Algorithms & Algorithm Analysis
Computer Science & Engineering 235: Discrete Mathematics

Christopher M. Bourke
cbourke@cse.unl.edu

Formal Definition I

Definition
An algorithm is a sequence of unambiguous instructions for solving a problem. Algorithms must be
▶ Correct – always gives a “correct” solution.
▶ Finite – must eventually terminate.

Formal Definition II

▶ An algorithm is a feasible solution to a problem if it is also efficient
▶ Notion of efficiency: it executes in a “reasonable” amount of time
▶ Alternatively: if it uses a “reasonable” amount of memory
▶ In general: if it uses a “reasonable” amount of some resource
▶ There can be multiple algorithms acting on different data structures that solve the same problem!

General Techniques I

There are many broad categories of Algorithms:
▶ Randomized algorithms
▶ Monte-Carlo algorithms
▶ Approximation algorithms
▶ Parallel algorithms
▶ Distributed algorithms
▶ And many more!

General Techniques II

General strategies of algorithms may be classified as:
▶ Brute Force
▶ Divide & Conquer
▶ Decrease & Conquer
▶ Transform & Conquer
▶ Dynamic Programming
▶ Greedy Techniques
Pseudo-code

Algorithms can be specified using some form of pseudo-code

Good pseudo-code:
- Balances clarity and detail
- Abstracts the algorithm
- Makes use of good mathematical notation
- Is easy to read

Bad pseudo-code:
- Gives too many details
- Is implementation or language specific

Designing An Algorithm

A general approach to designing algorithms is as follows.

1. Understand the Problem
2. Choose an approach (exact or approximate, probable solution)
3. Choose an appropriate data structure
4. Choose a strategy
5. Prove Correctness
6. Evaluate complexity
7. Test it

Algorithms

Example I - Algorithm

<table>
<thead>
<tr>
<th>Max</th>
</tr>
</thead>
<tbody>
<tr>
<td>Input</td>
</tr>
<tr>
<td>Output</td>
</tr>
<tr>
<td>1</td>
</tr>
<tr>
<td>2</td>
</tr>
<tr>
<td>3</td>
</tr>
<tr>
<td>4</td>
</tr>
<tr>
<td>5</td>
</tr>
<tr>
<td>6</td>
</tr>
<tr>
<td>7</td>
</tr>
</tbody>
</table>

Example I - Understanding

This is a simple enough algorithm that you should be able to:
- Prove it correct.
- Verify that it has the properties of an algorithm.
- Have some intuition as to its efficiency.

Questions to answer:
- How many “steps” would it take for this algorithm to complete?
- What constitutes a step?
- How do we measure its complexity?

Good Pseudo-code

Example

INTERSECTION

Input	Two sets of integers, A and B		
Output	A set of integers C such that $C = A \cap B$		
1	$C = \emptyset$		
2	FOR $i = 1, \ldots,	A	$ DO
3	IF $a_i \in B$ THEN		
4	$C = C \cup \{a_i\}$		
5	END		
6	END		
7	output C		

When designing an algorithm, we usually give a formal statement about the problem we wish to solve.

Problem

Given a set $A = \{a_1, a_2, \ldots, a_n\}$ integers.

Output the index i of the maximum integer a_i.

A straightforward idea is to simply store an initial maximum, say a_1, then compare it to every other integer, and update the stored maximum if a new maximum is ever found.

Algorithms

Example I - Algorithm

Intersection

Input	Two sets of integers, A and B		
Output	A set of integers C such that $C = A \cap B$		
1	$C = \emptyset$		
2	FOR $i = 1, \ldots,	A	$ DO
3	IF $a_i \in B$ THEN		
4	$C = C \cup \{a_i\}$		
5	END		
6	END		
7	output C		
In many problems, we wish to not only find a solution, but to find the best or *optimal* solution.

A simple technique that works for some optimization problems is called the greedy technique.

As the name suggests, we solve a problem by being greedy—that is, choosing the best, most immediate solution (i.e. a *local* solution).

However, for some problems, this technique is not guaranteed to produce the best *globally optimal* solution.

Consider the change problem:

Problem
Given An integer \(n \) and a set of coin denominations \((c_1, c_2, \ldots, c_r) \) with \(c_1 > c_2 > \cdots > c_r \)
Output A set of coins \(d_1, d_2, \ldots, d_k \) such that \(\sum_{i=1}^{k} d_i = n \) and \(k \) is minimized.

▶ Can you describe an algorithm to solve this problem?
▶ How complex is it?
▶ Is it optimal?

Will this algorithm always produce an optimal answer?
Consider a coinage system where \(c_1 = 1, c_2 = 7, c_3 = 15, c_4 = 20 \) and we want to give 22 "cents" in change.

What will this algorithm produce?
Is it optimal?

It is *not* optimal since it would give us one \(c_4 \) and two \(c_1 \), for three coins, while the optimal is one \(c_2 \) and one \(c_3 \) for two coins.

What about the US currency system—is the algorithm correct in this case?
Yes, in fact, we can prove it by contradiction.
For simplicity, let \(c_1 = 25, c_2 = 10, c_3 = 5, c_4 = 1 \).
Algorithms
Example II - Proof

Why (and where) does this proof fail in our previous counterexample to the general case?
The algorithm fails because there is no greedy choice property: locally optimal solutions do not lead to a globally optimal solution.

Algorithm Analysis

How can we say that one algorithm performs better than another?
Quantify the resources required to execute:
▷ Time
▷ Memory
▷ I/O
▷ circuits, power, etc

Time is not merely CPU clock cycles, we want to study algorithms independent or implementations, platforms, and hardware.
We need an objective point of reference. For that, we measure time as a function of an algorithm’s input size.

Input Size I

For a given problem, we characterize the input size, \(n \), appropriately:
▷ Sorting – The number of items to be sorted
▷ Graphs – The number of vertices and/or edges
▷ Numerical – The number of bits needed to represent a number

Input Size II

The choice of an input size greatly depends on the elementary operation; the most relevant or important operation of an algorithm.
▷ Comparisons
▷ Additions
▷ Multiplications

Orders of Growth

An objective analysis means that we look at the order of growth with respect to the input size
▷ Small input sizes can be computed instantaneously
▷ Hardware is continually improving
▷ Complexity should be independent of current technology

Objectively, we are more interested in how an algorithm performs as \(n \to \infty \)

Intractability I

Intractable problems are problems for which there are no known efficient algorithms
▷ May only have a brute-force exponential or super-exponential running time
▷ Small inputs may be solved in a reasonable amount of time
▷ Moderate to large inputs: no hope of efficient execution
▷ Even with faster technology: may take millions or billions of years
▷ Intractable problems are usually be solved using approximations, heuristics, randomized algorithms, etc.
Intractability II

Tractable problems are problems that have efficient algorithms to solve them

- *A polynomial order of magnitude*
- The number of steps can be bounded by \(p(n) = n^k \) for some constant \(k \)
- If \(k \) is large, the algorithm may still be *impractical*

Average-Case I

- Some inputs may lead to poor performance, but may be rare
- Some inputs may lead to great performance, but may also be rare
- Rare instances may give an unfair perspective
- A frequently used algorithm’s performance may be based on how it performs *on average*

Average-Case II

Consider searching an array for an element \(a \):

- Let \(p \) be the probability of a successful search
- Then number of comparisons when \(a \) is found at index \(i \):
 \[
 i \frac{p}{n}
 \]
- Summing over all possible indices:
 \[
 \sum_{i=1}^{n} i \frac{p}{n} = \frac{p(n + 1)}{2}
 \]

Average-Case III

- Probability of an unsuccessful search: \((1 - p)\)
- Number of comparisons in unsuccessful search: \(n(1 - p) \)
- In total:
 \[
 C_{\text{avg}}(n) = \frac{p(n + 1)}{2} + n(1 - p) \approx \frac{n}{2}
 \]
- Interpretation: on average, the search algorithm must examine half of all elements in \(A \)

Worst, Best, and Average Case

- Some algorithms perform differently on various inputs of a similar size
- Helpful to consider: Worst-Case, Best-Case, and Average-Case efficiencies of algorithms
- Motivating example: searching an array \(A \) of size \(n \) for a given value \(K \)
 - Worst-Case: \(K \notin A \) then we must search every item (\(n \) comparisons)
 - Best-Case: \(K \) is the first item that we check, so only one comparison

Amortized Cost

- \(C_{\text{avg}} \) and \(C_{\text{worst}} \) may have the same order of magnitude
- From a theoretical point of view, they are equivalent
- Practical considerations may come in to play
- May motivate another approach: Amortized efficiency
- Similar to loan amortization
- A single operation may be costly, but the overall run-time over the long-run is less expensive
- Example: rehashing a hash-based map to improve subsequent look-ups
Mathematical Analysis of Algorithms

After developing an algorithm, we must analyze; a general approach:

1. Decide on a parameter(s) for the input, \(n \)
2. Identify the basic operation
3. Evaluate how the elementary operation depends on \(n \)
4. Generate a general formula for the number of times the elementary operation is executed with respect to \(n \)
5. Simplify the equation to get as simple of a function \(f(n) \) as possible.

Analysis Examples

Example I

Consider the following code.

```
Algorithm (UniqueElements)
Input : Integer array \( A \) of size \( n \)
Output : true if all elements \( a \in A \) are distinct
1 for \( i = 1, \ldots, n-1 \) do
2     for \( j = i+1, \ldots, n-1 \) do
3         if \( a_i = a_j \) then
4             return false
5         end
6     end
7 end
8 return true
```

The inner for-loop depends on the outer for-loop, so it contributes

\[
C_{\text{worst}}(n) = \sum_{i=1}^{n-2} \sum_{j=i+1}^{n-1} 1 = \frac{n(n-1)}{2}
\]

We observe that the elementary operation is executed once in each iteration, thus we have

For this algorithm, what is

- The elementary operation?
- Input Size?
- Does the elementary operation depend only on \(n \)?

The outer for-loop is run \(n - 2 \) times. More formally, it contributes

\[
\sum_{i=1}^{n-2}
\]

Analysis Example

Example II

The parity of a bit string determines whether or not the number of 1s appearing in it is even or odd. It is used as a simple form of error correction over communication networks.

```
Algorithm (Parity)
Input : An integer \( n \) in binary \( b(i) \)
Output : 0 if the parity of \( n \) is even, 1 otherwise
1 parity = 0
2 while \( n > 0 \) do
3     if \( b[0] = 1 \) then
4         parity = parity + 1 mod 2
5     end
6 end
7 return parity
```

Example: Selection Sort

- Pseudocode
- Input, input size
- Elementary operation
- Analysis
- Asymptotics
Example: Euclid’s GCD Algorithm

- The greatest common divisor (GCD) of two integers is the largest integer that evenly divides both of them.
- Euclid (Greek, 300 BCE): any divisor must also divide the remainder of \(a/b \), so iteratively divide until there is no remainder.

Algorithm (GCD)

```plaintext
Input : Integers, \( a, b, a > 1, b > 1 \)
Output : \( g \) such that \( g = \text{gcd}(a, b) \)

1. while \( b \neq 0 \) do
2.   \( t \leftarrow b \)
3.   \( b \leftarrow a \mod b \)
4.   \( a \leftarrow t \)
5. end
6. output \( a \)
```

Euclid’s GCD Algorithm

Analysis

- Number of iterations is dependent on the nature of the input, not just the input size.
- Generally, we’re interested in the worst case behavior.
- Number of iterations is maximized when the reduction in \(b \) (line 3) is minimized.
- Reduction is minimized when \(b \) is minimal; i.e. \(b = 2 \).
- Thus, after at most \(n \) iterations, \(b \) is reduced to 1 (0 on the next iteration), so:
 \[
 \frac{b}{2^{n}} = 1
 \]
- The number of iterations, \(n = \log b \)

Analysis Example

Example II - Analysis

For this algorithm, what is

- The elementary operation?
- Input Size?
- Does the elementary operation depend only on \(n \)?

The while-loop will be executed as many times as there are 1-bits in its binary representation. In the worst case, we’ll have a bit string of all ones.

The number of bits required to represent an integer \(n \) is

\[
\lceil \log n \rceil
\]

so the running time is simply \(\log n \).

Analysis Example

Example III - Analysis

- Outer Loop: executed 11 times.
- 2nd Loop: executed \(n + 1 \) times.
- Inner Loop: executed about \(\frac{m}{2} \) times.
- Thus we have
 \[
 C(n, m, p) = 11(n + 1)(m/2)
 \]
- But, do we really need to consider \(p \) or \(m \)?
 - If \(m = f(n) \), yes
 - If \(n >> m \), probably not