Introduction

> Given a connected, undirected graph $G = (V, E)$, a spanning tree is an
> acyclic subset $T \subseteq E$ that connects all vertices in V
> T acyclic \Rightarrow a tree
> T connects all vertices \Rightarrow spans G
> If G is weighted, then T’s weight is $w(T) = \sum_{(u,v) \in T} w(u,v)$
> A minimum weight spanning tree (or minimum spanning tree, or
> MST) is a spanning tree of minimum weight
> Not necessarily unique
> Applications: anything where one needs to connect all nodes with
> minimum cost, e.g. wires on a circuit board or fiber cable in a network

MST Example

Kruskal’s Algorithm

> Greedy algorithm: Make the locally best choice at each step
> Starts by declaring each vertex to be its own tree (so all nodes together
> make a forest)
> Iteratively identify the minimum-weight edge (u, v) that connects two
> distinct trees, and add it to the MST T, merging u’s tree with v’s tree

MST-Kruskal(G, w)

```plaintext
A = \emptyset
for each vertex $v \in V$ do
    Make-Set($v$)
end
sort edges in $E$ into nondecreasing order by weight $w$
for each edge $(u, v) \in E$, taken in nondecreasing order do
    if Find-Set($u$) $\neq$ Find-Set($v$) then
        $A = A \cup \{(u, v)\}$
        Union($u$, $v$)
    end
end
return $A$
```

More on Kruskal’s Algorithm

> Find-Set(u) returns a representative element from the set (tree) that
> contains u
> Union(u, v) combines u’s tree to v’s tree
> These functions are based on the disjoint-set data structure
> More on this later
Disjoint-Set Data Structure

Given a universe \(U = \{x_1, \ldots, x_n\} \) of elements (e.g., the vertices in a graph \(G \)), a DSDS maintains a collection \(S = \{S_1, \ldots, S_k\} \) of disjoint sets of elements such that

- Each element \(x_i \) is in exactly one set \(S_j \)
- No set \(S_j \) is empty
- Membership in sets is dynamic (changes as program progresses)
- Each set \(S \in S \) has a representative element \(x \in S \)

Chapter 21

Disjoint-Set Data Structure (2)

- DS implementations support the following functions:
 - \(\text{MAKE-SET}(x) \) takes element \(x \) and creates new set \(\{x\} \); returns pointer to \(x \) as set’s representative
 - \(\text{UNION}(x, y) \) takes \(x \)'s set \(S_x \) and \(y \)'s set \(S_y \), assumed disjoint from \(S_x \), merges them, destroys \(S_x \) and \(S_y \), and returns representative for new set from \(S_x \) \(\cup \) \(S_y \)
 - \(\text{FIND-SET}(x) \) returns a pointer to the representative of the unique set that contains \(x \)
- Section 21.3: can perform \(d \) D-S operations on \(e \) elements in time \(O(d \alpha(e)) \), where \(\alpha(e) = o(\log^* e) = o(\log e) \) is very slowly growing:

<table>
<thead>
<tr>
<th>(e)</th>
<th>(\alpha(e))</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>4</td>
<td>4</td>
</tr>
</tbody>
</table>

Analysis of Kruskal’s Algorithm

- Sorting edges takes time \(O(|E| \log |E|) \)
- Number of disjoint-set operations is \(O(|V| + |E|) \) on \(O(|V'|) \) elements, which can be done in time \(O((|V'| + |E|) \alpha(|V'|)) = O(|E| \alpha(|V'|)) \) since \(|E| \geq |V| - 1 \)
- Since \(\alpha(|V'|) = o(\log |V'|) = O(\log |E|) \), we get total time of \(O(|E| \log |E|) = O(|E| \log |V|) \) since \(\log |E| = O(\log |V|) \)
Prim's Algorithm

- Greedy algorithm, like Kruskal’s
- In contrast to Kruskal’s, Prim’s algorithm maintains a single tree rather than a forest
- Starts with an arbitrary tree root \(r \)
- Repeatedly finds a minimum-weight edge that is incident to a node not yet in tree

\[
\text{MST-Prim}(G, w, r)
\]

1. \(A = \emptyset \)
2. for each vertex \(v \in V \) do
 3. \(\text{key}[v] = \infty \)
 4. \(\pi(v) = \text{nil} \)
5. end
6. \(\text{key}[r] = 0 \)
7. \(Q = V \)
8. while \(Q \neq \emptyset \) do
 9. \(u = \text{Extract-Min}(Q) \)
 10. for each \(v \in \text{Adj}[u] \) do
 11. if \(v \in Q \) and \(w(u, v) < \text{key}[v] \) then
 12. \(\pi(v) = u \)
 13. \(\text{key}[v] = w(u, v) \)
 14. end
15. end

More on Prim’s Algorithm

- \(\text{key}[v] \) is the weight of the minimum weight edge from \(v \) to any node already in MST
- \text{Extract-Min} uses a minimum heap (minimum priority queue) data structure
 - Binary tree where the key at each node is \(\leq \) keys of its children
 - Thus minimum value always at top
 - Any subtree is also a heap
 - Height of tree is \(\mathcal{O}(\log n) \)
 - Can build heap on \(n \) elements in \(\mathcal{O}(n) \) time
 - After returning the minimum, can filter new minimum to top in time \(\mathcal{O}(\log n) \)
 - Based on Chapter 6

Example (1)

Example (2)

Analysis of Prim’s Algorithm

- \textbf{Invariant}: Prior to each iteration of the while loop:
 1. Nodes already in MST are exactly those in \(V \setminus Q \)
 2. For all vertices \(v \in Q \), if \(\pi[v] \neq \text{nil} \), then \(\text{key}[v] < \infty \) and \(\text{key}[v] \) is the weight of the lightest edge that connects \(v \) to a node already in the tree
- \textbf{Time complexity}:
 - Building heap takes time \(\mathcal{O}(V) \)
 - \(|V| \) calls to \text{Extract-Min}, each taking time \(\mathcal{O}(\log |V|) \)
 - For loop iterates \(\mathcal{O}(|E|) \) times
 - In for loop, need constant time to check for queue membership and \(\mathcal{O}(\log |V|) \) time for decreasing \(v \)'s key and updating heap
 - Yields total time of \(\mathcal{O}(|V| \log |V| + |E| \log |V|) = \mathcal{O}(|E| \log |V|) \)
 - Can decrease total time to \(\mathcal{O}(|E| + |V| \log |V|) \) using Fibonacci heaps