CSCE 478/878 Lecture 8: Clustering

Stephen Scott

sscott@cse.unl.edu
Introduction

- If no label information is available, can still perform *unsupervised learning*
- Looking for structural information about instance space instead of label prediction function
- Approaches: density estimation, clustering, dimensionality reduction

Clustering algorithms group similar instances together based on a *similarity measure*
Outline

- Clustering background
 - Similarity/dissimilarity measures
- \(k\)-means clustering
- Hierarchical clustering
Clustering Background

- Goal: Place patterns into “sensible” clusters that reveal similarities and differences
- Definition of “sensible” depends on application

(a) How they bear young
(b) Existence of lungs
(c) Environment
(d) Both (a) & (b)
Types of clustering problems:

- **Hard (crisp):** partition data into non-overlapping clusters; each instance belongs in exactly one cluster
- **Fuzzy:** Each instance could be a member of multiple clusters, with a real-valued function indicating the degree of membership
- **Hierarchical:** partition instances into numerous small clusters, then group the clusters into larger ones, and so on (applicable to phylogeny)
 - End up with a tree with instances at leaves
Dissimilarity measure: Weighted L_p norm:

$$L_p(x, y) = \left(\sum_{i=1}^{n} w_i |x_i - y_i|^p \right)^{1/p}$$

Special cases include weighted Euclidian distance ($p = 2$), weighted Manhattan distance

$$L_1(x, y) = \sum_{i=1}^{n} w_i |x_i - y_i| ,$$

and weighted L_∞ norm

$$L_\infty(x, y) = \max_{1 \leq i \leq n} \{ w_i |x_i - y_i| \}$$

Similarity measure: Dot product between two vectors (kernel)
If attributes come from \(\{0, \ldots, k - 1\} \), can use measures for real-valued attributes, plus:

- **Hamming distance**: DM measuring number of places where \(x \) and \(y \) differ
- **Tanimoto measure**: SM measuring number of places where \(x \) and \(y \) are same, divided by total number of places
- Ignore places \(i \) where \(x_i = y_i = 0 \)
 - Useful for ordinal features where \(x_i \) is degree to which \(x \) possesses \(i \)th feature
Might want to measure proximity of point \(x \) to existing cluster \(C \)

Can measure proximity \(\alpha \) by using all points of \(C \) or by using a representative of \(C \)

If all points of \(C \) used, common choices:

\[
\alpha_{ps}^{max}(x, C) = \max_{y \in C} \{ \alpha(x, y) \}
\]

\[
\alpha_{ps}^{min}(x, C) = \min_{y \in C} \{ \alpha(x, y) \}
\]

\[
\alpha_{ps}^{avg}(x, C) = \frac{1}{|C|} \sum_{y \in C} \alpha(x, y)
\]

where \(\alpha(x, y) \) is any measure between \(x \) and \(y \)
Alternative: Measure distance between point x and a representative of the cluster C

- **Mean vector** $m_p = \frac{1}{|C|} \sum_{y \in C} y$

- **Mean center** $m_c \in C$:
 \[
 \sum_{y \in C} d(m_c, y) \leq \sum_{y \in C} d(z, y) \quad \forall z \in C,
 \]
 where $d(\cdot, \cdot)$ is DM (if SM used, reverse ineq.)

- **Median center**: For each point $y \in C$, find median dissimilarity from y to all other points of C, then take min; so $m_{med} \in C$ is defined as
 \[
 \text{med}_{y \in C} \{d(m_{med}, y)\} \leq \text{med}_{y \in C} \{d(z, y)\} \quad \forall z \in C
 \]

Now can measure proximity between C’s representative and x with standard measures
Given sets of instances C_i and C_j and proximity measure $\alpha(\cdot, \cdot)$

- **Max:** $\alpha_{\text{max}}^{ss}(C_i, C_j) = \max_{x \in C_i, y \in C_j} \{\alpha(x, y)\}$
- **Min:** $\alpha_{\text{min}}^{ss}(C_i, C_j) = \min_{x \in C_i, y \in C_j} \{\alpha(x, y)\}$
- **Average:** $\alpha_{\text{avg}}^{ss}(C_i, C_j) = \frac{1}{|C_i| \cdot |C_j|} \sum_{x \in C_i} \sum_{y \in C_j} \alpha(x, y)$
- **Representative (mean):** $\alpha_{\text{mean}}^{ss}(C_i, C_j) = \alpha(m_{C_i}, m_{C_j})$, where m_{C_i} and m_{C_j} are the means of C_i and C_j, respectively.
k-Means Clustering

- Very popular clustering algorithm
- Represents cluster i (out of k total) by specifying its *representative* m_i (not necessarily part of the original set of instances \mathcal{X})
- Each instance $x \in \mathcal{X}$ is assigned to the cluster with nearest representative
- Goal is to find a set of k representatives such that sum of distances between instances and their representatives is minimized
 - NP-hard in general
- Will use an algorithm that alternates between determining representatives and assigning clusters until convergence (in the style of the EM algorithm)
Choose value for parameter k
Initialize k arbitrary representatives m_1, \ldots, m_k
 - E.g., k randomly selected instances from X
Repeat until representatives m_1, \ldots, m_k don’t change
 1. For all $x \in X$
 - Assign x to cluster C_j such that $\|x - m_j\|$ (or other measure) is minimized
 - I.e., nearest representative
 2. For each $j \in \{1, \ldots, k\}$
 \[m_j = \frac{1}{C_j} \sum_{y \in C_j} y \]
k-Means Clustering

Example with $k = 2$
Hierarchical Clustering

- Useful in capturing hierarchical relationships, e.g., evolutionary tree of biological sequences
- End result is a sequence (hierarchy) of clusterings
- Two types of algorithms:
 - Agglomerative: Repeatedly merge two clusters into one
 - Divisive: Repeatedly divide one cluster into two
Hierarchical Clustering

Definitions

- Let $C_t = \{C_1, \ldots, C_{m_t}\}$ be a level-t clustering of $X = \{x_1, \ldots, x_N\}$, where C_t meets definition of hard clustering.

- C_t is *nested* in $C_{t'}$ (written $C_t \sqsubseteq C_{t'}$) if each cluster in C_t is a subset of a cluster in $C_{t'}$ and at least one cluster in C_t is a proper subset of some cluster in $C_{t'}$.

\[
C_1 = \{\{x_1, x_3\}, \{x_4\}, \{x_2, x_5\}\} \sqsubseteq \{\{x_1, x_3, x_4\}, \{x_2, x_5\}\}
\]

\[
C_1 \not\sqsubseteq \{\{x_1, x_4\}, \{x_3\}, \{x_2, x_5\}\}
\]
Hierarchical Clustering
Definitions (cont’d)

- Agglomerative algorithms start with $C_0 = \{\{x_1\}, \ldots, \{x_N\}\}$ and at each step t merge two clusters into one, yielding $|C_{t+1}| = |C_t| - 1$ and $C_t \sqsubseteq C_{t+1}$

- At final step (step $N-1$) have hierarchy:

$$C_0 = \{\{x_1\}, \ldots, \{x_N\}\} \sqsubseteq C_1 \sqsubseteq \cdots \sqsubseteq C_{N-1} = \{\{x_1, \ldots, x_N\}\}$$

- Divisive algorithms start with $C_0 = \{\{x_1, \ldots, x_N\}\}$ and at each step t split one cluster into two, yielding $|C_{t+1}| = |C_t| + 1$ and $C_{t+1} \sqsubseteq C_t$

- At step $N-1$ have hierarchy:

$$C_{N-1} = \{\{x_1\}, \ldots, \{x_N\}\} \sqsubseteq \cdots \sqsubseteq C_0 = \{\{x_1, \ldots, x_N\}\}$$
Hierarchical Clustering

Pseudocode

1. Initialize $C_0 = \{\{x_1\}, \ldots, \{x_N\}\}$, $t = 0$
2. For $t = 1$ to $N - 1$
 a. Find closest pair of clusters:
 $$(C_i, C_j) = \arg\min_{C_s, C_r \in C_{t-1}} \{d(C_s, C_r)\}$$
 where $r \neq s$
 b. $C_t = (C_{t-1} - \{C_i, C_j\}) \cup \{\{C_i \cup C_j\}\}$ and update representatives if necessary

If SM used, replace $\arg\min$ with $\arg\max$

Number of calls to $d(C_k, C_r)$ is $\Theta(N^3)$
Hierarchical Clustering

Example

\(x_1 = [1, 1]^T, x_2 = [2, 1]^T, x_3 = [5, 4]^T, x_4 = [6, 5]^T, x_5 = [6.5, 6]^T, \) \(DM = \text{Euclidian}/\alpha_{\text{ss}} \min \)

An \((N - t) \times (N - t)\) proximity matrix \(P_t \) gives the proximity between all pairs of clusters at level (iteration) \(t \)

\[
P_0 = \begin{bmatrix}
0 & 1 & 5 & 6.4 & 7.4 \\
1 & 0 & 4.2 & 5.7 & 6.7 \\
5 & 4.2 & 0 & 1.4 & 2.5 \\
6.4 & 5.7 & 1.4 & 0 & 1.1 \\
7.4 & 6.7 & 2.5 & 1.1 & 0
\end{bmatrix}
\]

Each iteration, find minimum off-diagonal element \((i, j)\) in \(P_{t-1} \), merge clusters \(i \) and \(j \), remove rows/columns \(i \) and \(j \) from \(P_{t-1} \), and add new row/column for new cluster to get \(P_t \)
Hierarchical Clustering

Pseudocode (cont’d)

A proximity dendogram is a tree that indicates hierarchy of clusterings, including the proximity between two clusters when they are merged.

Cutting the dendogram at any level yields a single clustering.