main() { ... int bar(int y) { int foo(int x) { int t; return x + x; ... }
 while (y > 0) {
 x = foo(x);
 t = t + foo(y);
 }
 t++;
 return t;
}
 return x + x;

Context-sensitive approaches attempt to match up call sites with called methods and distinguish values flowing from different call sites.
Interprocedural Analysis

main()

bar(y)

foo(x)
Call Graph

A call graph is an abstraction of the possible calling relationships among program methods.

Just like a control flow graph a call graph overestimates the actual program behavior.

It also leaves out a lot of detail:

- no information about the call sites in a method
- no information about the number of calls in a method
- no information about the order of calls in a method
Interprocedural Analysis

SummaryCallGraph

(2) <examples.SimpleCallGraph: void main(java.lang.String[])>

(1) <examples.SimpleCallGraph: int bar(int)>

(0) <examples.SimpleCallGraph: int foo(int)>

SummaryCallGraph
Call Graph: Recursion

```c
void main() {
    arec(10);
    rec(7);
}

void rec(int x) {
    if (x > 0) rec(x--);
}

void arec(int x) {
    void brec(int x) {
        if (x > 0) brec(x--);
    }

    if (x > 0) arec(x--);
}
```

Need to be able to reflect both *direct* and *indirect* recursion.
Interprocedural Analysis

SummaryCallGraph

(0) <examples.RCG: void recurse(int)>
(3) <examples.RCG: void main(java.lang.String[])>
(2) <examples.RCG: void arecurse(int)>
(1) <examples.RCG: void brecurse(int)>

SummaryCallGraph
Call Graph: Polymorphism

class PCG {
 class A { void foo() { x = 1; } }
 class B extends A { void foo() { x = 2; } }
 class C extends A { void foo() { x = 3; } }
 class D extends B { void foo() { x = 4; } }

 void main() { bar(new PCG().new A()); }

 static void bar(A a) { a.foo(); }
}

Dynamic dispatch can lead to significant overestimation of the possible calling relationships.

This is one reason points to analysis is so important.

Which calls to foo in bar are possible?
Interprocedural Analysis

Summary Call Graph

(0) <examples.PCG$D: void foo()>
(1) <examples.PCG$C: void foo()>
(2) <examples.PCG$B: void foo()>
(3) <examples.PCG$A: void foo()>
(4) <examples.PCG: void bar(examples.PCG$A)>
(5) <examples.PCG: void <init>()>
(6) <examples.PCG$A: void <init>(examples.PCG)>
(7) <examples.PCG: void main(java.lang.String[])>
Summary-based Interprocedural Analysis

The basic idea is to perform dependent but separate local flow analyses for each method.

Dependences between methods, i.e., \texttt{foo()} calls \texttt{bar()}, are captured by constructing and applying \textit{method summaries}.

Summaries are calculated during the analysis until a fix-point is reached.

Just as in a local flow analysis order is important, so an interprocedural analysis orders the calculation of summaries according to call dependences, i.e., analyze methods in reverse order of calls.
Method Summaries

A method summary reflects the data flow values that are computed on output of a method call

i.e., the least-upper bound of out at return stmts

Summaries are often elements of the underlying flow analysis lattice D, but they need not be.

If a method m calls another method n, the values on exit of m may depend on the summary for n. If the summary for n changes we want force a recomputation of m’s summary.
Applying Method Summaries

When analyzing a method body we use a summary to calculate a method call transfer function for a call to \(n \)

- if \(n \) already has a computed summary we use it
- if \(n \) has no stored summary we use the default summary

Since summaries account for all of the behavior of a method, transitively through all of its possible calls, a summary can be quite imprecise.

Methods that are not subjected to analysis, e.g., library methods, are assigned a default summary.
Parameterized (or Context-sensitive) Method Summaries

One can construct summaries that are functions $D \rightarrow \mathcal{P}(D)$

this can be generalized to some other context Δ as the domain

Intuitively, the domain value defines a calling context and the image defines the summarized effects of the methods in that context.

To construct such a summary, for each value $d \in D$ repeat the following

1. set $\iota = d$ for the extremal node

2. run flow analysis to fix-point

3. calculate $s = \bigsqcup_{r \in \text{Returns}} A_{\text{out}}(r)$

4. install the map entry $[d \mapsto s]$ in the summary
void oknested() {
 open(); coloop(); close();
}

void coloop(int x) {
 while (x < 10) {
 close(); x++; open();
 }
}

void okmessnested() {
 open(); mess(); close();
}

void ocreurse(int x) {
 open();
 if (x > 0) coreurse(x--);
}

void coreurse(int x) {
 close();
 if (x > 0) ocreurse(x--);
}

void mess(int x) {
 if (x > 0)
 while (x-- > 0) coloop(x);
 else coloop(x);
}
Order of Analysis

Bottom-up in the call graph (but there is lots of freedom to break tie).

The first ones to process are the *leaves*: `open()`, `close()`

`coloop()` is called from multiple methods so we need to process this relatively early in the order.

The chain of `mess()`, `okmessnested()` are processed in reverse call order.

This cluster is *co-dependent* we actually have to reanalyze one of them: `corecurse()`, `ocrecurse()`, `corecurse()`

`oknested()` could have come earlier, but need not

and finally `main()`