1. “Naïve” Set Theory
 - Uses natural language to define sets, not at all formal
 - We’ve already seen problems when attempting to reconcile natural language with logic (implication law, definition of “if” versus xor)
 - Created by Georg Cantor (late 19th Century)
 - Dominant foundation of “sets” prior to the early 20th century
 - Assumed that any operation could be used to define a set: any definable collection is a set
 - Still used as a “first step” in introducing basic concepts (ordinals, numbers, relations, functions)

2. Russell’s Paradox (Bertrand Russell)
 - Bertrand Russell (1901)
 - Caused by the axiom of “Unrestricted Comprehension” (ie unrestricted definition)
 - Even if it is an unrestricted predicate
 - Forall w_1, …, w_n exists B forall x (x in B iff phi(x, w_1, …, w_n))
 - Problem: let phi be the predicate (x not in x), that is:
 - R = { x | x not in x} then R in R iff R not in R (contradiction)
 - Argument: let R be in R, then by the definition of R, R cannot be contained in itself; let R not in R then R is in R!
 - Similar Paradoxes
 - Liar Paradox (this sentence is false)
 - Kleen-Rosser Paradox
 - Curry’s paradox

3. Zermelo-Fraenkel Set Theory
 - Ernst Zermelo, Abraham Fraenkel (1908 - 1922)
 - 9 Axioms
 - Competing systems
 - Peano Axioms (weaker, regarding the natural numbers: 0 exists; every natural number has a successor; except 0; distinctness; etc.)
 - Neumann-Bernays-Godel (NBG), “equivalent” to ZFC
 - Morse-Kelley (MK)
 - New Foundations (Willard Von Orman Quine, 1937)
 - Leads to Independence of some statements: some statements can be proven true (or false) in ZFC, while proven false (true) in another (ZF)
4. Cantor’s Diagonalization
 - N, Z, Q are all countable: infinite, but enumerable
 - R, C are uncountable: no enumeration possible
 - Formally: A countable iff exists a bijective function between N and A
 - Informally: graphical enumeration (or functional)
 - R is not countable: Cantor’s diagonalization proof (1874)
 o Intuition: “more reals” than integers
 o But there are just as many integers as rationals!
 - Not all infinities are equal: aleph null, aleph 1, etc.
 - Controversial at the time: theological implications and philosophy of mathematics
 (Poincare), rejection of non-constructive proofs (Kronecker)

5. Independence: Continuum Hypothesis
 - Does there exists a set S of intermediate cardinality between aleph0, aleph1? (asked Cantor)
 prior to axiomatic set theory, so unresolved
 - Hilbert’s 1st problem (1900)
 - Godel showed that it cannot be disproven in ZFC (1940)
 - Paul Cohen showed that it cannot be proven in ZFC either (1963)
 - Both assume that ZFC is consistent (not known, but believed)
 - Other results shown to be independent of ZFC:
 o Consistency of ZFC within itself (Godel)
 o Whitehead problem (extensions of Abelian Groups)

6. Godel’s Incompleteness Theorem (1931)
 - Metamathematics: math talking about math (axioms can be formalized as objects themselves)
 - An axiomatic system is consistent if it lacks contradiction (some statement can be proved and disproved)
 - An axiom is called independent if it cannot be derived from other axioms; a system is independent if all of its axioms are.
 - A system is complete if for every statement, either it or its negation can be derived
 - First Incompleteness theorem: no consistent system of axioms whose results can be enumerated by an algorithm is capable of proving all truths about the relations of natural numbers; there will always be true statements about N that are not provable by a Turing machine
 o Since we start with a finite number of axioms, all statements can be built via an enumeration algorithm
 - Second Incompleteness Theorem: Such a system cannot prove its own consistency (if you can prove its consistency, then it is inconsistent)
 - A system is either consistent or complete, but not both (enumerable systems that is)
 - A statement is independent if it can neither be proven nor disproven in a system
 - Intuition: No formula \(\phi(x) \) can be shown from the axioms of ZF to have the property that the collection of all \(x \) satisfying \(\phi(x) \) form a model for ZF