Introduction

- Given an array A of n distinct numbers, the ith order statistic of A is its ith smallest element
 - $i = 1 \Rightarrow$ minimum
 - $i = n \Rightarrow$ maximum
 - $i = \lceil (n+1)/2 \rceil \Rightarrow$ (lower) median
- E.g. if $A = [8, 5, 3, 10, 4, 12, 6]$ then $\min = 3$, $\max = 12$, median $= 6$, 3rd order stat $= 5$
- Problem: Given array A of n elements and a number $i \in \{1, \ldots, n\}$, find the ith order statistic of A
- There is an obvious solution to this problem. What is it? What is its time complexity?
 - Can we do better? What if we only focus on $i = 1$ or $i = n$?

Minimum(A)

```
1 small = A[1]
2 for i = 2 to n do
3    if small > A[i] then
4        small = A[i]
5 end
6 return small
```

Correctness of Minimum(A)

- Observe that the algorithm always maintains the invariant that at the end of each loop iteration, $small$ holds the minimum of $A[1 \cdots i]$
 - Easily shown by induction
- Correctness follows by observing that $i = n$ before return statement

Efficiency of Minimum(A)

- Loop is executed $n-1$ times, each with one comparison
 - Total $n-1$ comparisons
- Can we do better?
- Lower Bound: Any algorithm finding minimum of n elements will need at least $n-1$ comparisons
 - Proof of this comes from fact that no element of A can be considered for elimination as the minimum until it’s been compared at least once

Simultaneous Minimum and Maximum

- Given array A with n elements, find both its minimum and maximum
- What is the obvious algorithm? What is its (non-asymptotic) time complexity?
- Can we do better?
MinAndMax(A, n)

1. $large = \max(A[1], A[2])$
2. $small = \min(A[1], A[2])$
3. for $i = 2$ to $\lfloor n/2 \rfloor$ do
 4. $large = \max(large, \max(A[2i - 1], A[2i]))$
 5. $small = \min(small, \min(A[2i - 1], A[2i]))$
4. end
5. if n is odd then
 6. $large = \max(large, A[n])$
 7. $small = \min(small, A[n])$
8. return $(large, small)$

Explanation of MinAndMax

\blacktriangleright Idea: For each pair of values examined in the loop, compare them directly.
\blacktriangleright For each such pair, compare the smaller one to small and the larger one to large.
\blacktriangleright Example: $A = [8, 5, 3, 10, 4, 12, 6]$

Efficiency of MinAndMax

\blacktriangleright How many comparisons does MinAndMax make?
\blacktriangleright Initialization on Lines 1 and 2 requires only one comparison.
\blacktriangleright Each iteration through the loop requires one comparison between $A[2i - 1]$ and $A[2i]$ and then one comparison to each of large and small, for a total of three.
\blacktriangleright Lines 8 and 9 require one comparison each.
\blacktriangleright Total is at most $1 + 3\lfloor n/2 \rfloor - 1 + 2 \leq 3\lfloor n/2 \rfloor$, which is better than $2n - 3$ for finding minimum and maximum separately.

Selection of the ith Smallest Value

\blacktriangleright Now to the general problem: Given A and i, return the ith smallest value in A.
\blacktriangleright Obvious solution is sort and return ith element.
\blacktriangleright Time complexity is $\Theta(n \log n)$.
\blacktriangleright Can we do better?

Selection of the ith Smallest Value (2)

\blacktriangleright New algorithm: Divide and conquer strategy.
\blacktriangleright Idea: Somehow discard a constant fraction of the current array after spending only linear time.
\blacktriangleright More on this later.
\blacktriangleright Which fraction do we discard?

Select(A, p, r, i)

1. if $p == r$ then
2. return $A[p]$
3. $q = \text{Partition}(A, p, r)$ // Like Partition in Quicksort
4. $k = q - p + 1$ // Size of $A[p \cdots q]$.
5. if $i == k$ then
7. else if $i < k$ then
8. return Select($A, p, q - 1, i$) // Answer is in left subarray.
9. else
10. return Select($A, q + 1, r, i - k$) // Answer is in right subarray.
What is Select Doing?

- Like in Quicksort, Select first calls Partition, which chooses a pivot element \(q \), then reorders \(A \) to put all elements \(< A[q] \) to the left of \(A[q] \) and all elements \(> A[q] \) to the right of \(A[q] \).
- E.g. if \(A = [1, 7, 5, 4, 2, 8, 6, 3] \) and pivot element is 5, then result is \(A' = [1, 4, 2, 3, 5, 7, 8, 6] \).
- If \(A[q] \) is the element we seek, then return it.
- If sought element is in left subarray, then recursively search it, and ignore right subarray.
- If sought element is in right subarray, then recursively search it, and ignore left subarray.

Partition \((A, p, r)\)

```plaintext
1. \( x = \text{ChoosePivotElement}(A, p, r) \) // Returns index of pivot
2. exchange \( A[r] \) with \( A[x] \)
3. \( i = p - 1 \)
4. for \( j = p \) to \( r - 1 \) do
5.     if \( A[j] \leq A[r] \) then
6.         \( i = i + 1 \)
7.         exchange \( A[i] \) with \( A[j] \)
8. end
9. exchange \( A[i + 1] \) with \( A[r] \)
10. return \( i + 1 \)
```

Chooses a pivot element and partitions \(A[p \cdots r] \) around it.

Partitioning the Array: Example (Fig 7.1)

```
\[
\begin{array}{cccccccc}
1 & 7 & 5 & 4 & 2 & 8 & 6 & 3 \\
\hline
1 & 4 & 2 & 3 & 5 & 7 & 8 & 6 \\
\end{array}
\]
```

Comparing each element \(A[j] \) to \(x (= 4) \) and swap with \(A[i] \) if \(A[j] \leq x \).

Choosing a Pivot Element

- Choice of pivot element is critical to low time complexity
- Why?
- What is the best choice of pivot element to partition \(A[p \cdots r] \)?

Choosing a Pivot Element (2)

- Want to pivot on an element that is as close as possible to being the median
- Of course, we don’t know what that is
- Will do **median of medians** approach to select pivot element

Median of Medians

- Given (sub)array \(A \) of \(n \) elements, partition \(A \) into \(m = \lfloor n/5 \rfloor \) groups of 5 elements each, and at most one other group with the remaining \(n \) mod 5 elements
- Make an array \(A' = [x_1, x_2, \ldots, x_{\lfloor n/5 \rfloor}] \), where \(x_i \) is median of group \(i \), found by sorting (in constant time) group \(i \)
- Call \(\text{Select}(A', 1, \lfloor n/5 \rfloor, \lfloor (\lfloor n/5 \rfloor + 1)/2 \rfloor) \) and use the returned element as the pivot
Example

Split into teams, and work this example on the board: Find the 4th smallest element of \(A = \{4, 9, 12, 17, 6, 5, 21, 14, 8, 11, 13, 29, 3\} \)

Show results for each step of Select, Partition, and ChoosePivotElement

Time Complexity (2)

- Key to time complexity analysis is lower bounding the fraction of elements discarded at each recursive call to Select
- On next slide, medians and median of medians are marked, arrows indicate what is guaranteed to be greater than what
- Since \(x \) is less than at least half of the other medians (ignoring group with < 5 elements and \(x \)'s group) and each of those medians is less than 2 elements, we get that the number of elements \(x \) is less than is at least

\[
3 \left(1 \pm \frac{n}{3} \right) - 2 = \frac{3n}{10} - 6 \geq n/4 \quad (\text{if } n \geq 120)
\]

- Similar argument shows that at least \(3n/10 - 6 \geq n/4 \) elements are less than \(x \)
- Thus, if \(n \geq 120 \), each recursive call to Select is on at most \(3n/4 \) elements

Time Complexity (3)

- Now can develop a recurrence describing Select's time complexity
- Let \(T(n) \) represent total time for Select to run on input of size \(n \)
- Choosing a pivot element takes time \(O(n) \) to split into size-5 groups and time \(T(n/5) \) to recursively find the median of medians
- Once pivot element chosen, partitioning \(n \) elements takes \(O(n) \) time
- Recursive call to Select takes time at most \(T(3n/4) \)
- Thus we get

\[
T(n) \leq T(n/5) + T(3n/4) + O(n)
\]

- Can express as \(T(\alpha n) + T(\beta n) + O(n) \) for \(\alpha = 1/5 \) and \(\beta = 3/4 \)
- **Theorem:** For recurrences of the form \(T(\alpha n) + T(\beta n) + O(n) \) for \(\alpha + \beta < 1 \), \(T(n) = O(n) \)
- Thus Select has time complexity \(O(n) \)

Proof of Theorem

Top \(T(n) \) takes \(O(n) \) time (= \(cn \) for some constant \(c \)). Then calls to \(T(\alpha n) \) and \(T(\beta n) \), which take a total of \((\alpha + \beta)c n \) time, and so on.

\[
\text{Summing these infinitely yields (since } \alpha + \beta < 1) \quad cn(1 + (\alpha + \beta) + (\alpha + \beta)^2 + \cdots) = \frac{cn}{1 - (\alpha + \beta)} = c'n = O(n)
\]

Master Method

- Another useful tool for analyzing recurrences
- **Theorem:** Let \(a \geq 1 \) and \(b > 1 \) be constants, let \(f(n) \) be a function, and let \(T(n) \) be defined as \(T(n) = aT(n/b) + f(n) \). Then \(T(n) \) is bounded as follows:
 1. If \(f(n) = O(n^{\log_b a - \epsilon}) \) for constant \(\epsilon > 0 \), then \(T(n) = O(n^{\log_b a}) \)
 2. If \(f(n) = O(n^{\log_b a}) \), then \(T(n) = O(n^{\log_b a} \log n) \)
 3. If \(f(n) = O(n^{\log_b a + \epsilon}) \) for constant \(\epsilon > 0 \) and if \(f(n/b) \leq cf(n) \) for constant \(c < 1 \) and sufficiently large \(n \), then \(T(n) = O(f(n)) \)
- E.g. for Select, can apply theorem on \(T(n) < 2T(3n/4) + O(n) \) (note the slack introduced) with \(a = 2, b = 4/3, \epsilon = 1/4 \) and get

\[
T(n) = O\left(n^{\log_{4/3} 2}\right) = O(n^{3/4})
\]

Thus not as tight for this recurrence