What is Induction?

- If a statement $P(n_0)$ is true for some nonnegative integer; say $n_0 = 1$.
- Also suppose that we are able to prove that if $P(k)$ is true for $k \geq n_0$, then $P(k + 1)$ is also true; $P(k) \rightarrow P(k + 1)$
- It follows from these two statements that $P(n)$ is true for all $n \geq n_0$, i.e. $\forall n \geq n_0 P(n)$

This is the basis of the most widely used proof technique; Induction.

The Well Ordering Principle I

Why is induction a legitimate proof technique?
At its heart is the Well Ordering Principle.

Theorem (Principle of Well Ordering)
Every nonempty set of nonnegative integers has a least element.

Since every such set has a least element, we can form a base case. We can then proceed to establish that the set of integers $n \geq n_0$ such that $P(n)$ is false is actually empty.

Thus, induction (both “weak” and “strong” forms) are logical equivalences of the well-ordering principle.

Another View I

To look at it another way, assume that the statements

\[P(n_0) \quad (1) \]
\[P(k) \rightarrow P(k + 1) \quad (2) \]

are true. We can now use a form of universal generalization as follows.

Say we choose an element from the universe of discourse c. We wish to establish that $P(c)$ is true. If $c = n_0$ then we are done.

Another View II

Otherwise, we apply (2) above to get

\[P(n_0) \Rightarrow P(n_0 + 1) \]
\[\Rightarrow P(n_0 + 2) \]
\[\Rightarrow P(n_0 + 3) \]
\[\ldots \]
\[\Rightarrow P(c - 1) \]
\[\Rightarrow P(c) \]

Via a finite number of steps $(c - n_0)$, we get that $P(c)$ is true. Since c was arbitrary, the universal generalization is established.

\[\forall n \geq n_0 P(n) \]
Example I
Continued
We now perform the induction step and assume that $P(k)$ is true. Thus,
\[k^2 \leq 2^k \]
Consider the expression $(k + 1)^2$:
\[
(k + 1)^2 = k^2 + 2k + 1 \\
\leq 2^k + (2k + 1) \quad \text{by the inductive hypothesis} \\
\leq 2^k + (2k + k) \quad \text{since } k \geq 5 > 1 \\
= 2^k + (3k) \\
\leq 2^k + 5k \\
\leq 2^k + k^2 \quad \text{since } k \geq 5 \\
= 2^k + 2^k + 2^k \quad \text{by the inductive hypothesis} \\
= 2(2^k) \\
= 2^{k+1}
\]
Inductive Proofs: Step by Step
1. State and prove the base case
2. State the Inductive Hypothesis
3. As an aside, consider where you want to go (identify the Inductive Conclusion)
4. Using what you know (Inductive Hypothesis) prove the Inductive Conclusion

Example II
Example
Prove that for any $n \geq 1$,
\[
\sum_{i=1}^{n} i^2 = \frac{n(n+1)(2n+1)}{6}
\]
The base case is easily verified:
\[
1 = 1^2 = \frac{(1 + 1)(2 + 1)}{6} = 1
\]
Now assume that $P(k)$ holds for some $k \geq 1$, so
\[
\sum_{i=1}^{k} i^2 = \frac{k(k+1)(2k+1)}{6}
\]
Example II
Continued

We want to show that \(P(k+1) \) is true; that is, we want to show that
\[
\sum_{i=1}^{k+1} i^2 = \frac{(k+1)(k+2)(2k+3)}{6}
\]
However, observe that this sum can be written
\[
\sum_{i=1}^{k+1} i^2 = 1^2 + 2^2 + \cdots + k^2 + (k+1)^2 = \sum_{i=1}^{k} i^2 + (k+1)^2
\]
Thus we have that
\[
\sum_{i=1}^{k+1} i^2 = \frac{n(n+1)(2n+1)}{6} + (k+1)^2
\]
so we've established that \(P(k) \rightarrow P(k+1) \).

Thus, by the principle of mathematical induction, \(\sum_{i=1}^{k} i^2 = \frac{n(n+1)(2n+1)}{6} \) for all \(n \geq 1 \).

Example III

Example

Prove that for any integer \(n \geq 1 \), \(2^{2n} - 1 \) is divisible by 3.

Define \(P(n) \) to be the statement that \(3 \mid 2^{2n} - 1 \).

Again, we note that the base case is \(n = 1 \), so we have that
\[
2^2 - 1 = 3
\]
which is certainly divisible by 3.

We next assume that \(P(k) \) holds. That is, we assume that there exists an integer \(m \) such that
\[
2^{2k} - 1 = 3m
\]
Consider \(2^{2(k+1)} - 1 \):
\[
2^{2(k+1)} - 1 = 4(2^{2k}) - 1 = 4(3m+1) - 1 \quad \text{by inductive hypothesis}
= 4(3m) + 3
= 3(4m+1)
\]
And we are done, since 3 divides the RHS, it must divide the LHS. Thus, by the principle of mathematical induction, \(2^{2n} - 1 \) is divisible by 3 for all \(n \geq 1 \).

Example IV

Example

Prove that \(n! > 2^n \) for all \(n \geq 4 \)

The base case holds since \(24 = 4! > 2^4 = 16 \).

We now make our inductive hypothesis and assume that
\[
k! > 2^k
\]
for some integer \(k \geq 4 \).

Since \(k \geq 4 \), it certainly is the case that \(k+1 > 2 \). Therefore, we have that
\[
(k+1)! = (k+1)k! > 2 \cdot 2^k = 2^{k+1}
\]
So by the principle of mathematical induction, we have our desired result.
Example V

Example

Let $m \in \mathbb{Z}$ and suppose that $x \equiv y \pmod{m}$. Then for all $n \geq 1$,
$$x^n \equiv y^n \pmod{m}$$

The base case here is trivial as it is encompassed by the assumption.

Now assume that it is true for some $k \geq 1$:
$$x^k \equiv y^k \pmod{m}$$

Example VI

Example

Show that
$$\sum_{i=1}^{n} i^3 = \left(\sum_{i=1}^{n} i \right)^2$$
for all $n \geq 1$.

The base case trivial since $1^3 = (1)^2$.

The induction hypothesis will assume that it holds for some $k \geq 1$:
$$\sum_{i=1}^{k} i^3 = \left(\sum_{i=1}^{k} i \right)^2$$

Fact

By another standard induction proof (see the text) the summation of natural numbers up to n is
$$\sum_{i=1}^{n} i = \frac{n(n + 1)}{2}$$

We now consider the summation for $(k + 1)$:
$$\sum_{i=1}^{k+1} i^3 = \sum_{i=1}^{k} i^3 + (k + 1)^3$$

Example VI

Continued

$$\sum_{i=1}^{k+1} i^3 = \left(\sum_{i=1}^{k+1} i \right)^2 + (k + 1)^3$$

$$= \left(\frac{(k+1)(k+1)}{2} \right)^2 + (k + 1)^3$$

$$= \frac{(k+1)^2(k+1)^2}{2^2} + (k + 1)^3$$

$$= \frac{(k+1)^2(k+2)^2}{2^2}$$

$$= \left(\frac{(k+1)(k+2)}{2} \right)^2$$

So by the PMI, the equality holds. □

Example VII I

Bad Example I

Prove that
$$\sum_{i=1}^{n} i = \frac{n(n + 1)}{2}$$

- **Base case** (easy): $n = 1$, then $1 = \frac{1(1+1)}{2}$
- **Inductive Hypothesis**:
 $$\sum_{i=1}^{k} i = \frac{k(k+1)}{2}$$
- **Inductive Conclusion**:
 $$\sum_{i=1}^{k+1} i = \frac{(k+1)(k+2)}{2}$$
- **Observe**:
 $$\sum_{i=1}^{k+1} i = \frac{(k+1)(k+2)}{2}$$

$$\left(\sum_{i=1}^{k} i \right) + (k + 1) = \frac{(k + 1)(k + 2)}{2}$$
Example VII II

Bad Example I

\[\sum_{i=1}^{k} i + (k + 1) = \frac{(k+1)(k+2)}{2} \]
\[\frac{k(k + 1)}{2} + (k + 1) = \frac{(k+1)(k+2)}{2} \]
\[\frac{k}{2} + 1 = \frac{k+2}{2} \]
\[\frac{k + 2}{2} = \frac{(k+2)}{2} \]

- Which is true, so done, right?
- Wrong!: we started with the inductive conclusion
- You cannot assume the conclusion: this is begging the question

Example VII

Consider this “proof” that all of you will receive the same grade.

Proof.

Let \(P(n) \) be the statement that every set of \(n \) students receives the same grade. Clearly \(P(1) \) is true, so the base case is satisfied.

Now assume that \(P(k - 1) \) is true. Given a group of \(k \) students, apply \(P(k - 1) \) to the subset \(\{s_1, s_2, \ldots, s_{k-1}\} \). Now, separately apply the induction hypothesis to the subset \(\{s_2, s_3, \ldots, s_k\} \).

Combining these two facts tells us that \(P(k) \) is true. Thus, \(P(n) \) is true for all students. \(\square \)

Example VII II

Bad Example II

Prove that for all \(n \geq 2 \),
\[n! < n^n \]

- Base case (easy): \(2! = 2 < 4 = 2^2 \)
- Inductive Hypothesis: \(k! < k^k \)
- Inductive Conclusion: \((k + 1)! < (k + 1)^{(k+1)} \)
- Observe:
\[(k + 1) \cdot k! < (k + 1) \cdot (k + 1)^{(k)} \]
\[k! < (k + 1)^{(k)} \]
\[k^k < (k + 1)^{(k)} \]

- Which is true, so done, right?
- Wrong!: we started with the inductive conclusion
- You cannot assume the conclusion: this is begging the question

Strong Induction I

Another form of induction is called the “strong form”.

Despite the name, it is not a stronger proof technique.

In fact, we have the following.

Lemma

The following are equivalent.
- The Well Ordering Principle
- The Principle of Mathematical Induction
- The Principle of Mathematical Induction, Strong Form

Strong Induction II

Theorem (Principle of Mathematical Induction (Strong Form))

Given a statement \(P \) concerning the integer \(n \), suppose
1. \(P \) is true for some particular integer \(n_0 \); \(P(n_0) = 1 \).
2. If \(k > n_0 \) is any integer and \(P \) is true for all integers \(l \) in the range \(n_0 \leq l < k \), then it is true also for \(k \).

Then \(P \) is true for all integers \(n \geq n_0 \); i.e.
\[\forall(n \geq n_0)P(n) \]
is true.
Recall that the Fundamental Theorem of Arithmetic states that any integer \(n \geq 2 \) can be written as a unique product of primes.

We'll use the strong form of induction to prove this.

Let \(P(n) \) be the statement “\(n \) can be written as a product of primes.”

Clearly, \(P(2) \) is true since 2 is a prime itself. Thus the base case holds.

We now apply the inductive hypothesis; both \(u \) and \(v \) are less than \(k+1 \) so they can both be written as a unique product of primes;

\[u = \prod_i p_i, \quad v = \prod_j p_j \]

Therefore,

\[k + 1 = \left(\prod_i p_i \right) \left(\prod_j p_j \right) \]

and so by the strong form of the PMI, \(P(k+1) \) holds.

Recall the following.

Lemma

If \(a, b \in \mathbb{N} \) are such that \(\gcd(a, b) = 1 \) then there are integers \(s, t \) such that

\[\gcd(a, b) = 1 = sa + tb \]

We will prove this using the strong form of induction.

Let \(P(n) \) be the statement

\[a, b \in \mathbb{N} \land \gcd(a, b) = 1 \land a + b = n \Rightarrow \exists s, t \in \mathbb{Z}, as + tb = 1 \]

Our base case here is when \(n = 2 \) since \(a = b = 1 \).

For \(s = 1, t = 0 \), the statement \(P(2) \) is satisfied since

\[st + bt = 1 \cdot 1 + 1 \cdot 0 = 1 \]

We now form the inductive hypothesis. Suppose \(n \in \mathbb{N}, n \geq 2 \) and assume that \(P(k) \) is true for all \(k \) with \(2 \leq k \leq n \). Now suppose that for \(a, b \in \mathbb{N} \),

\[\gcd(a, b) = 1 \land a + b = n + 1 \]

We consider three cases.

Case 1 \(a = b \)

In this case

\[
\gcd(a, b) = \gcd(a, a) \quad \text{by definition}
\]
\[
= a \quad \text{by definition}
\]
\[
= 1 \quad \text{by assumption}
\]

Therefore, since the \(\gcd \) is one, it must be the case that \(a = b = 1 \) and so we simply have the base case, \(P(2) \).

Case 2 \(a < b \)

Since \(b > a \), it follows that \(b - a > 0 \) and so

\[
\gcd(a, b) = \gcd(a, b - a) = 1
\]

(Why?)

Furthermore,

\[
2 \leq a + (b - a) = n + 1 - a \leq n
\]

Since \(a + (b - a) \leq n \), we can apply the inductive hypothesis and conclude that \(P(n + 1 - a) = P(a + (b - a)) \) is true.

This implies that there exist integers \(s_0, t_0 \) such that

\[
as_0 + (b - a)t_0 = 1
\]

and so

\[
a(s_0 - t_0) + bt_0 = 1
\]

So for \(s = s_0 - t_0 \) and \(t = t_0 \) we get

\[
as + bt = 1
\]

Thus, \(P(n + 1) \) is established for this case.

Case 3 \(a > b \)

This is completely symmetric to case 2; we use \(a - b \) instead of \(b - a \).

Since all three cases handle every possibility, we’ve established that \(P(n + 1) \) is true and so by the strong PMI, the lemma holds. \(\square \)