Introduction

- Given a weighted, directed graph $G = (V, E)$ with weight function $w : E \rightarrow \mathbb{R}$
- The weight of path $p = (v_0, v_1, \ldots, v_k)$ is the sum of the weights of its edges:
 \[w(p) = \sum_{i=1}^{k} w(v_{i-1}, v_i) \]
- Then the shortest-path weight from u to v is:
 \[\delta(u, v) = \min\{ w(p) : u \xrightarrow{p} v \} \] if there is a path from u to v
 \[\infty \] otherwise
- A shortest path from u to v is any path p with weight $w(p) = \delta(u, v)$
- Applications: Network routing, driving directions

Types of Shortest Path Problems

Given G as described earlier,

- **Single-Source Shortest Paths**: Find shortest paths from source node s to every other node
- **Single-Destination Shortest Paths**: Find shortest paths from every node to destination t
 - Can solve with SSSP solution. How?
- **Single-Pair Shortest Path**: Find shortest path from specific node u to specific node v
 - Can solve via SSSP; no asymptotically faster algorithm known
- **All-Pairs Shortest Paths**: Find shortest paths between every pair of nodes
 - Can solve via repeated application of SSSP, but can do better

Optimal Substructure of a Shortest Path

- The shortest paths problem has the optimal substructure property: If $p = (v_i, v_{i+1}, \ldots, v_k)$ is a SP from v_i to v_k, then for $0 \leq i \leq j \leq k$, $p_j^i = (v_i, v_{i+1}, \ldots, v_j)$ is a SP from v_i to v_j.

 Proof: Let $p = v_0 \xrightarrow{p_0} v_1 \xrightarrow{p_1} \cdots \xrightarrow{p_{k-1}} v_k$ with weight $w(p) = w(p_0) + w(p_1) + \cdots + w(p_{k-1})$. If there exists a path p_j^i from v_i to v_j with $w(p_j^i) < w(p_i)$, then p is not a SP since $v_0 \xrightarrow{p_0} v_i \xrightarrow{p_j^i} v_j \xrightarrow{p_{k-1}} v_k$ has less weight than p
- This property helps us to use a greedy algorithm for this problem

Negative-Weight Edges (1)

- What happens if the graph G has edges with negative weights?
- Dijkstra’s algorithm cannot handle this, Bellman-Ford can, under the right circumstances (which circumstances?)

Negative-Weight Edges (2)
Cycles

- What kinds of cycles might appear in a shortest path?
 - Negative-weight cycle
 - Zero-weight cycle
 - Positive-weight cycle

Relaxation

- Given weighted graph $G = (V, E)$ with source node $s \in V$ and other node $v \in V$ ($v \neq s$), we'll maintain $d[v]$, which is upper bound on $\delta(s, v)$.
- Relaxation of an edge (u, v) is the process of testing whether we can decrease $d[v]$, yielding a tighter upper bound.

Initialize-Single-Source(G, s)

```
for each vertex $v \in V$ do
  1. $d[v] = \infty$
  2. $\pi[v] = \text{NIL}$
end

$d[s] = 0$
```

How is the invariant maintained?

Relax(u, v, w)

```
if $d[v] > d[u] + w(u, v)$ then
  1. $d[v] = d[u] + w(u, v)$
  2. $\pi[v] = u$
end
```

How do we know that we can tighten $d[v]$ like this?

Relaxation Example

```
\begin{align*}
\text{(a)} & \quad 5 & \quad 2 & \quad 6 & \quad 8 \\
\text{RELAX}(u, v, w) \\
\text{(b)} & \quad 5 & \quad 2 & \quad 6 \\
\end{align*}
```

Numbers in nodes are values of d

Bellman-Ford Algorithm

- Greedy algorithm
- Works with negative-weight edges and detects if there is a negative-weight cycle
- Makes $|V| - 1$ passes over all edges, relaxing each edge during each pass
Bellman-Ford Algorithm Example (1)

- Initialize-Single-Source(G, s)
- for i = 1 to |V| - 1 do
 - for each edge (u, v) ∈ E do
 - Relax(u, v)
 - end
- end
- for each edge (u, v) ∈ E do
 - if d[v] > d[u] + w(u, v) then
 - return false // G has a negative-wt cycle
 - end
- end
- return true // G has no neg-wt cycle reachable from s

Correctness of Bellman-Ford Algorithm

- Assume no negative-weight cycles
- Since no cycles appear in SPs, every SP has at most |V| - 1 edges
- Then define sets $S_0, S_1, \ldots, S_{|V| - 1}$:
 - $S_k = \{ v \in V : \exists s \in S_k \text{ s.t. } d[s, v] = w(p) \text{ and } |p| \leq k \}$
- Loop invariant: After i'th iteration of outer relaxation loop (Line 1), for all $v \in S_i$, we have $d[v] = \delta(s, v)$
 - Can prove via induction
- Implies that, after |V| - 1 iterations, $d[v] = \delta(s, v)$ for all $v \in V = S_{|V| - 1}$

Time Complexity of Bellman-Ford Algorithm

- Initialize-Single-Source takes how much time?
- Relax takes how much time?
- What is time complexity of relaxation steps (nested loops)?
- What is time complexity of steps to check for negative-weight cycles?
- What is total time complexity?

Correctness of Bellman-Ford Algorithm (2)

- Let $c = (v_0, v_1, \ldots, v_k = v_0)$ be neg-wt cycle reachable from s:
 - $\sum_{i=1}^{k} w(v_{i-1}, v_i) < 0$
- If algorithm incorrectly returns true, then (due to Line 8) for all nodes in the cycle ($i = 1, 2, \ldots, k$),
 - $d[v_i] \leq d[v_{i-1}] + w(v_{i-1}, v_i)$
- By summing, we get
 - $\sum_{i=1}^{k} d[v_i] \leq \sum_{i=1}^{k} d[v_{i-1}] + \sum_{i=1}^{k} w(v_{i-1}, v_i)$
- Since $v_0 = v_k$, $\sum_{i=1}^{k} d[v_i] = \sum_{i=1}^{k} d[v_{i-1}]$
- This implies that $0 \leq \sum_{i=1}^{k} w(v_{i-1}, v_i)$, a contradiction
SSSPs in Directed Acyclic Graphs

Why did Bellman-Ford have to run \(|V| - 1\) iterations of edge relaxations?
- To confirm that SP information fully propagated to all nodes

What if we knew that, after we relaxed an edge just once, we would be completely done with it?
- Can do this if \(G\) a dag and we relax edges in correct order (what order?)

Dag-Shortest-Paths\((G, w, s)\)

1. topologically sort the vertices of \(G\)
2. Initialize-Single-Source\((G, s)\)
3. for each vertex \(u \in V\), taken in topo sorted order
 do
 4. for each \(v \in Adj[u]\)
 5. \(\text{Relax}(u, v, w)\)
 6. end
 7. end

SSSP dag Example (1)

SSSP dag Example (1a)

SSSP dag Example (1b)

SSSP dag Example (2)

SSSP dag Example (2a)

SSSP dag Example (2b)

Time Complexity of SSSP in dag

- Topological sort takes how much time?
- Initialize-Single-Source takes how much time?
- How many calls to Relax?
- What is total time complexity?

Dijkstra’s Algorithm

- Faster than Bellman-Ford
- Requires all edge weights to be nonnegative
- Maintains set \(S\) of vertices whose final shortest path weights from \(s\) have been determined
 - Repeatedly select \(u \in V \setminus S\) with minimum SP estimate, add \(u\) to \(S\), and relax all edges leaving \(u\)
- Uses min-priority queue
Dijkstra(G, w, s)

```
1 Initialize-Single-Source($G, s$)
2 $S = \emptyset$
3 $Q = V$
4 while $Q \neq \emptyset$ do
5 u = Extract-Min($Q$)
6 $S = S \cup \{u\}$
7 for each $v \in Adj[u]$ do
8 Relax($u, v, w$)
9 end
10 end
```

Dijkstra’s Algorithm Example (1)

Dijkstra’s Algorithm Example (2)

Time Complexity of Dijkstra’s Algorithm

- Using array to implement priority queue,
 - Initialize-Single-Source takes how much time?
 - What is time complexity to create Q?
 - How many calls to Extract-Min?
 - What is time complexity of Extract-Min?
 - How many calls to Relax?
 - What is time complexity of Relax?
 - What is total time complexity?
- Using heap to implement priority queue, what are the answers to the above questions?
- When might you choose one queue implementation over another?

Correctness of Dijkstra’s Algorithm

- **Invariant**: At the start of each iteration of the while loop, $d[v] = \delta(s, v)$ for all $v \in S$
 - Prove by contradiction (p. 660)
 - Since all vertices eventually end up in S, get correctness of the algorithm

Linear Programming

- Given an $m \times n$ matrix A and a size-m vector b and a size-n vector c, find a vector x of n elements that maximizes $\sum_{i=1}^{n} c_i x_i$ subject to $Ax \leq b$
- E.g. $c = [2, -3]$, $A = \begin{bmatrix} 1 & 1 \\ -1 & 0 \end{bmatrix}$, $b = \begin{bmatrix} 22 \\ -8 \end{bmatrix}$ implies:
 maximize $2x_1 - 3x_2$ subject to
 \[
 \begin{align*}
 x_1 + x_2 & \leq 22 \\
 x_1 - 2x_2 & \leq 4 \\
 x_1 & \geq 8
 \end{align*}
 \]
- Solution: $x_1 = 16$, $x_2 = 6$
Difference Constraints and Feasibility

- **Decision version of this problem:** No objective function to maximize; simply want to know if there exists a feasible solution, i.e. an x that satisfies $Ax \leq b$.
- **Special case is when each row of A has exactly one 1 and one -1,** resulting in a set of difference constraints of the form $x_j - x_i \leq b_k$.
- **Applications:** Any application in which a certain amount of time must pass between events (x variables represent times of events).

Diff. Constraints and Feasibility (2)

Applications: Any application in which a certain amount of time must pass between events (x variables represent times of events).

$$Ax = b$$

Any application in which a certain amount of time must pass between events (x variables represent times of events).

$$Ax = b$$

Constraint Graphs

- **Can represent instances of this problem in a constraint graph $G = (V, E)$**
- Define a vertex for each variable, plus one more: If variables are x_1, \ldots, x_n, get $V = \{v_0, v_1, \ldots, v_n\}$.
- **Add a directed edge for each constraint, plus an edge from v_0 to each other vertex:**

$$E = \{(v_i, v_j) : x_j - x_i \leq b_k \text{ is a constraint} \} \cup \{(v_0, v_1), (v_0, v_2), \ldots, (v_0, v_n)\}$$

- **Weight of edge (v_i, v_j) is b_k, weight of (v_0, v_i) is 0 for all $\ell \neq 0$**

Diff. Constraints and Feasibility (3)

Is there a setting for x_1, \ldots, x_5 satisfying:

- $x_1 - x_2 \leq 0$
- $x_1 - x_5 \leq -1$
- $x_2 - x_5 \leq 1$
- $x_3 - x_1 \leq 5$
- $x_4 - x_1 \leq 4$
- $x_4 - x_3 \leq -1$
- $x_5 - x_3 \leq -3$
- $x_5 - x_4 \leq -3$

One solution: $x = (-5, -3, 0, -1, -4)$

Solving Feasibility with Bellman-Ford

- **Theorem:** Let G be the constraint graph for a system of difference constraints. If G has a negative-weight cycle, then there is no feasible solution to the system. If G has no negative-weight cycle, then a feasible solution is

$$x = [\delta(v_0, v_1), \delta(v_0, v_2), \ldots, \delta(v_0, v_n)]$$

- For any edge $(v_i, v_j) \in E$, $\delta(v_i, v_j) \leq \delta(v_0, v_i) + w(v_i, v_j)$ implies that a negative-weight cycle indicates no solution.

- Can solve this with Bellman-Ford in time $O(n^2 + nm)$.