Introduction

- Given a connected, undirected graph $G = (V, E)$, a **spanning tree** is an acyclic subset $T \subseteq E$ that connects all vertices in V
 - T acyclic \Rightarrow a tree
 - T connects all vertices \Rightarrow spans G
- If G is weighted, then T’s weight is $w(T) = \sum_{(u,v) \in T} w(u, v)$
- A **minimum weight spanning tree** (or **minimum spanning tree**, or MST) is a spanning tree of minimum weight
 - Not necessarily unique
- Applications: anything where one needs to connect all nodes with minimum cost, e.g. wires on a circuit board or fiber cable in a network
MST Example

A MST example graph with nodes labeled from 'a' to 'e' and edges labeled with weights.
Kruskal’s Algorithm

- Greedy algorithm: Make the locally best choice at each step
- Starts by declaring each vertex to be its own tree (so all nodes together make a forest)
- Iteratively identify the minimum-weight edge \((u, v)\) that connects two distinct trees, and add it to the MST \(T\), merging \(u\)’s tree with \(v\)’s tree
MST-Kruskal(G, w)

1. $A = \emptyset$
2. for each vertex $v \in V$ do
 3. \hspace{1em} Make-Set(v)
3. end
4. sort edges in E into nondecreasing order by weight w
5. for each edge $(u, v) \in E$, taken in nondecreasing order do
 6. \hspace{1em} if Find-Set(u) \neq Find-Set(v) then
 7. \hspace{2em} $A = A \cup \{(u, v)\}$
 8. \hspace{2em} Union(u, v)
6. end
7. return A
More on Kruskal’s Algorithm

- **Find-Set**(u) returns a representative element from the set (tree) that contains u
- **Union**(u, v) combines u’s tree to v’s tree
- These functions are based on the **disjoint-set data structure**
- More on this later
Example (1)
Example (2)
Example (3)
Disjoint-Set Data Structure

- Given a universe \(U = \{x_1, \ldots, x_n\} \) of elements (e.g. the vertices in a graph \(G \)), a DSDS maintains a collection \(S = \{S_1, \ldots, S_k\} \) of disjoint sets of elements such that
 - Each element \(x_i \) is in exactly one set \(S_j \)
 - No set \(S_j \) is empty
- Membership in sets is dynamic (changes as program progresses)
- Each set \(S \in S \) has a **representative element** \(x \in S \)
- Chapter 21
Disjoint-Set Data Structure (2)

- DSDS implementations support the following functions:
 - \texttt{Make-Set}(x) takes element x and creates new set \{x\}; returns pointer to x as set’s representative
 - \texttt{Union}(x, y) takes x’s set (\(S_x\)) and y’s set (\(S_y\), assumed disjoint from \(S_x\)), merges them, destroys \(S_x\) and \(S_y\), and returns representative for new set from \(S_x \cup S_y\)
 - \texttt{Find-Set}(x) returns a pointer to the representative of the unique set that contains x

- Section 21.3: can perform \(d\) D-S operations on \(e\) elements in time \(O(d \alpha(e))\), where \(\alpha(e) = o(lg^* e) = o(log e)\) is very slowly growing:

\[
\alpha(e) = \begin{cases}
0 & \text{if } 0 \leq e \leq 2 \\
1 & \text{if } e = 3 \\
2 & \text{if } 4 \leq e \leq 7 \\
3 & \text{if } 8 \leq e \leq 2047 \\
4 & \text{if } 2048 \leq e \leq 16^{512}
\end{cases}
\]
Analysis of Kruskal’s Algorithm

- Sorting edges takes time $O(|E| \log |E|)$
- Number of disjoint-set operations is $O(|V| + |E|)$ on $O(|V|)$ elements, which can be done in time $O((|V| + |E|) \alpha(|V|)) = O(|E| \alpha(|V|))$ since $|E| \geq |V| - 1$
- Since $\alpha(|V|) = o(\log |V|) = O(\log |E|)$, we get total time of $O(|E| \log |E|) = O(|E| \log |V|)$ since $\log |E| = O(\log |V|)$
Prim’s Algorithm

- Greedy algorithm, like Kruskal’s
- In contrast to Kruskal’s, Prim’s algorithm maintains a single tree rather than a forest
- Starts with an arbitrary tree root r
- Repeatedly finds a minimum-weight edge that is incident to a node not yet in tree
MST-Prim(G, w, r)

1. $A = \emptyset$
2. for each vertex $v \in V$ do
3. $key[v] = \infty$
4. $\pi[v] = \text{NIL}$
end
5. $key[r] = 0$
6. $Q = V$
7. while $Q \neq \emptyset$ do
8. $u = \text{Extract-Min}(Q)$
9. for each $v \in \text{Adj}[u]$ do
10. if $v \in Q$ and $w(u, v) < key[v]$ then
11. $\pi[v] = u$
12. $key[v] = w(u, v)$
13. end
end
16. end
More on Prim’s Algorithm

- $key[v]$ is the weight of the minimum weight edge from v to any node already in MST
- **Extract-Min** uses a **minimum heap** (minimum priority queue) data structure
 - Binary tree where the key at each node is \leq keys of its children
 - Thus minimum value always at top
 - Any subtree is also a heap
 - Height of tree is $\lfloor \log n \rfloor$
 - Can build heap on n elements in $O(n)$ time
 - After returning the minimum, can filter new minimum to top in time $O(\log n)$
- Based on Chapter 6
Example (1)
Example (2)
Analysis of Prim’s Algorithm

- **Invariant:** Prior to each iteration of the while loop:
 1. Nodes already in MST are exactly those in $V \setminus Q$
 2. For all vertices $v \in Q$, if $\pi[v] \neq \text{NIL}$, then $key[v] < \infty$ and $key[v]$ is the weight of the lightest edge that connects v to a node already in the tree

- **Time complexity:**
 - Building heap takes time $O(|V|)$
 - Make $|V|$ calls to EXTRACT-MIN, each taking time $O(\log |V|)$
 - For loop iterates $O(|E|)$ times
 - In for loop, need constant time to check for queue membership and $O(\log |V|)$ time for decreasing v’s key and updating heap
 - Yields total time of $O(|V|\log |V| + |E|\log |V|) = O(|E|\log |V|)$
 - Can decrease total time to $O(|E| + |V|\log |V|)$ using Fibonacci heaps