How to Give a Good Research Talk

Stephen D. Scott

∗Adapted from Sally Goldman's slides.

Why Are We Here?

• For your work to have significant impact, it is essential that you can convey results to your community
• Your technical reputation depends on colleagues' reaction to your talk
• When on the job market this skill will be crucial in getting a research position in academics or industry
• Giving a good talk is a skill you can learn
• I will give you guidance and tips on giving a good talk

Goals of a Talk

• Meta-Goal:
 – keep audience’s interest (and attention)
 – convey technical material
 – communicate a key idea of work
 – provide intuition
 – convince audience to read your paper

• Non-Goals:
 – show people how smart you are
 – expect audience to understand most key details of your work

Note that this meta-talk focuses on giving a conference presentation or job talk; other scenarios such as teaching can have different contexts, goals, and approaches

Outline

• Goals of a talk
• Planning stages
• Structuring your talk
• Slide preparation
 – What to do
 – What to avoid
• At the talk
 – What to do
 – What to avoid
• Concluding remarks

Planning Stages

• Know your audience:
 – What is their background?
 ▶ general CS (or math, or EE)
 ▶ somewhat specialized audience
 ▶ highly specialized audience
• If someone has spoken before you:
 – Look at paper/abstract of relevant talks that preceeded yours
 – Prepare to use context provided

Scheduling (if you can)

• If possible, schedule your talk at 10:00
 – most people are awake
 – few have gone back to sleep
• Bad times to schedule talk:
 – right before lunch since the audience is thinking about food
 – after lunch since the audience is more likely to be sleepy
 – late afternoon since people will be running out of steam
• Best to have room that will be comfortably crowded
Structuring Your Talk

• Use a top-down approach:
 1. Introduction: define problem, present a “carrot”, put in context, and give outline at end of introduction
 2. Body: high-level summary of key results
 3. Technicalities: more depth into a key result
 4. Conclusion: review key results, wrap up, give future work

The Introduction

• Define the Problem
 – minimize use of terminology
 – use pictures/examples/props if possible

• Motivate the audience (give a “carrot”)
 – why is problem important?
 – how does it fit into larger picture?
 – what are applications?

• Discuss related work
 – table useful (mention authors and dates)

• Succinctly state contributions of your work

• Provide a road-map (outline) at the end of the introduction

The Body

• Abstract the key results
 – focus on a central, exciting concept

• Explain significance of your work

• Sketch methodology of key ideas
 – keep it high-level, emphasizing structure
 – use pictures/diagrams if possible
 – provide intuition (helpful when someone later reads your paper)
 – gloss over technical details

The Technicalities

• Take key result (or part of it) and go into some depth

• Guide audience through difficult ideas
 – give overview
 – state result
 – show an example
 – review

• It is this portion of your talk that typically grows when you give a 50 minute talk

Concept Class of One-Dimensional Patterns

• The instance space \(X_n \) consists of all configurations of \(n \) points on the real line

• A concept is set of all configs. from \(X_n \) within unit distance under Hausdorff metric of some “ideal” configuration of \(k \) points, where Hausdorff distance between configs. \(P \) and \(Q \) is

\[
H(P, Q) = \max \left(\max_{p \in P} \min_{q \in Q} d(p, q), \max_{q \in Q} \min_{p \in P} d(p, q) \right)
\]

and \(d(p, q) \) is distance between \(p \) and \(q \)

• If \(P \) is any configuration of points on \(\mathbb{R} \), then concept corresponding to \(P \) is

\[
C_P = \{ X \in X_n : H(P, X) \leq 1 \}
\]

• \(X \) is a positive example of \(C_P \) if \(X \in C_P \) and is a negative example otherwise

• Concept class of one-dimensional patterns is

\[
C_{k,n} = \{ C_P : P \text{ is a configuration of } \leq k \text{ points from } \mathbb{R} \}
\]
The Conclusion

- Provide a coherent synopsis
- Review key contributions and why they are important
- Discuss open problems/future work
- Indicate your talk is over (for example, “Thank you. Are there any questions?”)
- Be ready to answer questions
 - If there are points you glossed over that you expect the audience may be interested in, you may want to prepare some slides (just in case)

Slide Preparation—Do

- Decide what you want to say and say less!
- Allow an average of 1.5–2 minutes for each slide
- Use Repetition
 - “Tell them what you’re going to tell them. Tell them. Then tell them what you told them.”
 - Realize that 20% of your audience at any given time is thinking about something else
- Use pictures/diagrams whenever you can

Slide Prep—Do (cont’d)

- Use a large font (at least 20 pt)
- Make neat/orderly slides (computer-generated preferable)
- Use overlays or other “scaffolding”
- Use color/animation (in a meaningful way)
- You need not use full sentences
- Number your slides
- Write reminders, key phrases, etc. on paper

Slide Preparation—Don’t (cont’d)

- Show complex equations
- Show complex code (even pseudocode)
- Have a slide that introduces a point that you are unsure of (unless you want to give the audience a chance to attack you)
- Present last-minute results (they are probably wrong)
- Have slides that you are not using mixed in with the rest
- Write messy, write (or use a font that is) too small, misspell words

Slide Prep—Don’t

- Overload slides
- Intend to use too many slides
- Put some detail on the slide that you do not want to talk about
- Get bogged down in details
- Try to give a core dump

Slide Preparation—Don’t (cont’d)

- Check your spelling
- If you use a slide more than once, duplicate it
- PRACTICE!
 - give a practice for your colleagues, advisor, friends, pets, etc.
 - be ready to redo all your slides
 - practice again
 - be sure that all your material projects on the screen
 - make sure it does not take too much time (Beware PowerPoint’s timer!)
At the Talk—Do

- If you expect the audience to take notes, provide copies of your slides
 - Rarely the case at a conference or colloquium/job talk
- Dress appropriately—this shows respect for your audience
- Have eccentricity (but not too extreme)
 - Make it fun/easy for people to remember you
 - Extreme eccentricity is bad for younger people

At the Talk—Do (cont’d)

- Be EXCITED about your work!
- Remind; don’t assume
 - If you assume a standard result, provide the audience with a brief reminder

Talk with Sufficient Volume

- Make eye contact and ‘read’ the audience
 - Change victims
- Be with the audience
 - Walk toward and away from the people as well as left and right to break down implicit barrier

At the Talk—Don’t

- Talk too softly, mumble, or speak in a monotone voice, use “um”, “ah”, ...
- Read your slides
- Focus attention on the screen—you’ll end up talking to the screen vs. the audience
- Stand so that you block the projection
- Mention a detail/point you don’t want to talk about
- State a definition or other important concept without also printing it on the slide
- Darken the room (unless necessary to see) since it entices audience to sleep
- Babble on when you have nothing to say
- Run over time

Concluding Remarks

- Follow the guidelines provided here
- Take every opportunity you can to give talks (and thus get practice and feedback)
- Remember that the guidelines for structuring your talk must be adapted to each specific talk
- Preparing a good talk takes time; do not expect to throw it together at the last minute
- Practice for colleagues, etc. to get feedback
- AND: you will give better talks and reap the rewards that follow