Outline

- \(k \)-Nearest Neighbor
- Locally weighted regression
- Radial basis functions
- Case-based reasoning
- Lazy and eager learning

Nearest Neighbor

Key idea: just store all training examples \((x_i, f(x_i)) \)

Need some distance measure between instances (e.g. Euclidean distance, Hamming distance)

Nearest neighbor:
- Given query instance \(x_q \), first locate nearest training example \(x_n \), then estimate \(f(x_q) = f(x_n) \)

\(k \)-Nearest neighbor:
- Given \(x_q \), take vote among its \(k \) nearest neighbors (if discrete-valued target function)
 - Let \(k \) not be divisible by number of possible labels
- Take mean of \(f \) values of \(k \) nearest neighbors if \(f \) real-valued
 \[
 f(x_q) = \frac{\sum_{i=1}^{k} f(x_i)}{k}
 \]

When To Consider Nearest Neighbor

- Instances are in \(\mathbb{R}^n \) (or, one can define some distance measure between instances; can use kernels)
- Less than 20 attributes per instance
 - To avoid curse of dimensionality, where many irrelevant attributes causes distance to be large, but distance is small if only relevant attributes used
 - Also, large number of attributes increases classification complexity
- Lots of training data

Advantages:
- Robust to noise
- Stable
- Training is very fast
- Learn complex target functions
- Don’t lose information

Disadvantages:
- Slow at query time (active research area: fast indexing and accessing algorithms)
- Easily fooled by irrelevant attributes

Nearest Neighbor’s Behavior in the Limit

Consider \(p(x) \) defines probability that instance \(x \) will be labeled positive (versus negative)

Nearest neighbor (\(k = 1 \)):
- As number of training examples \(\rightarrow \infty \), approaches Gibbs Algorithm
 Recall Gibbs has at most twice the expected error of Bayes optimal

\(k \)-Nearest neighbor:
- As number of training examples \(\rightarrow \infty \) and \(k \) gets large, approaches Bayes optimal (best possible with given hyp. space and prior information)
 Bayes optimal: if \(p(x) > 0.5 \) then predict \(+ \), else \(- \)
Distance-Weighted k-NN

Might want weight nearer neighbors more heavily:

$$f(x_q) = \arg\max_{v \in V} \sum_{i=1}^{V} w_i \delta(v, f(x_i))$$

for discrete-valued ($\delta(v, f(x_i)) = 1$ if $v = f(x_i)$ and 0 otherwise), and

$$f(x_q) = \frac{\sum_{i=1}^{k} w_i f(x_i)}{\sum_{i=1}^{k} w_i}$$

for continuous

where

$$w_i \equiv \frac{1}{d(x_q, x_i)^2}$$

and $d(x_q, x_i)$ is distance between x_q and x_i.

Note now it makes sense to use all training examples instead of just k (Shepard's method), but then get increased time to classify instances.

Curse of Dimensionality

Imagine instances described by 20 attributes, but only 2 are relevant to target function.

Curse of dimensionality: nearest neighbor is easily misled by high-dimensional X.

One approach:

- Stretch jth axis by weight z_j, where z_1, \ldots, z_n chosen to minimize prediction error.
- Use cross-validation to automatically choose weights z_1, \ldots, z_n.
- Setting z_j to zero eliminates this dimension altogether.

see [Moore and Lee, 1994]

RBF Networks (cont'd)

$$f(x) = w_0 + \sum_{i=1}^{k} w_i K_u(d(x, x_i))$$

(Note no weights from input to hidden layer)

One common choice for $K_u(d(x, x_i))$ is

$$K_u(d(x, x_i)) = \exp\left(-\frac{1}{2\sigma_u^2} d^2(x, x_i)\right),$$

i.e. Gaussian with mean at x_u and variance σ_u^2, all features independent

[see bug on p. 239]

Locally Weighted Regression

Note k-NN forms local approximation to f for each query point x_q. Why not form an explicit approximation $f(x)$ for region surrounding x_q?

- Fit linear, quadratic, etc. function to k nearest neighbors.
- Produces “piecewise approximation” to f.
- Do this for each new query point x_q.

Several choices of error to minimize:

- Squared error over k nearest neighbors:

$$E_1(x_q) = \frac{1}{2} \sum_{z \in k \text{ nearest } x_i} (f(z) - f(x_q))^2$$

- Distance-weighted squared error over all nbrs:

$$E_2(x_q) = \frac{1}{2} \sum_{z \in D} (f(z) - f(x_q))^2 K(d(x_q, z))$$

(K is decreasing in its argument)
- Combine E_1 and E_2.

Training Radial Basis Function Networks

1. Choose number of kernel functions (hidden units)

- If $= \text{number training instances}$, can fit training data exactly by placing one center per instance.
- Using fewer => more efficient, less chance of overfitting.

2. Choose center ($= \text{mean for Gaussian}$) x_u of kernel function $K_u(d(x_u, x_i))$.

- Use all training instances if enough kernels avail.
- Use subset of training instances.
- Scatter uniformly throughout instance space.
- Can cluster data and assign one per cluster (helps answer step 1 also).
- Can use EM to find means of mixture of Gaussians.
- Can also use e.g. EM to find σ_u's (for Gaussian).

3. Hold kernels fixed and train weights to fit linear function (output layer), e.g. GD or EG.
Case-Based Reasoning and CADET

Can apply instance-based learning even when \(X \) much more complex

Need different “distance” metric

Case-Based Reasoning is instance-based learning where instances have symbolic logic descriptions

\[
\text{((user-complaint error53-on-shutdown)}
\text{ (cpu-model PowerPC) (operating-system Windows)}
\text{ (memory 48meg)}
\text{ (installed-apps Excel Netscape VirusScan)}
\text{ (disk 1gig)}
\text{ (likely-cause ???))}
\]

CADET: 75 stored examples of mechanical devices, e.g. water faucets

- Training instance: (qualitative function, mech. structure)
- New query: desired function
- Target value: mechanical structure for this function

Distance metric: match qualitative function descriptions

Lazy and Eager Learning

Lazy: Wait for query before generalizing

- \(k \)-NN, locally weighted regression, case-based reasoning

Eager: Generalize before seeing query

- Radial basis function networks, ID3, backpropagation, naive Bayes

Does it matter?

- Computation time for training and generalization
- Eager learner must create global approximation, lazy learner can create many local approximations
- If they use same \(H \), lazy can represent more complex functions (e.g. consider \(H = \text{linear functions} \) since it considers the query instance \(x_q \) before generalizing, i.e. lazy produces a new hypothesis for each new \(x_q \)