pin names on the Atmel, you will need to determine the correct correspondence
to the output pins on the Arduino itself by refering to the Arduino schematic. Write the code1 for your
Arduino to turn on and off each of these LEDs2. Does the LED turn on when the output pin is high or low?
For ease of use, you may want to define variable or macros that lets you turn on/off a particular color LED
by name instead of pin number.
Checkoff: Write code that cycles through the pattern R,RG,G,GB,B,RB,ALL_OFF3 whenever the button
is pressed. Show your completed program to an instructor for checkoff. I suggest that you put all of the code
for this question in single function that you continually call from the loop function. That way you can easily
comment it out when you work on the next part of this lab, without having to delete any code.

4 Fun with Arduino Libraries

4.1 Photoresistor
In your kit you have a photoresistor. This changes resistance based on the amount of incident light. In order
to use this you should connect it in a voltage divider configuration as shown in Figure 3.

Figure 3: Schematic diagram for the photoresistor connections.

Connect the Vin to 5V and connect Vout to pin A0 on the Arduino. You can then use val = analogRead(A0)
to read the voltage at Vout as scaled between 0 and 1023 (it is a 10 bit value). Print the value out over
serial terminal and find a good resistor value to get a large change between having the photoresistor covered
versus in bright light.
Checkoff: What value resistor did you use and what range did you find? Did the value go up or down when
you covered it?

Checkoff: Given that the min value from analogRead is 0 and the max is 1023, what is the resistance of the
photoresistor when covered? When not covered?

1You can use the Arduino pin functions or directly set registers for this lab. I suggest using the Arduino functions initially,
but if you have time you should modify them to directly set the registers (for the next homework you will need to directly set
registers for some questions). To set the registers directly, you should put “#include <avr/io.h>” (without quotes) at the top
of your file to get all of the register definitions (DDRD, PORTD, etc).

2You should work together on this program, each group only needs one copy; however, you should make sure to share the
final version of the code among the members of your group.

3RG, for instance, means the red and green LED should be on at the same time.

2



4.2 Servos
Servos are also controlled by PWM signals, which we will learn a lot more about later in the semester. But
for now, read the following description and try to make the continuous rotation servo in your lab kit work.
Make sure to read through this section before trying to hook anything up or writing code.

Most servos enable angular control of the output shaft (e.g. between 0 and 120 degrees). The servos we
are using in class are known as continuous rotation servos. Instead of controlling position, we are able to
control the forward and backward rotational speed using PWM signals. Most servos use PWM signals with
a period of approximately 20 milliseconds. By varying the pulse length between 1ms to 2ms the servo will
go from full speed forward to full speed backwards (on a traditional servo this would mean rotating from 0
to 120 degrees).

You have seen how to manually configure the PWM channels to control the frequency and duty cycle.
However, instead of manually configuring all the PWM channels, we will instead make use of an Arduino
servo control library. Read the information on how to use the servo library here:

http://arduino.cc/en/Reference/Servo
To hook up the servos to your breadboard, you will need to first use the 3-pin header to adapt the female

servo connector to a male connector. Then, connect the black wire to ground, red to power (5V), and white
to the PWM signal. Double check these connections before powering your board. You can then add the
wheel to the servo to more easily see what is happening. Note that the servos can draw more power than a
USB port can supply, especially if you try to hold the wheel.
Checkoff: Write code that reverses the direction of one servo whenever the button is pressed. If you have
trouble with this please ask for help!

4.3 Combining Servos and Photoresistors
For this section you can use the short white wires in your kit that are male on one side and female on the
other. These can be used to connect to the photoresistor and place it on the servo wheel.
Checkoff: Use two photoresistors and write a program that will cause the servo to point to and follow the
brightest source of light.

Checkoff: Now write a program that will point to and follow the brightest source of light (this is more
difficult and may bounce back and forth between locations).

3

http://arduino.cc/en/Reference/Servo

	Instructions
	Resistors
	LEDs
	Fun with Arduino Libraries
	Photoresistor
	Servos
	Combining Servos and Photoresistors


