Welcome to CSCE 478/878!

- Please check off your name on the roster, or write your name if you’re not listed
- Indicate if you wish to register or sit in

Policy on sit-ins: You may sit in on the course without registering, but not at the expense of resources needed by registered students
- Don’t expect to get homework, etc. graded
- If there are no open seats, you may have to surrender yours to someone who is registered

- You should have two handouts:
 - Syllabus
 - Copies of slides
- In addition, check out Homework 0 on the web

Override Policy

Option 1
Priority given to
- Undergraduate CSE majors graduating in December or May
- CSE graduate students who need it for research
- If you want an override, fill out the sheet with your name, ugrad/grad, major, and why this course is important to you

Option 2

What is Machine Learning?

- Building machines that automatically learn from experience
 - Sub-area of artificial intelligence
- (Very) small sampling of applications:
 - Detection of fraudulent credit card transactions
 - Filtering spam email
 - Autonomous vehicles driving on public highways
 - Self-customizing programs: Web browser that learns what you like and seeks it out
 - Applications we can’t program by hand: E.g., speech recognition

What is Learning?

- Many different answers, depending on the field you’re considering and whom you ask
 - Artificial intelligence vs. psychology vs. education vs. neurobiology vs. …

Does Memorization = Learning?

- Test #1: Thomas learns his mother’s face
 - Memorizes:
 - But will he recognize:
Thus he can generalize beyond what he’s seen!

Does Memorization = Learning? (cont’d)

- Test #2: Nicholas learns about trucks
 - Memorizes:
 - But will he recognize others?

So learning involves ability to generalize from labeled examples
- In contrast, memorization is trivial, especially for a computer

What is Machine Learning? (cont’d)

- When do we use machine learning?
 - Human expertise does not exist (navigating on Mars)
 - Humans are unable to explain their expertise (speech recognition; face recognition; driving)
 - Solution changes in time (routing on a computer network; driving)
 - Solution needs to be adapted to particular cases (biometrics; speech recognition; spam filtering)
- In short, when one needs to generalize from experience in a non-obvious way

What is Machine Learning? (cont’d)

- When do we not use machine learning?
 - Calculating payroll
 - Sorting a list of words
 - Web server
 - Word processing
 - Monitoring CPU usage
 - Querying a database
- When we can definitively specify how all cases should be handled

More Formal Definition of (Supervised) Machine Learning

- Given several labeled examples of a concept
 - E.g., trucks vs. non-trucks (binary); height (real)
- Examples are described by features
 - E.g., number-of-wheels (int), relative-height (height divided by width), hauls-cargo (yes/no)
- A machine learning algorithm uses these examples to create a hypothesis that will predict the label of new (previously unseen) examples
Machine Learning Definition (cont’d)

Hypotheses can take on many forms

Hypothesis Type: Decision Tree

- Very easy to comprehend by humans
- Compactly represents if-then rules

Hypothesis Type: Artificial Neural Network

- Designed to simulate brains
- “Neurons” (processing units) communicate via connections, each with a numeric weight
- Learning comes from adjusting the weights

Hypothesis Type: k-Nearest Neighbor

- Compare new (unlabeled) example x_q with training examples
- Find k training examples most similar to x_q
- Predict label as majority vote

Other Hypothesis Types

- Support vector machines
 - A major variation on artificial neural networks
- Bagging and boosting
 - Performance enhancers for learning algorithms
- Bayesian methods
 - Build probabilistic models of the data
- Many more

Variations

- Regression: real-valued labels
- Probability estimation
 - Predict the probability of a label
- Unsupervised learning (clustering, density estimation)
 - No labels, simply analyze examples
- Semi-supervised learning
 - Some data labeled, others not (can buy labels?)
- Reinforcement learning
 - Used for e.g., controlling autonomous vehicles
- Missing attributes
 - Must some how estimate values or tolerate them
- Sequential data, e.g., genomic sequences, speech
 - Hidden Markov models
- Outlier detection, e.g., intrusion detection
- And more …
Issue: Model Complexity
- Possible to find a hypothesis that perfectly classifies all training data
- But should we necessarily use it?

Model Complexity (cont’d)
- To generalize well, need to balance accuracy with simplicity

Issue: What If We Have Little Labeled Training Data?
- E.g., billions of web pages out there, but tedious to label

What If We Have Little Labeled Training Data? (cont’d)
- Active Learning approach:
 - Label requests are on data that ML algorithm is unsure of
 - E.g. in medicine, the reasons given for diagnosis x might not be the objectively correct ones, and the expert might be unconsciously picking up on other info

Machine Learning vs Expert Systems
- Many old real-world applications of AI were **expert systems**
 - Essentially a set of if-then rules to emulate a human expert
 - E.g. "If medical test A is positive and test B is negative and if patient is chronically thirsty, then diagnosis = diabetes with confidence 0.85"
 - Rules were extracted via interviews of human experts

Machine Learning vs Expert Systems (cont’d)
- ES: Expertise extraction tedious; ML: Automatic
- ES: Rules might not incorporate intuition, which might mask true reasons for answer
 - E.g. in medicine, the reasons given for diagnosis x might not be the objectively correct ones, and the expert might be unconsciously picking up on other info
- ML: More "objective"
Machine Learning vs Expert Systems (cont’d)

- ES: Expertise might not be comprehensive, e.g. physician might not have seen some types of cases
- ML: Automatic, objective, and data-driven
 - Though it is only as good as the available data

More Detailed Example: Content-Based Image Retrieval

- Given database of hundreds of thousands of images
- How can users easily find what they want?
 - One idea: Users query database by image content
 - E.g., “give me images with a waterfall”

Content-Based Image Retrieval (cont’d)

- One approach: Someone annotates each image with text on its content
 - Tedious, terminology ambiguous, may be subjective
- Another approach: Query by example
 - Users give examples of images they want
 - Program determines what’s common among them and finds more like them

User’s feedback then labels the new images, which are used as more training examples, yielding a new hypothesis, and more images are retrieved
How Does The System Work?

- For each pixel in the image, extract its color + the colors of its neighbors
- These colors (and their relative positions in the image) are the features the learner uses (replacing, e.g., number-of-wheels)
- A learning algorithm takes examples of what the user wants, produces a hypothesis of what’s common among them, and uses it to label new images

Conclusions

- ML started as a field that was mainly for research purposes, with a few niche applications
- Now applications are very widespread
- ML is able to automatically find patterns in data that humans cannot
- However, still very far from emulating human intelligence!
- Each artificial learner is task-specific