Similar to SSSP, but find shortest paths for all pairs of vertices

Given a weighted, directed graph \(G = (V, E) \) with weight function \(w : E \rightarrow \mathbb{R} \), find \(\delta(u, v) \) for all \((u, v) \in V \times V \)

One solution: Run an algorithm for SSSP \(|V|\) times, treating each vertex in \(V \) as a source

- If no negative weight edges, use Dijkstra’s algorithm, for time complexity of \(O(|V|^3 + |V||E|) = O(|V|^3) \) for array implementation, \(O(|V||E| \log |V|) \) if heap used
- If negative weight edges, use Bellman-Ford and get \(O(|V|^2|E|) \) time algorithm, which is \(O(|V|^4) \) if graph dense

Can we do better?

- Matrix multiplication-style algorithm: \(\Theta(|V|^3 \log |V|) \)
- Floyd-Warshall algorithm: \(\Theta(|V|^3) \)
- Both algorithms handle negative weight edges
Adjacency Matrix Representation

- Will use adjacency matrix representation
- Assume vertices are numbered: \(V = \{1, 2, \ldots, n\} \)
- Input to our algorithms will be \(n \times n \) matrix \(W \):

\[
 w_{ij} = \begin{cases}
 0 & \text{if } i = j \\
 \text{weight of edge } (i, j) & \text{if } (i, j) \in E \\
 \infty & \text{if } (i, j) \notin E
 \end{cases}
\]

- For now, assume negative weight cycles are absent
- In addition to distance matrices \(L \) and \(D \) produced by algorithms, can also build \emph{predecessor matrix} \(\Pi \), where \(\pi_{ij} = \) predecessor of \(j \) on a shortest path from \(i \) to \(j \), or \(\text{NIL} \) if \(i = j \) or no path exists
 - Well-defined due to optimal substructure property
Print-All-Pairs-Shortest-Path(Π, i, j)

1 if $i == j$ then
2 print i
3 else if $\pi_{ij} == \text{NIL}$ then
4 print "no path from " i " to " j " exists"
5 else
6 Print-All-Pairs-Shortest-Path(Π, i, π_{ij})
7 print j
8
Shortest Paths and Matrix Multiplication

Will maintain a series of matrices $L^{(m)} = (\ell^{(m)}_{ij})$, where $\ell^{(m)}_{ij} = \text{the minimum weight of any path from } i \text{ to } j \text{ that uses at most } m \text{ edges}$

- Special case: $\ell^{(0)}_{ij} = 0$ if $i = j$, ∞ otherwise

\[\ell^{(0)}_{13} = \infty, \quad \ell^{(1)}_{13} = 8, \quad \ell^{(2)}_{13} = 7\]
Recursive Solution

- Exploit optimal substructure property to get a recursive definition of $\ell_{ij}^{(m)}$

- To follow shortest path from i to j using at most m edges, either:
 1. Take shortest path from i to j using $\leq m - 1$ edges and stay put, or
 2. Take shortest path from i to some k using $\leq m - 1$ edges and traverse
 edge (k,j)

$$
\ell_{ij}^{(m)} = \min \left(\ell_{ij}^{(m-1)}, \min_{1 \leq k \leq n} \left(\ell_{ik}^{(m-1)} + w_{kj} \right) \right)
$$

- Since $w_{jj} = 0$ for all j, simplify to

$$
\ell_{ij}^{(m)} = \min_{1 \leq k \leq n} \left(\ell_{ik}^{(m-1)} + w_{kj} \right)
$$

- If no negative weight cycles, then since all shortest paths have $\leq n - 1$ edges,

$$
\delta(i,j) = \ell_{ij}^{(n-1)} = \ell_{ij}^{(n)} = \ell_{ij}^{(n+1)} = \cdots
$$
Bottom-Up Computation of L Matrices

- Start with weight matrix W and compute series of matrices $L^{(1)}, L^{(2)}, \ldots, L^{(n-1)}$
- Core of the algorithm is a routine to compute $L^{(m+1)}$ given $L^{(m)}$ and W
- Start with $L^{(1)} = W$, and iteratively compute new L matrices until we get $L^{(n-1)}$
 - Why is $L^{(1)} == W$?
- Can we detect negative-weight cycles with this algorithm? How?
Extend-Shortest-Paths(L, W)

1. n = number of rows of L // This is $L^{(m)}$
2. create new $n \times n$ matrix L' // This will be $L^{(m+1)}$
3. for $i = 1$ to n do
 4. for $j = 1$ to n do
 5. $\ell'_{ij} = \infty$
 6. for $k = 1$ to n do
 7. $\ell'_{ij} = \min(\ell'_{ij}, \ell_{ik} + w_{kj})$
 8. end
 9. end
10. end
11. return L'
Slow-All-Pairs-Shortest-Paths(W)

1. $n =$ number of rows of W
2. $L^{(1)} = W$
3. for $m = 2$ to $n - 1$ do
4. $L^{(m)} =$ Extend-Shortest-Paths($L^{(m-1)}$, W)
5. end
6. return $L^{(n-1)}$
Example

\[L^{(1)} = \begin{pmatrix} 0 & 3 & 8 & \infty & -4 \\ \infty & 0 & \infty & 1 & 7 \\ \infty & 4 & 0 & \infty & \infty \\ 2 & \infty & -5 & 0 & \infty \\ \infty & \infty & \infty & 6 & 0 \end{pmatrix} \quad L^{(2)} = \begin{pmatrix} 0 & 3 & 8 & 2 & -4 \\ 3 & 0 & -4 & 1 & 7 \\ \infty & 4 & 0 & 5 & 11 \\ 2 & -1 & -5 & 0 & -2 \\ 8 & \infty & 1 & 6 & 0 \end{pmatrix} \]

\[L^{(3)} = \begin{pmatrix} 0 & 3 & -3 & 2 & -4 \\ 3 & 0 & -4 & 1 & -1 \\ 7 & 4 & 0 & 5 & 11 \\ 2 & -1 & -5 & 0 & -2 \\ 8 & 5 & 1 & 6 & 0 \end{pmatrix} \quad L^{(4)} = \begin{pmatrix} 0 & 1 & -3 & 2 & -4 \\ 3 & 0 & -4 & 1 & -1 \\ 7 & 4 & 0 & 5 & 3 \\ 2 & -1 & -5 & 0 & -2 \\ 8 & 5 & 1 & 6 & 0 \end{pmatrix} \]
Improving Running Time

▶ What is time complexity of Slow-All-Pairs-Shortest-Paths?
▶ Can we do better?
▶ Note that if, in Extend-Shortest-Paths, we change + to multiplication and min to +, get matrix multiplication of L and W
▶ If we let \odot represent this “multiplication” operator, then Slow-All-Pairs-Shortest-Paths computes

$$L^{(2)} = L^{(1)} \odot W = W^2,$$
$$L^{(3)} = L^{(2)} \odot W = W^3,$$
$$\vdots$$
$$L^{(n-1)} = L^{(n-2)} \odot W = W^{n-1}$$

▶ Thus, we get $L^{(n-1)}$ by iteratively “multiplying” W via Extend-Shortest-Paths
Improving Running Time (2)

- But we don’t need every $L^{(m)}$; we only want $L^{(n-1)}$
- E.g. if we want to compute 7^{64}, we could multiply 7 by itself 64 times, or we could square it 6 times
- In our application, once we have a handle on $L^{((n-1)/2)}$, we can immediately get $L^{(n-1)}$ from one call to \texttt{Extend-Shortest-Paths($L^{((n-1)/2)}$, $L^{((n-1)/2)}$)}
- Of course, we can similarly get $L^{((n-1)/2)}$ from “squaring” $L^{((n-1)/4)}$, and so on
- Starting from the beginning, we initialize $L^{(1)} = W$, then compute $L^{(2)} = L^{(1)} \odot L^{(1)}$, $L^{(4)} = L^{(2)} \odot L^{(2)}$, $L^{(8)} = L^{(4)} \odot L^{(4)}$, and so on
- What happens if $n - 1$ is not a power of 2 and we “overshoot” it?
- How many steps of repeated squaring do we need to make?
- What is time complexity of this new algorithm?
Faster-All-Pairs-Shortest-Paths(W)

1 $n =$ number of rows of W
2 $L^{(1)} = W$
3 $m = 1$
4 while $m < n - 1$ do
5 $L^{(2m)} = \text{EXTEND-SHORTEST-PATHS}(L^{(m)}, L^{(m)})$
6 $m = 2m$
7 end
8 return $L^{(m)}$
Floyd-Warshall Algorithm

▶ Shaves the logarithmic factor off of the previous algorithm
▶ As with previous algorithm, start by assuming that there are no negative weight cycles; can detect negative weight cycles the same way as before
▶ Considers a different way to decompose shortest paths, based on the notion of an *intermediate vertex*
 ▶ If simple path $p = \langle v_1, v_2, v_3, \ldots, v_{\ell-1}, v_\ell \rangle$, then the set of intermediate vertices is $\{v_2, v_3, \ldots, v_{\ell-1}\}$
Structure of Shortest Path

- Again, let $V = \{1, \ldots, n\}$, and fix $i, j \in V$
- For some $1 \leq k \leq n$, consider set of vertices $V_k = \{1, \ldots, k\}$
- Now consider all paths from i to j whose intermediate vertices come from V_k and let p be a minimum-weight path from them
- Is $k \in p$?
 1. If not, then all intermediate vertices of p are in V_{k-1}, and a SP from i to j based on V_{k-1} is also a SP from i to j based on V_k
 2. If so, then we can decompose p into $i \xrightleftharpoons{p_1} k \xrightleftharpoons{p_2} j$, where p_1 and p_2 are each shortest paths based on V_{k-1}
Structure of Shortest Path (2)

all intermediate vertices in \(\{1, 2, \ldots, k - 1\} \) all intermediate vertices in \(\{1, 2, \ldots, k - 1\} \)

\[p \]: all intermediate vertices in \(\{1, 2, \ldots, k\} \)
Recursive Solution

▶ What does this mean?
▶ It means that a shortest path from i to j based on V_k is either going to be the same as that based on V_{k-1}, or it is going to go through k
▶ In the latter case, a shortest path from i to j based on V_k is going to be a shortest path from i to k based on V_{k-1}, followed by a shortest path from k to j based on V_{k-1}
▶ Let matrix $D^{(k)} = \left(d^{(k)}_{ij} \right)$, where $d^{(k)}_{ij} =$ weight of a shortest path from i to j based on V_k:

$$d^{(k)}_{ij} = \begin{cases} w_{ij} & \text{if } k = 0 \\ \min \left(d^{(k-1)}_{ij}, d^{(k-1)}_{ik} + d^{(k-1)}_{kj} \right) & \text{if } k \geq 1 \end{cases}$$

▶ Since all SPs are based on $V_n = V$, we get $d^{(n)}_{ij} = \delta(i, j)$ for all $i, j \in V$
Floyd-Warshall(W)

1. $n =$ number of rows of W
2. $D^{(0)} = W$
3. for $k = 1$ to n
 4. for $i = 1$ to n
 5. for $j = 1$ to n
 6. $d^{(k)}_{ij} = \min \left(d^{(k-1)}_{ij}, d^{(k-1)}_{ik} + d^{(k-1)}_{kj}\right)$
 7. end
 8. end
9. end
10. return $D^{(n)}$
Floyd-Warshall Example

Split into teams, and simulate Floyd-Warshall on this example:
Transitive Closure

- Used to determine whether paths exist between pairs of vertices
- Given directed, unweighted graph $G = (V, E)$ where $V = \{1, \ldots, n\}$, the transitive closure of G is $G^* = (V, E^*)$, where

$$E^* = \{(i, j) : \text{there is a path from } i \text{ to } j \text{ in } G\}$$

- How can we directly apply Floyd-Warshall to find E^*?
- Simpler way: Define matrix T similarly to D:

$$t_{ij}^{(0)} = \begin{cases} 0 & \text{if } i \neq j \text{ and } (i, j) \not\in E \\ 1 & \text{if } i = j \text{ or } (i, j) \in E \end{cases}$$

$$t_{ij}^{(k)} = t_{ij}^{(k-1)} \lor \left(t_{ik}^{(k-1)} \land t_{kj}^{(k-1)}\right)$$

- I.e., you can reach j from i using V_k if you can do so using V_{k-1} or if you can reach k from i and reach j from k, both using V_{k-1}
Transitive-Closure(G)

1. allocate and initialize $n \times n$ matrix $T^{(0)}$
2. for $k = 1$ to n do
 3. allocate $n \times n$ matrix $T^{(k)}$
 4. for $i = 1$ to n do
 5. for $j = 1$ to n do
 6. $t_{ij}^{(k)} = t_{ij}^{(k-1)} \lor t_{ik}^{(k-1)} \land t_{kj}^{(k-1)}$
 7. end
 8. end
9. end
10. return $T^{(n)}$
Example

\[
\begin{align*}
T^{(0)} &= \begin{pmatrix}
1 & 0 & 0 & 0 \\
0 & 1 & 1 & 1 \\
0 & 1 & 1 & 0 \\
1 & 0 & 1 & 1
\end{pmatrix}, &
T^{(1)} &= \begin{pmatrix}
1 & 0 & 0 & 0 \\
0 & 1 & 1 & 1 \\
0 & 1 & 1 & 0 \\
1 & 0 & 1 & 1
\end{pmatrix}, &
T^{(2)} &= \begin{pmatrix}
1 & 0 & 0 & 0 \\
0 & 1 & 1 & 1 \\
0 & 1 & 1 & 1 \\
1 & 0 & 1 & 1
\end{pmatrix}, \\
T^{(3)} &= \begin{pmatrix}
1 & 0 & 0 & 0 \\
0 & 1 & 1 & 1 \\
0 & 1 & 1 & 1 \\
1 & 1 & 1 & 1
\end{pmatrix}, &
T^{(4)} &= \begin{pmatrix}
1 & 0 & 0 & 0 \\
1 & 1 & 1 & 1 \\
1 & 1 & 1 & 1 \\
1 & 1 & 1 & 1
\end{pmatrix}
\end{align*}
\]
Like Floyd-Warshall, time complexity is officially $\Theta(n^3)$.

However, use of 0s and 1s exclusively allows implementations to use bitwise operations to speed things up significantly, processing bits in batch, a word at a time.

Also saves space.

Another space saver: Can update the T matrix (and F-W’s D matrix) in place rather than allocating a new matrix for each step (Exercise 25.2-4).