Introduction

- Similar to SSSP, but find shortest paths for all pairs of vertices.
- Given a weighted, directed graph \(G = (V, E) \) with weight function \(w : E \rightarrow \mathbb{R} \), find \(d(u, v) \) for all \((u, v) \in V \times V \).
- One solution: Run an algorithm for SSSP \(|V|\) times, treating each vertex in \(V \) as a source.
 - If no negative weight edges, use Dijkstra’s algorithm, for time complexity \(O(|V|^2 + |V||E|) \) or \(O(|V|^3) \) for array implementation, \(O(|V||E|) \) if heap used.
 - If negative weight edges, use Bellman-Ford and get \(O(|V|^2|E|) \) time algorithm, which is \(O(|V|^3) \) if graph dense.
- Can we do better?
 - Matrix multiplication-style algorithm: \(O(|V|^3) \log|V|) \)
 - Floyd-Warshall algorithm: \(\Theta(|V|^3) \)
 - Both algorithms handle negative weight edges.

Adjacency Matrix Representation

- Will use adjacency matrix representation.
- Assume vertices are numbered: \(V = \{1, 2, \ldots, n\} \).
- Input to our algorithms will be \(n \times n \) matrix \(W \):
 \[
 w_{ij} = \begin{cases}
 0 & \text{if } i = j \\
 \text{weight of edge } (i, j) & \text{if } (i, j) \in E \\
 \infty & \text{if } (i, j) \notin E
 \end{cases}
 \]
- For now, assume negative weight cycles are absent.
- In addition to distance matrices \(L \) and \(D \) produced by algorithms, can also build predecessor matrix \(P \), where \(p_{ij} \) = predecessor of \(j \) on a shortest path from \(i \) to \(j \), or \(\text{NIL} \) if \(i = j \) or no path exists.
 - Well-defined due to optimal substructure property.

Shortest Paths and Matrix Multiplication

- Will maintain a series of matrices \(L^{(m)} = (\ell_{ij}^{(m)}) \), where \(\ell_{ij}^{(m)} \) = the minimum weight of any path from \(i \) to \(j \) that uses at most \(m \) edges.
 - Special case: \(\ell_{ij}^{(0)} = 0 \) if \(i = j \), \(\infty \) otherwise.

 \[
 \ell_{11}^{(0)} = \infty, \quad \ell_{13}^{(1)} = 8, \quad \ell_{13}^{(2)} = 7
 \]

Recursive Solution

- Exploit optimal substructure property to get a recursive definition of \(\ell_{ij}^{(m)} \).
- To follow shortest path from \(i \) to \(j \) using at most \(m \) edges, either:
 1. Take shortest path from \(i \) to \(j \) using \(\leq m-1 \) edges and stay put.
 2. Take shortest path from \(i \) to some \(k \) using \(\leq m-1 \) edges and traverse edge \((k, j)\)
 \[
 \ell_{ij}^{(m)} = \min \left\{ \ell_{ij}^{(m-1)}, \min_{1 \leq k \leq n} \left(\ell_{ik}^{(m-1)} + w_{kj} \right) \right\}
 \]
- Since \(w_{ij} = 0 \) for all \(j \), simplify to
 \[
 \ell_{ij}^{(m)} = \min_{1 \leq k \leq n} \left(\ell_{ik}^{(m-1)} + w_{kj} \right)
 \]
- If no negative weight cycles, then since all shortest paths have \(\leq n-1 \) edges,
 \[
 \delta(i, j) = \ell_{ij}^{(n-1)} = \ell_{ij}^{(n)} = \ell_{ij}^{(n+1)} = \ldots
 \]

Print-All-Pairs-Shortest-Path(\(P \), \(i \), \(j \))

```
1 if \( i = j \) then
2 print \( i \)
3 else if \( \text{NIL} \) then
4 print “no path from “ \( i \) “ to “ \( j \) “ exists”
5 else
6 PRINT-ALL-PAIRS-SHORTEST-PATH(\( P \), \( i \), \( j \))
7 print \( j \)
```

Design and Analysis of Algorithms (Adapted from Vinodchandran N. Variyam)

- Stephen Scott
 - Computer Science & Engineering 423/823
 - Lecture 06 — All-Pairs Shortest Paths (Chapter 25)
 - sscott@cse.unl.edu

Lecture 06 — All-Pairs Shortest Paths (Chapter 25)

\[L = \begin{pmatrix}
1 & 2 & 3 \\
4 & 5 & 2 \\
1 & 8 & 2
\end{pmatrix} \]

\[D = \begin{pmatrix}
0 & 2 & 7 \\
9 & 0 & 6 \\
8 & 10 & 0
\end{pmatrix} \]

\[P = \begin{pmatrix}
\text{NIL} & 2 & 7 \\
5 & \text{NIL} & 2 \\
4 & 3 & \text{NIL}
\end{pmatrix} \]
Bottum-Up Computation of \(L \) Matrices

- Start with weight matrix \(W \) and compute series of matrices \(L^{(1)}, L^{(2)}, \ldots, L^{(n-1)} \).
- Core of the algorithm is a routine to compute \(L^{(m+1)} \) given \(L^{(m)} \) and \(W \).
- Start with \(L^{(1)} = W \), and iteratively compute new \(L \) matrices until we get \(L^{(n-1)} \).
- Why is \(L^{(1)} = W \)?
- Can we detect negative-weight cycles with this algorithm? How?

Extend-Shortest-Paths(\(L, W \))

- \(n = \) number of rows of \(L \)
- create new \(n \times n \) matrix \(L' \)
- for \(i = 1 \) to \(n \) do
 - for \(j = 1 \) to \(n \) do
 - \(L'_{ij} = \infty \)
 - for \(k = 1 \) to \(n \) do
 - \(L'_{ij} = \min(L'_{ij}, L'_{ik} + w_{kj}) \)
 - end
 - end
- return \(L' \)

Slow-All-Pairs-Shortest-Paths(\(W \))

1. \(n = \) number of rows of \(W \)
2. \(L^{(1)} = W \)
3. for \(m = 2 \) to \(n - 1 \) do
 - \(L^{(m)} = \) Extend-Shortest-Paths(\(L^{(m-1)}, W \))
4. return \(L^{(n-1)} \)

Example

Improving Running Time

- What is time complexity of Slow-All-Pairs-Shortest-Paths?
- Can we do better?
- Note that if, in Extend-Shortest-Paths, we change + to multiplication and min to -, get matrix multiplication of \(L \) and \(W \).
- If we let \(\odot \) represent this "multiplication" operator, then Slow-All-Pairs-Shortest-Paths computes
 \[
 L^{(2)} = L^{(1)} \odot W = W^{(2)} ,
 L^{(3)} = L^{(2)} \odot W = W^{(3)} ,
 \ldots
 L^{(n-1)} = L^{(n-2)} \odot W = W^{(n-1)}
 \]
- Thus, we get \(L^{(n-1)} \) by iteratively "multiplying" \(W \) via Extend-Shortest-Paths.

Improving Running Time (2)

- But we don’t need every \(L^{(m)} \); we only want \(L^{(n-1)} \).
- E.g. if we want to compute \(7^{64} \), we could multiply 7 by itself 64 times, or we could square it 6 times.
- In our application, once we have a handle on \(L^{(n-1)/2} \), we can immediately get \(L^{(n-1)} \) from one call to Extend-Shortest-Paths(\(L^{(n-1)/2}, L^{(n-1)/2} \)).
- Of course, we can similarly get \(L^{(n-1)/2} \) from "squaring" \(L^{(n-1)/4} \), and so on.
- Starting from the beginning, we initialize \(L^{(1)} = W \), then compute \(L^{(2)} = L^{(1)} \odot L^{(1)} \), \(L^{(4)} = L^{(2)} \odot L^{(2)} \), \(L^{(8)} = L^{(4)} \odot L^{(4)} \), and so on.
- What happens if \(n - 1 \) is not a power of 2 and we “overshoot” it?
- How many steps of repeated squaring do we need to make?
- What is time complexity of this new algorithm?
Faster-All-Pairs-Shortest-Paths(W)

Floyd-Warshall Algorithm

- Shaves the logarithmic factor off of the previous algorithm
- As with previous algorithm, start by assuming that there are no negative weight cycles; can detect negative weight cycles the same way as before
- Considers a different way to decompose shortest paths, based on the notion of an intermediate vertex
 - If simple path $p = (v_1, v_2, v_3, \ldots, v_{i-1}, v_i)$, then the set of intermediate vertices is $\{v_2, v_3, \ldots, v_{i-1}\}$

Structure of Shortest Path

- Again, let $V = \{1, \ldots, n\}$, and fix $i, j \in V$
- For some $1 \leq k \leq n$, consider set of vertices $V_k = \{1, \ldots, k\}$
- Now consider all paths from i to j whose intermediate vertices come from V_k and let p be a minimum-weight path from them
- Is $k \in p$?
 1. If not, then all intermediate vertices of p are in V_{k-1}, and a SP from i to j based on V_{k-1} is also a SP from i to j based on V_k
 2. If so, then we can decompose p into $i \overset{k}{\rightarrow} k \overset{p_2}{\rightarrow} j$, where p_1 and p_2 are each shortest paths based on V_{k-1}

Structure of Shortest Path (2)

Recursive Solution

- What does this mean?
- It means that a shortest path from i to j based on V_k is either going to be the same as that based on V_{k-1}, or it is going to go through k
- In the latter case, a shortest path from i to j based on V_k is going to be a shortest path from i to k based on V_{k-1}, followed by a shortest path from k to j based on V_{k-1}
- Let matrix $D^{(k)} = (d_j^{(k)}_i)$, where $d_j^{(k)}_i =$ weight of a shortest path from i to j based on V_k:

 $$d_j^{(k)}_i = \begin{cases}
 w_{ij} & \text{if } k = 0 \\
 \min(d_j^{(k-1)}_i, d_k^{(k-1)} + d_j^{(k-1)}_k) & \text{if } k \geq 1
 \end{cases}$$

- Since all SPs are based on $V_n = V$, we get $d_j^{(n)}_i = \delta(i, j)$ for all $i, j \in V$
Floyd-Warshall Example

Split into teams, and simulate Floyd-Warshall on this example:

Transitive Closure

- Used to determine whether paths exist between pairs of vertices
- Given directed, unweighted graph \(G = (V, E) \) where \(V = \{1, \ldots, n\} \), the transitive closure of \(G \) is \(G^* = (V, E^*) \), where

 \[E^* = \{(i,j) : \text{there is a path from } i \text{ to } j \text{ in } G \} \]

- How can we directly apply Floyd-Warshall to find \(E^* \)?
 - Simpler way: Define matrix \(T \) similarly to \(D \):

 \[
 t^{(0)}_{ij} = \begin{cases}
 0 & \text{if } i \neq j \text{ and } (i,j) \notin E \\
 1 & \text{if } i = j \text{ or } (i,j) \in E
 \end{cases}
 \]

 \[
 t^{(k)}_{ij} = t^{(k-1)}_{ij} \lor (t^{(k-1)}_{ik} \land t^{(k-1)}_{kj})
 \]

 - i.e., you can reach \(j \) from \(i \) using \(V_k \) if you can do so using \(V_{k-1} \) or if you can reach \(k \) from \(i \) and reach \(j \) from \(k \), both using \(V_{k-1} \)

Transitive-Closure(G)

Example

<table>
<thead>
<tr>
<th>allocate and initializes (n \times n) matrix (T^{(0)})</th>
</tr>
</thead>
<tbody>
<tr>
<td>for (k) = 1 to (n) do</td>
</tr>
<tr>
<td>allocate (n \times n) matrix (T^{(k)})</td>
</tr>
<tr>
<td>for (i) = 1 to (n) do</td>
</tr>
<tr>
<td>for (j) = 1 to (n) do</td>
</tr>
<tr>
<td>(t^{(k)}{ij} = t^{(k-1)}{ij} \lor (t^{(k-1)}{ik} \land t^{(k-1)}{kj}))</td>
</tr>
<tr>
<td>end</td>
</tr>
<tr>
<td>end</td>
</tr>
<tr>
<td>return (T^{(n)})</td>
</tr>
</tbody>
</table>

Analysis

- Like Floyd-Warshall, time complexity is officially \(\Theta(n^3) \)
- However, use of 0s and 1s exclusively allows implementations to use bitwise operations to speed things up significantly, processing bits in batch, a word at a time
- Also saves space
- Another space saver: Can update the \(T \) matrix (and F-W’s \(D \) matrix) in place rather than allocating a new matrix for each step (Exercise 25.2-4)