Computer Science & Engineering 423/823
Design and Analysis of Algorithms
Lecture 08 — Lower Bounds (Sections 8.1 and 33.3)

Stephen Scott
(Adapted from Vinodchandran N. Variyam)

sscott@cse.unl.edu
Remember when ...

... I said: “Upper Bound of an Algorithm”

- An algorithm A has an upper bound of $f(n)$ for input of size n if there exists no input of size n such that A requires more than $f(n)$ time
- E.g., we know from prior courses that Quicksort and Bubblesort take no more time than $O(n^2)$, while Mergesort has an upper bound of $O(n \log n)$

... I said: “Upper Bound of a Problem”

- A problem has an upper bound of $f(n)$ if there exists at least one algorithm that has an upper bound of $f(n)$
 - I.e., there exists an algorithm with time/space complexity of at most $f(n)$ on all inputs of size n
- E.g., since algorithm Mergesort has worst-case time complexity of $O(n \log n)$, the problem of sorting has an upper bound of $O(n \log n)$
Remember when ...

... I said: “Lower Bound of a Problem”

- A problem has a **lower bound** of $f(n)$ if, for **any** algorithm A to solve the problem, there exists at least one input of size n that forces A to take at least $f(n)$ time/space
- This pathological input depends on the specific algorithm A
- E.g., reverse order forces Bubblesort to take $\Omega(n^2)$ steps
- Since **every** sorting algorithm has an input of size n forcing $\Omega(n \log n)$ steps, sorting problem has **time complexity lower bound** of $\Omega(n \log n)$
- To argue a lower bound for a problem, can use an **adversarial** argument: An algorithm that simulates **arbitrary** algorithm A to build a pathological input
 - Needs to be in some general (algorithmic) form since the nature of the pathological input depends on the specific algorithm A
 - Adversary has unlimited computing resources
- Can also **reduce** one problem to another to establish lower bounds
Comparison-Based Sorting Algorithms

- Our lower bound applies only to **comparison-based sorting algorithms**
 - The sorted order it determines is based **only** on comparisons between the input elements
 - E.g., Insertion Sort, Selection Sort, Mergesort, Quicksort, Heapsort
- What is **not** a comparison-based sorting algorithm?
 - The sorted order it determines is based on additional information, e.g., bounds on the range of input values
 - E.g., Counting Sort, Radix Sort
Decision Trees

- A **decision tree** is a full binary tree that represents comparisons between elements performed by a particular sorting algorithm operating on a certain-sized input (\(n\) elements)
- **Key point:** a tree represents an algorithm’s behavior on *all possible inputs* of size \(n\)
 - Thus, an adversarial argument could use such a tree to choose a pathological input
- Each internal node represents one comparison made by algorithm
 - Each node labeled as \(i : j\), which represents comparison \(A[i] \leq A[j]\)
 - If, in the particular input, it is the case that \(A[i] \leq A[j]\), then control flow moves to left child, otherwise to the right child
 - Each leaf represents a possible output of the algorithm, which is a permutation of the input
 - All permutations must be in the tree in order for algorithm to work properly
Example for Insertion Sort

Example for Insertion Sort (2)

Example: $A = [7, 8, 4]$

- First compare 7 to 8, then 8 to 4, then 7 to 4
- Output permutation is $\langle 3, 1, 2 \rangle$, which implies sorted order is 4, 7, 8

What are worst-case inputs for this algorithm? What are not?
Proof of Lower Bound

- Length of path from root to output leaf is number of comparisons made by algorithm on that input
- Worst-case number of comparisons = length of longest path = **height** \(h \)
- Adversary chooses a deepest leaf to create worst-case input
- Number of leaves in tree is \(n! \) = number of outputs (permutations)
- A binary tree of height \(h \) has at most \(2^h \) leaves
- Thus we have \(2^h \geq n! \geq \sqrt{2\pi}n\left(\frac{n}{e}\right)^n \)
- Take base-2 logs of both sides to get

\[
h \geq \lg \sqrt{2\pi} + (1/2) \lg n + n \lg n - n \lg e = \Omega(n \log n)\]

- **Every** comparison-based sorting algorithm has **some** input that forces it to make \(\Omega(n \log n) \) comparisons
- Mergesort and Heapsort are **asymptotically optimal**
Another Lower Bound: Convex Hull

- Can use the lower bound on sorting to get a lower bound on the convex hull problem:
 - Given a set $Q \in \{ p_1, p_2, \ldots, p_n \}$ of n points, each from \mathbb{R}^2, output $\text{CH}(Q)$, which is the smallest convex polygon P such that each point from Q is on P's boundary or in its interior
Another Lower Bound: Convex Hull (2)

- We will **reduce** the problem of sorting to that of finding a convex hull.
- I.e., given any instance of the sorting problem $A = \{x_1, \ldots, x_n\}$, we will transform it to an instance of convex hull such that the time complexity of the new algorithm sorting will be no more than that of convex hull.

The reduction: transform A to $Q = \{(x_1, x_1^2), (x_2, x_2^2), \ldots, (x_n, x_n^2)\}$

⇒ Takes $O(n)$ time
Another Lower Bound: Convex Hull (3)

E.g., \(A = \{2.1, -1.4, 1.0, -0.7, -2.0\} \)

Since the points in \(Q \) are on a parabola, all points of \(Q \) are on \(\text{CH}(Q) \)

How can we get a sorted version of \(A \) from this?
Another Lower Bound: Convex Hull (4)

- CHSort yields a sorted list of points from (any) A
- Time complexity of CHSort: time to transform A to Q + time to find CH of Q + time to read sorted list from CH
 \[O(n) + \text{time to find CH} + O(n) \]
- If time for convex hull is $o(n \log n)$, then sorting is $o(n \log n)$
 \[\Rightarrow \text{Since that cannot happen, we know that convex hull is } \Omega(n \log n) \]