Introduction

- Similar to SSSP, but find shortest paths for all pairs of vertices
- Given a weighted, directed graph $G = (V, E)$ with weight function $w : E \rightarrow \mathbb{R}$, find $\delta(u, v)$ for all $(u, v) \in V \times V$
- One solution: Run an algorithm for SSSP $|V|$ times, treating each vertex in V as a source
 - If no negative weight edges, use Dijkstra’s algorithm, for time complexity of $O(|V|^3 + |V||E|) = O(|V|^3)$ for array implementation, $O(|V||E|\log |V|)$ if heap used
 - If negative weight edges, use Bellman-Ford and get $O(|V|^2|E|)$ time algorithm, which is $O(|V|^4)$ if graph dense
- Can we do better?
 - Matrix multiplication-style algorithm: $\Theta(|V|^3 \log |V|)$
 - Floyd-Warshall algorithm: $\Theta(|V|^3)$
 - Both algorithms handle negative weight edges
Adjacency Matrix Representation

- Will use adjacency matrix representation
- Assume vertices are numbered: \(V = \{1, 2, \ldots, n\} \)
- Input to our algorithms will be \(n \times n \) matrix \(W \):

\[
W_{ij} = \begin{cases}
0 & \text{if } i = j \\
\text{weight of edge } (i, j) & \text{if } (i, j) \in E \\
\infty & \text{if } (i, j) \notin E
\end{cases}
\]

- For now, assume negative weight cycles are absent
- In addition to distance matrices \(L \) and \(D \) produced by algorithms, can also build \textit{predecessor matrix} \(\Pi \), where \(\pi_{ij} = \text{predecessor of } j \text{ on a shortest path from } i \) to \(j \), or \text{NIL} if \(i = j \) or no path exists
 - Well-defined due to optimal substructure property
Print-All-Pairs-Shortest-Path(Π, i, j)

```plaintext
1  if i == j then
2     print i
3  else if π_ij == NIL then
4     print "no path from " i " to " j " exists"
5  else
6     Print-All-Pairs-Shortest-Path(Π, i, π_ij)
7     print j
8
```
Shortest Paths and Matrix Multiplication

- Will maintain a series of matrices $L^{(m)} = \begin{pmatrix} \ell_{ij}^{(m)} \end{pmatrix}$, where $\ell_{ij}^{(m)}$ = the minimum weight of any path from i to j that uses at most m edges
 - Special case: $\ell_{ij}^{(0)} = 0$ if $i = j$, ∞ otherwise

\[
\ell_{13}^{(0)} = \infty, \quad \ell_{13}^{(1)} = 8, \quad \ell_{13}^{(2)} = 7
\]
Recursive Solution

- Exploit optimal substructure property to get a recursive definition of $\ell_{ij}^{(m)}$
- To follow shortest path from i to j using at most m edges, either:
 1. Take shortest path from i to j using $\leq m - 1$ edges and stay put, or
 2. Take shortest path from i to some k using $\leq m - 1$ edges and traverse edge (k, j)

$$
\ell_{ij}^{(m)} = \min \left(\ell_{ij}^{(m-1)}, \min_{1 \leq k \leq n} \left(\ell_{ik}^{(m-1)} + w_{kj} \right) \right)
$$

- Since $w_{jj} = 0$ for all j, simplify to

$$
\ell_{ij}^{(m)} = \min_{1 \leq k \leq n} \left(\ell_{ik}^{(m-1)} + w_{kj} \right)
$$

- If no negative weight cycles, then since all shortest paths have $\leq n - 1$ edges,

$$
\delta(i, j) = \ell_{ij}^{(n-1)} = \ell_{ij}^{(n)} = \ell_{ij}^{(n+1)} = \cdots
$$
Bottum-Up Computation of L Matrices

- Start with weight matrix W and compute series of matrices $L^{(1)}, L^{(2)}, \ldots, L^{(n-1)}$
- Core of the algorithm is a routine to compute $L^{(m+1)}$ given $L^{(m)}$ and W
- Start with $L^{(1)} = W$, and iteratively compute new L matrices until we get $L^{(n-1)}$
 - Why is $L^{(1)} = W$?
- Can we detect negative-weight cycles with this algorithm? How?
Extend-Shortest-Paths(L, W)

1. $n =$ number of rows of L // This is $L^{(m)}$
2. create new $n \times n$ matrix L' // This will be $L^{(m+1)}$
3. for $i = 1$ to n do
 4. for $j = 1$ to n do
 5. $\ell'_{ij} = \infty$
 6. for $k = 1$ to n do
 7. $\ell'_{ij} = \min(\ell'_{ij}, \ell_{ik} + w_{kj})$
 8. end
 9. end
10. end
11. return L'
Slow-All-Pairs-Shortest-Paths(W)

1. $n =$ number of rows of W
2. $L^{(1)} = W$
3. for $m = 2$ to $n - 1$ do
4. $L^{(m)} =$ Extend-Shortest-Paths($L^{(m-1)}$, W)
5. end
6. return $L^{(n-1)}$
Example

\[
L^{(1)} = \begin{pmatrix}
0 & 3 & 8 & \infty & -4 \\
\infty & 0 & \infty & 1 & 7 \\
\infty & 4 & 0 & \infty & \infty \\
2 & \infty & -5 & 0 & \infty \\
\infty & \infty & \infty & 6 & 0
\end{pmatrix}
\]

\[
L^{(2)} = \begin{pmatrix}
0 & 3 & 8 & 2 & -4 \\
3 & 0 & -4 & 1 & 7 \\
\infty & 4 & 0 & 5 & 11 \\
2 & -1 & -5 & 0 & -2 \\
8 & \infty & 1 & 6 & 0
\end{pmatrix}
\]

\[
L^{(3)} = \begin{pmatrix}
0 & 3 & -3 & 2 & -4 \\
3 & 0 & -4 & 1 & -1 \\
7 & 4 & 0 & 5 & 11 \\
2 & -1 & -5 & 0 & -2 \\
8 & 5 & 1 & 6 & 0
\end{pmatrix}
\]

\[
L^{(4)} = \begin{pmatrix}
0 & 1 & -3 & 2 & -4 \\
3 & 0 & -4 & 1 & -1 \\
7 & 4 & 0 & 5 & 3 \\
2 & -1 & -5 & 0 & -2 \\
8 & 5 & 1 & 6 & 0
\end{pmatrix}
\]
Improving Running Time

- What is time complexity of \texttt{Slow-All-Pairs-Shortest-Paths}?
- Can we do better?
- Note that if, in \texttt{Extend-Shortest-Paths}, we change + to multiplication and min to +, get matrix multiplication of \(L\) and \(W\)
- If we let \(\odot\) represent this “multiplication” operator, then \texttt{Slow-All-Pairs-Shortest-Paths} computes

\[
L^{(2)} = L^{(1)} \odot W = W^{(2)},
\]
\[
L^{(3)} = L^{(2)} \odot W = W^{(3)},
\]
\[
\vdots
\]
\[
L^{(n-1)} = L^{(n-2)} \odot W = W^{(n-1)}
\]

- Thus, we get \(L^{(n-1)}\) by iteratively “multiplying” \(W\) via \texttt{Extend-Shortest-Paths}
Improving Running Time (2)

- But we don’t need every $L^{(m)}$; we only want $L^{(n-1)}$
- E.g., if we want to compute 7^{64}, we could multiply 7 by itself 64 times, or we could square it 6 times
- In our application, once we have a handle on $L^{((n-1)/2)}$, we can immediately get $L^{(n-1)}$ from one call to $\text{EXTEND-SHORTEST-PATHS}(L^{((n-1)/2)}, L^{((n-1)/2)})$
- Of course, we can similarly get $L^{((n-1)/2)}$ from “squaring” $L^{((n-1)/4)}$, and so on
- Starting from the beginning, we initialize $L^{(1)} = W$, then compute $L^{(2)} = L^{(1)} \odot L^{(1)}$, $L^{(4)} = L^{(2)} \odot L^{(2)}$, $L^{(8)} = L^{(4)} \odot L^{(4)}$, and so on
- What happens if $n-1$ is not a power of 2 and we “overshoot” it?
- How many steps of repeated squaring do we need to make?
- What is time complexity of this new algorithm?
Faster-All-Pairs-Shortest-Paths(W)

1. $n = \text{number of rows of } W$
2. $L^{(1)} = W$
3. $m = 1$
4. while $m < n - 1$ do
5. $L^{(2m)} = \text{Extend-Shortest-Paths}(L^{(m)}, L^{(m)})$
6. $m = 2m$
7. end
8. return $L^{(m)}$
Floyd-Warshall Algorithm

- Shaves the logarithmic factor off of the previous algorithm
- As with previous algorithm, start by assuming that there are no negative weight cycles; can detect negative weight cycles the same way as before
- Considers a different way to decompose shortest paths, based on the notion of an *intermediate vertex*
 - If simple path \(p = \langle v_1, v_2, v_3, \ldots, v_{\ell-1}, v_{\ell} \rangle \), then the set of intermediate vertices is \(\{v_2, v_3, \ldots, v_{\ell-1}\} \)
Structure of Shortest Path

- Again, let $V = \{1, \ldots, n\}$, and fix $i, j \in V$
- For some $1 \leq k \leq n$, consider set of vertices $V_k = \{1, \ldots, k\}$
- Now consider all paths from i to j whose intermediate vertices come from V_k and let p be a minimum-weight path from them
- Is $k \in p$?
 1. If not, then all intermediate vertices of p are in V_{k-1}, and a SP from i to j based on V_{k-1} is also a SP from i to j based on V_k
 2. If so, then we can decompose p into $i \overset{p_1}{\leadsto} k \overset{p_2}{\leadsto} j$, where p_1 and p_2 are each shortest paths based on V_{k-1}
Structure of Shortest Path (2)

all intermediate vertices in \{1, 2, \ldots, k - 1\}

all intermediate vertices in \{1, 2, \ldots, k - 1\}

\begin{center}
\begin{tikzpicture}
 \node[shape=circle,draw=black] (i) at (0,0) {i};
 \node[shape=circle,draw=black] (k) at (2,0) {k};
 \node[shape=circle,draw=black] (j) at (4,0) {j};
 \draw[->] (i) to[bend right=20] node[auto,swap] {p_1} (k);
 \draw[->] (k) to[bend right=20] node[auto] {p_2} (j);
 \end{tikzpicture}
\end{center}

\[p: \text{all intermediate vertices in } \{1, 2, \ldots, k\} \]
Recursive Solution

- What does this mean?

- It means that a shortest path from i to j based on V_k is either going to be the same as that based on V_{k-1}, or it is going to go through k.

- In the latter case, a shortest path from i to j based on V_k is going to be a shortest path from i to k based on V_{k-1}, followed by a shortest path from k to j based on V_{k-1}.

- Let matrix $D^{(k)} = (d^{(k)}_{ij})$, where $d^{(k)}_{ij} =$ weight of a shortest path from i to j based on V_k:

\[
d^{(k)}_{ij} = \begin{cases}
 w_{ij} & \text{if } k = 0 \\
 \min \left(d^{(k-1)}_{ij}, d^{(k-1)}_{ik} + d^{(k-1)}_{kj} \right) & \text{if } k \geq 1
\end{cases}
\]

- Since all SPs are based on $V_n = V$, we get $d^{(n)}_{ij} = \delta(i,j)$ for all $i, j \in V$.

Floyd-Warshall(W)

1. $n = \text{number of rows of } W$
2. $D^{(0)} = W$
3. for $k = 1$ to n
 4. for $i = 1$ to n
 5. for $j = 1$ to n
 6. $d^{(k)}_{ij} = \min\left(d^{(k-1)}_{ij}, d^{(k-1)}_{ik} + d^{(k-1)}_{kj}\right)$
 7. end
 8. end
9. end
10. return $D^{(n)}$
Transitive Closure

- Used to determine whether paths exist between pairs of vertices
- Given directed, unweighted graph \(G = (V, E) \) where \(V = \{1, \ldots, n\} \), the transitive closure of \(G \) is \(G^* = (V, E^*) \), where

\[
E^* = \{(i, j) : \text{there is a path from } i \text{ to } j \text{ in } G\}
\]

- How can we directly apply Floyd-Warshall to find \(E^* \)?
- Simpler way: Define matrix \(T \) similarly to \(D \):

\[
t_{ij}^{(0)} = \begin{cases}
0 & \text{if } i \neq j \text{ and } (i, j) \not\in E \\
1 & \text{if } i = j \text{ or } (i, j) \in E
\end{cases}
\]

\[
t_{ij}^{(k)} = t_{ij}^{(k-1)} \lor \left(t_{ik}^{(k-1)} \land t_{kj}^{(k-1)}\right)
\]

- I.e., you can reach \(j \) from \(i \) using \(V_k \) if you can do so using \(V_{k-1} \) or if you can reach \(k \) from \(i \) and reach \(j \) from \(k \), both using \(V_{k-1} \)
Transitive-Closure(G)

1 allocate and initialize $n \times n$ matrix $T^{(0)}$
2 for $k = 1$ to n do
3 allocate $n \times n$ matrix $T^{(k)}$
4 for $i = 1$ to n do
5 for $j = 1$ to n do
6 $t^{(k)}_{ij} = t^{(k-1)}_{ij} \lor t^{(k-1)}_{ik} \land t^{(k-1)}_{kj}$
7 end
8 end
9 end
10 return $T^{(n)}$
Example

\[T^{(0)} = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 1 & 1 \\ 0 & 1 & 1 & 0 \\ 1 & 0 & 1 & 1 \end{pmatrix} \quad T^{(1)} = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 1 & 1 \\ 0 & 1 & 1 & 0 \\ 1 & 0 & 1 & 1 \end{pmatrix} \quad T^{(2)} = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 1 & 1 \\ 0 & 1 & 1 & 1 \\ 1 & 0 & 1 & 1 \end{pmatrix} \]

\[T^{(3)} = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 1 & 1 \\ 0 & 1 & 1 & 1 \\ 1 & 1 & 1 & 1 \end{pmatrix} \quad T^{(4)} = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 1 & 1 & 1 & 1 \\ 1 & 1 & 1 & 1 \\ 1 & 1 & 1 & 1 \end{pmatrix} \]
Analysis

- Like Floyd-Warshall, time complexity is officially $\Theta(n^3)$
- However, use of 0s and 1s exclusively allows implementations to use bitwise operations to speed things up significantly, processing bits in batch, a word at a time
- Also saves space
- Another space saver: Can update the T matrix (and F-W’s D matrix) in place rather than allocating a new matrix for each step (Exercise 25.2-4)