Impossibility of algorithms: There are some problems that cannot be solved

- We’ll visit this throughout the semester, especially with NP-completeness
- Today’s example: there does not exist a general-purpose (comparison-based) algorithm to sort n elements in time $o(n \log n)$
- Will show this by proving an $\Omega(n \log n)$ lower bound on comparison-based sorting
Comparison-Based Sorting Algorithms

- What is a comparison-based sorting algorithm?
 - The sorted order it determines is based **only** on comparisons between the input elements
 - E.g., Insertion Sort, Selection Sort, Mergesort, Quicksort, Heapsort

- What is **not** a comparison-based sorting algorithm?
 - The sorted order it determines is based on additional information, e.g., bounds on the range of input values
 - E.g., Counting Sort, Radix Sort
A decision tree is a full binary tree that represents comparisons between elements performed by a particular sorting algorithm operating on a certain-sized input (n elements)

Key point: a tree represents algorithm’s behavior on all possible inputs of size n

Each internal node represents one comparison made by algorithm

- Each node labeled as $i : j$, which represents comparison $A[i] \leq A[j]$
- If, in the particular input, it is the case that $A[i] \leq A[j]$, then control flow moves to left child, otherwise to the right child
- Each leaf represents a possible output of the algorithm, which is a permutation of the input
- All permutations must be in the tree in order for algorithm to work properly
Example for Insertion Sort

Example: $A = [7, 8, 4]$

- First compare 7 to 8, then 8 to 4, then 7 to 4

- Output permutation is $\langle 3, 1, 2 \rangle$, which implies sorted order is 4, 7, 8
Proof of Lower Bound

- Length of path from root to output leaf is number of comparisons made by algorithm on that input
- Worst-case number of comparisons is length of longest path ($= \text{height } h$)
- Number of leaves in tree is $n!$
- A binary tree of height h has at most 2^h leaves
- Thus we have $2^h \geq n! \geq \sqrt{2\pi} n \left(\frac{n}{e}\right)^n$
- Take base-2 logs of both sides to get

$$h \geq \log \sqrt{2\pi} + \frac{1}{2} \log n + n \log n - n \log e = \Omega(n \log n)$$

\Rightarrow Every comparison-based sorting algorithm has an input that forces it to make $\Omega(n \log n)$ comparisons

\Rightarrow Mergesort and Heapsort are asymptotically optimal
Another Lower Bound: Convex Hull

- Can use the lower bound on sorting to get a lower bound on the convex hull problem:
 - Given a set $Q \in \{p_1, p_2, \ldots, p_n\}$ of n points, each from \mathbb{R}^2, output $\text{CH}(Q)$, which is the smallest convex polygon P such that each point from Q is on P's boundary or in its interior.
Another Lower Bound: Convex Hull (cont’d)

- We will reduce the problem of sorting to that of finding a convex hull.
- I.e., given any instance of the sorting problem \(A = \{x_1, \ldots, x_n\} \), we will transform it to an instance of convex hull such that the time complexity of the new algorithm sorting will be no more than that of convex hull.
 - If convex hull could be solved in time \(o(n \log n) \) then so can sorting.
 - Since that cannot happen, we know that convex hull is \(\Omega(n \log n) \).
- The reduction: transform \(A \) to \(Q = \{(x_1, x_1^2), (x_2, x_2^2), \ldots, (x_n, x_n^2)\} \).
 - Takes \(O(n) \) time.
- Since the points on \(Q \) are on a parabola, all points of \(Q \) are on \(\text{CH}(Q) \).
 - Can read off the points of \(\text{CH}(Q) \) in \(O(n) \) time.
 - Yields a sorted list of points from \(\text{(any)} A \).
- Time to sort \(A \) is \(O(n) + \text{convex hull} + O(n) \).
- If time for convex hull is \(o(n \log n) \), then sorting is \(o(n \log n) \).
 - Convex hull time complexity is \(\Omega(n \log n) \).