
A Distributed Infomap Algorithm for Scalable and High-Quality
Community Detection

Jianping Zeng
University of Nebraska-Lincoln

jizeng@cse.unl.edu

Hongfeng Yu
University of Nebraska-Lincoln

yu@cse.unl.edu

ABSTRACT
Community detection is essential to various graph analysis applica-
tions. Infomap is a graph clustering algorithm capable of achieving
high-quality communities. However, it remains a very challenging
problem to effectively apply Infomap on large graphs. By analyzing
communication and workload patterns of Infomap and leveraging
a distributed delegate partitioning and distribution method, we
develop a new heuristic strategy to carefully coordinate the com-
munity constitution from the vertices of a graph in a distributed
environment, and achieve the convergence of the distributed clus-
tering algorithm. We have implemented our optimized algorithm
using MPI (Message Passing Interface), which can be easily em-
ployed or extended to massively distributed computing systems. We
analyze the correctness of our algorithm, and conduct an intensive
experimental study to investigate the communication and com-
putation cost of our distributed algorithm, which has not shown
in previous work. The results demonstrate the scalability and the
correctness of our distributed Infomap algorithm with large-scale
real-world datasets.

CCS CONCEPTS
•Mathematics of computing→ Graph algorithms; • Theory
of computation → Distributed algorithms;

KEYWORDS
Community detection; Infomap; scalability; accuracy; large graphs

ACM Reference Format:
Jianping Zeng and Hongfeng Yu. 2018. A Distributed Infomap Algorithm
for Scalable and High-Quality Community Detection. In ICPP 2018: 47th
International Conference on Parallel Processing, August 13–16, 2018, Eugene,
OR, USA. ACM, New York, NY, USA, Article 4, 11 pages. https://doi.org/10.
1145/3225058.3225137

1 INTRODUCTION
Finding community structures in graphs is a fundamental opera-
tion in various domain applications. Examples include identifying
communities in social networks [13] and research collaboration
networks [12], unsupervised learning [19], and optimizing graph

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
ICPP 2018, August 13–16, 2018, Eugene, OR, USA
© 2018 Association for Computing Machinery.
ACM ISBN 978-1-4503-6510-9/18/08. . . $15.00
https://doi.org/10.1145/3225058.3225137

traversal [2]. Many community detection (also named graph cluster-
ing) algorithms have been developed to classify vertices of a graph
into different sets, where vertices have dense intra-connections
within a set, but sparse inter-connections between sets [11].

Infomap [22] is a community detection algorithm capable of
achieving high-quality communities [5]. However, the sequential
Infomap algorithm is less capable to process large graphs in a scal-
able manner compared with other community detection algorithms,
such as the Louvain algorithm [7]. Researchers make great efforts
to parallelize the Infomap algorithm to tackle large graphs. For
example, Bae et al. proposed different parallel methods for accel-
erating Infomap [4, 5]. However, they only showed a comparably
limited scalability with up to 128 parallel processing units. Besides,
the running time was also considerably long for large graphs, re-
ported as near 2500 seconds for UK-2007 [8] (a graph with about
3.78 billion edges) using 128 cores. Such a performance degradation
is mainly due to hubs (i.e., high-degree vertices) that commonly exist
in large scale-free graphs generated from real-world applications.
The existence of hubs makes it challenging to balance workload
and communication among processors when tackling community
detection in a distributed environment. This scalability issue has
not been successfully addressed in the existing work.

In this paper, we present a new scalable and high-quality Infomap
algorithm in a distributed environment, where the computation and
communication costs associated with the hubs are effectively bal-
anced. Meanwhile, our new algorithm can ensure the high quality
of the clustering results. More specifically, we make the following
four main contributions:

First, we investigate and address the challenging workload imbal-
ance problem associated with large scale-free graphs by exploiting a
graph partitioning method with vertex delegates used in distributed
graph traversal algorithms [20]. Through a careful duplication of
hubs among processors, our method can ensure each processor
to handle a similar number of edges, and balance workload and
communication among processors, which is neglected in previous
work [3, 5]. Therefore, our approach can achieve optimal perfor-
mance in distributed community detection.

Second, we design a novel distributed Infomap algorithm. We
adopt a synchronized strategy in our distributed algorithm, and
carefully swap the updated community information of hubs and
low-degree vertices, which can effectively make the community in-
formation on each processor consistent. Moreover, we use a unique
heuristic strategy to avoid the vertex bouncing problem that causes
non-convergence in community detection. Therefore, our approach
can ensure the accuracy of distributed community detection.

Third, instead of using the open source graph processing frame-
work (e.g., GraphLab [14] and PowerGraph [14]), we investigate

https://doi.org/10.1145/3225058.3225137
https://doi.org/10.1145/3225058.3225137
https://doi.org/10.1145/3225058.3225137


ICPP 2018, August 13–16, 2018, Eugene, OR, USA Jianping Zeng and Hongfeng Yu

the workload model of the Infomap algorithm in a distributed envi-
ronment and provide a distributed implementation directly based
on MPI. According to the recent work [23], the GraphLab based
implementations do not show a strong scalability with very large
real-world datasets. Moreover, these implementations cannot be ex-
tended to large-scale machines. Our implementation can effectively
overcome these drawbacks.

Our extensive experiments show that our distributed algorithm
is effective and correct. We also show the communication cost
and the detailed time breakdown of different components in our
algorithm, which were mostly ignored in the previous work. Our
algorithm outperforms by around 6 times the recent work based
on GraphLab. Our results have scaled up to 4,096 processors for
distributed Infomap, and clearly showed an improved scalability
over the previous state-of-the-art.

2 BACKGROUND AND MOTIVATION
Community detection has been extensively studied [11]. To effi-
ciently and effectively tackle large graphs, one common strategy
is to leverage multiple processing units to conduct community de-
tection in a parallel or distributed fashion. In this section, we first
review the related work on parallel and distributed community de-
tection algorithms, and show the needs to parallelize the Infomap
algorithm. Then, we revisit the mechanism of Infomap, and dis-
cuss the fundamental research challenges in designing a scalable
distributed Infomap algorithm.

2.1 Related Work
Among different community detection algorithms, the modularity-
based algorithms (particularly, the Louvain algorithm [7]) have
been successfully parallelized in different ways. Bhowmick et al. [6]
proposed an OpenMP implementation of the Louvain algorithm
that adopted a lock mechanism. Staudt et al. [24, 25] proposed
a parallelization approach by assembling the Louvain algorithm
and the label propagation algorithm. Lu et al. [17] took advantage
of the coloring algorithm [15, 16] as a preprocessing step for a
parallel Louvain algorithm. Cheong et al. [10] presented a GPU-
based Louvain algorithm based on the Divide-and-Conquer strategy.
Naim et al. [18] presented a highly efficient Louvain algorithm on
a single GPU, where each thread is responsible for one edge to
reduce uneven workload caused by nodes of highly varying degrees.
Wickramaarachchi et al. [26] proposed an MPI implementation of
distributed Louvain algorithm for graphs with about 10 million
edges. Zeng et al. [29, 30] presented a parallel modularity-based
algorithm and showed its scalability with over 10,000 cores.

The sequential Infomap algorithm [22] can achieve high-quality
communities based on random walks through a graph [5], but
only can process comparably small graph sizes. The paralleliza-
tion efforts for Infomap only achieved marginal scalability. Bae et
al. [3] proposed RelaxMap, a parallelization of Infomap in a shared-
memory multi-core environment, which can achieve a high-quality
output similar to the sequential Infomap algorithm. However, this
shared-memory implementation does not show its capability of
processing a very large graph. Later, Bae et al. proposed a prioritiza-
tion method [4] to reduce the total running time. GossipMap [5] is
a distributed algorithm of Infomap based on an open source graph

processing framework GraphLab [14]. However, its scalability was
shown only on 128 cores, and its running time was notably high
for the large real-world datasets. Thus, only very limited scalability
has been demonstrated by the existing shared-memory and dis-
tributed parallel Infomap algorithms. The existing methods have
not fully solved the fundamental challenges (Section 2.3) in de-
signing scalable distributed Infomap algorithms. In this paper, we
investigate these challenges, and develop an optimized scalable
Infomap algorithm.

2.2 Infomap Algorithm
In a graph G = (V , E), V is the set of vertices and E is the set of
edges. The weight of an edge between two vertices, u and v, is
denoted as wu ,v , which is 1 in an undirected unweighted graph.
The community detection problem in Infomap is to find vertices
sets, named communities (or modules), which contain high intra-
module information flow but low inter-module flow. We denote the
non-overlapping community set C of a graph G as:

∪ci = V ,∀ci ∈ C; ci ∩ c j = ∅,∀ci , c j ∈ C (1)

For simplicity, we only consider undirected unweighted graphs.
The original Infomap work [22] shows that the Infomap algorithm
can be applied on both undirected and directed graphs. Therefore,
our work can be easily extended to directed graphs.

The map equation [22] is the objective function of the Infomap
algorithm. It is based on the information flow, and is used to find
a compressed representation of a set of random walks through
a graph. Its insight is that a succinct representation of a graph
walk can be expressed over clusters rather than individual vertices,
and the clustering that produces the shortest representation also
produces the community detection result of the highest quality
in practice. Infomap uses minimum description length (MDL) to
measure the quality of detected community results, where a shorter
MDL means a more compressed community structure.

The definition of map equation is shown in Equation 2:

L(M) = qxH (Q) +
∑

m∈M
pm�H (Pm ), (2)

whereM is the set of modules, qx is the sum of the exit probability
of each module in the graph, H (Q) is the average code length of
movements between the modules, p� is the stay probability for
the random walks in a modulem, which is equal to the sum of the
exit probability and the visit probability of the random walks, and
H (Pm ) is the average code length of a module codebook for m.
L(M) represents the lower bound on the code length of detected
community structureM .

The map equation can be expanded as in Equation 3:

L(M) = (
∑

m∈M
qm )log(

∑
m∈M

qm )

−2
∑

m∈M
qmlog(qm ) −

∑
α ∈V

pα log(pα )

+
∑

m∈M
(qm +

∑
α ∈m

pα )log(qm +
∑

α ∈m
pα ),

(3)

where qm is the exit probability of a modulem, pα is the visit prob-
ability of a vertex α during the random walk, and V is the set of
vertices in the graph. For an undirected graph, pα corresponds to
the relative weightwα that is computed as the total weight of the
links connected to the vertex α divided by twice the total weight



A Distributed Infomap Algorithm ICPP 2018, August 13–16, 2018, Eugene, OR, USA

of all links in the graph (self-connected edges excluded). The visit
probability of a modulem, described as pm , is the relative weight
ofm, calculated as

∑
α ∈m

pα . The exit probability ofm, qm , is defined

by the relative weight of links exiting the module q.
∑

m∈M
qm is the

total relative weight of the links between modules.
Algorithm 1 shows the sequential Infomap algorithm conducted

in an iterative fashion. In each iteration, the algorithm greedily
minimizes the MDL change δL (δL < 0) (i.e., maximizes the MDL
decrease) to minimize the MDL when moving an isolated vertex
u into a modulem, which is based on Equation 3. The algorithm
continues this process until there is no more vertex movement
that can make the MDL increase. Then, the algorithm treats each
community as one vertex to form a new graph and continues the
above process. The algorithm stops when communities become
stable (Line 31).

In Algorithm 1, Gk is the graph in the kth iteration and Mk
u is

the community of a vertex u in Gk . The output of the algorithm
is a module set M of each vertex and the MDL L of the detected
community. There are three main phases in the algorithm:
• Phase 1: The visit probability of each vertex u is computed in
terms of the total relative weight of the links connected to u,
described as Line 3.
• Phase 2: The algorithm follows a hierarchical agglomerative clus-
tering strategy where initially each vertex is regarded as a unique
module, described as Lines 7 to 11. The algorithm initializes the
visit probability of each module using the visit probability of each
vertex (Line 9), and initializes the exit probability of each module
using the links connected to each vertex (Line 10). In Lines 15
to 23, the algorithm calculates each MDL gain by moving a ver-
tex u from its original moduleMk

u to each neighbor module, and
determines the movement of u to the moduleM ′ku to achieve the
minimum MDL change δL. If there is no more vertex movement,
the algorithm exits the loop of estimating δL of each vertex. In
Line 25, the algorithm calculates the new MDL length using the
updated pM

k
u and qM

k
u .

• Phase 3: The algorithm merges the current communities into
a new graph in Lines 27 to 29. In the new graph Gk+1, each
vertex in the vertex set V k+1 represents a community c within
the current communities Ck , and each edge in the edge set Ek+1

represents all the edges connecting the communitiesMk
u andMk

v .
The algorithm continues until the communities become stable
(i.e., the MDL change is less than a predefined threshold θ ) or the
iteration number reaches a user-specified maximum number.

As we can see, Algorithm 1 mainly contains two levels of itera-
tions: The inner iteration is from Lines 15 to 23 to calculate the
minimal MDL. The outer iteration is from Lines 5 to 31, containing
four steps, community initialization (Lines 7-11), minimal MDL
calculation (Lines 15-23), MDL update (Line 25), and community
merging (Lines 27-29). Each outer iteration can have multiple inner
iterations.

2.3 Research Challenges
Algorithm 1 is computationally intensive. For example, it can take a
long time (e.g., several hours) for a large-scale graph (e.g., one with
billions of edges) using a single processor. A common strategy for

Algorithm 1 Sequential Infomap Algorithm
Require:

G0 = (V 0, E0): initial undirected graph, where V 0 is vertex set
and E0 is the edge set;
M0: initial community of G0;
θ : quality improvement threshold;
maxiteration : maximum iteration number.

Ensure:
M : resulting module;
L: resulting MDL;
δL: change of MDL.

1: k = 0 // k indicates the iteration number
2: for all u ∈ V 0 do
3: pu = degree(u)/|E |
4: end for
5: repeat
6: // Initialize communities
7: for all u ∈ V k do
8: Mk

u = {u}

9: pM
k
u =

∑
α ∈Mk

u

pα

10: qM
k
u =

∑
wu ,v , (u,v) ∈ E

k ,u ∈ Cku and v < Cku
11: end for
12: Compute L = L(M) using Equation 3
13: Randomize the order of vertices
14: // Calculate the change of MDL δL
15: repeat
16: for all u ∈ V k do
17: if M ′ku = argmin(δLMk

u→M ′ku
) < 0 then

18: Mk
u = Mk

u − {u};M ′ku = M ′ku ∪ {u}

19: pM
k
u =

∑
α ∈Mk

u

pα − pu ;pM
′k
u =

∑
α ∈M ′ku

pα + pu

20: update qM
k
u ; update qM

′k
u

21: end if
22: end for
23: until No more vertex movement
24: // Calculate updated MDL
25: Compute Lnew = L(M) using Equation 3
26: // Merge communities into a new graph
27: V k+1 ← Ck

28: Ek+1 ← e(Cku ,C
k
v )

29: Gk+1 = (V k+1, Ek+1)
30: k = k + 1
31: until k ≤ maxiteration and L − Lnew < θ

acceleration is to first partition and distribute the original graph
among multiple processors, and then conduct computation in a
distributed fashion.

However, it is non-trivial to achieve scalable community detec-
tion for large graphs generated from real-world applications. These
graphs typically are scale-free graphs and follow the power-law de-
gree distribution, where the majority of vertices have small degrees,
while only a few vertices (or hubs) have extremely high degrees. The
existence of hubs makes it challenging to achieve balanced work-
load and communication among processors. In Algorithm 1, we can



ICPP 2018, August 13–16, 2018, Eugene, OR, USA Jianping Zeng and Hongfeng Yu

Figure 1: 1D partitioning of a graph on three processors,
where a shaded vertex is a ghost vertex residing on a remote
processor.

easily see that the complexity of the most intensive computational
components, community initialization (Lines 7-11) and iterative
MDL calculation (Lines 16-22), is proportional to the vertex number.
The existing distributed graph clustering algorithms [10, 21, 29, 30]
often employed simple 1D partitioning strategies, which prefer to
put the entire adjacency list of a vertex into a single partition. If a
processor is assigned with hubs, the workload and communication
of this processor can be significantly higher than the other proces-
sors, which can inhibit the overall performance and scalability of
distributed graph algorithms. Figure 1 shows an example to illus-
trate this problem. A simple graph, where the vertex 1 is a hub, is
divided among three processors, PE0, PE1, and PE2. A shaded ver-
tex is a ghost vertex residing on a remote processor. The subgraph
assigned to PE0 contains the vertex 1 and has more edges, thus
incurring more workload on PE0. In addition, inter-processor com-
munication is generally conducted through ghost vertices. There
are more edges connecting the local vertices and the ghost vertices
on PE0, thereby incurring more communication between PE0 and
the other processors.

Moreover, it is very challenging to obtain accurate results in a
distributed environment as each processor only has partial graph
information. For example, in Lines 15 to 23 of Algorithm 1, it de-
termines the movement of each vertex u to achieve the minimum
δL among the neighbor modules of u. However, the neighbors of u
may be located on different remote processors. Bae et al. [5] showed
some relatively simple methods on how to move vertices in a dis-
tributed environment, such as assigning each vertex by a majority
vote among its local neighbors (no remote information required), or
moving vertices to the modules with maximum aggregate network
flow. However, these methods only use local information of each
processor and cannot match the output quality of the sequential
Infomap algorithm. Alternatively, the information of boundary ver-
tices (e.g., the community IDs of the boundary vertices) can be
exchanged among the processors. For example, in Figure 1, in each
iteration PE0 sends the community information of the vertex 1 to
PE2, no matter whether the vertex 1 is in the same community with
the vertices 4 and 5 or not. In this case, the vertex 3 on PE1 still
only has the partial community information of the vertex 1 and
is not aware of its community information on PE2. Therefore, we
cannot achieve the quality of the sequential Infomap algorithm
either. It is non-trivial to determine how information can be appro-
priately swapped among processors and how much information
would suffice to achieve accurate results for a distributed Infomap
algorithm.

3 OUR METHOD
3.1 Overview
We aim to address all these challenges analyzed in Section 2.3 in
our distributed Infomap algorithm design. We first need to model
the computation and communication costs of each processor in a
distributed environment. Zeng et al. [29, 30] proposed an efficient
model to estimate the workload of distributed Louvain algorithm
using the edge number on each processor. Similar with the Infomap
algorithm, in the Louvain algorithm each vertex needs to check all
of its neighbors. Inspired by this work, we employ a graph partition
strategy that assures each processor has a similar number of edges.

For designing scalable distributed community detection for large
scale-free graphs, we also need to carefully consider hub vertices,
as they can easily incur imbalanced workload and communication
among processors. In a recent work conducted by Pearce et al. [20],
they used a delegate partitioning method to optimize parallel traver-
sal for scale-free graphs, which can make each processor have not
only a similar number of edges but also balanced communication.
Inspired by this work, we exploit the delegate partitioning method
that duplicates high-degree vertices (named delegates), and then
re-distributes their associated edges among processors.

We design our distributed Infomap algorithm by following the
general logic of the sequential Infomap algorithm: After the graph
partitioning step, the distributed algorithm conducts local clustering
on each processor and then swaps necessary module information
(e.g., exit probability and visit probability) among processors. If
there is no more vertex movement, the algorithm merges the com-
munities into a new graph and repeats the clustering on the new
graph. The algorithm stops if there is no more MDL change.

Due to the involvement of delegates, the information exchange
and synchronization become challenging with massive processors.
The way to efficiently and effectively swap information among
processors not only affects the accuracy but also the scalability
of the algorithm. In addition, in a distributed environment, the
convergence property of the Infomap algorithm is also an important
factor that we should consider.

In this section, we will show our solution to address all these
issues. We will first introduce the framework of our distributed
Infomap algorithm (Section 3.2), and then lay out the key com-
ponents of the framework, including preprocessing (Section 3.3),
parallel local clustering and information swapping (Section 3.4),
and distributed graph merging (Section 3.5).

3.2 Distributed Infomap Algorithm Framework
Algorithm 2 shows the framework of our distributed Infomap algo-
rithm that consists of four stages:

The first stage corresponds to Line 1 that is the preprocessing
stage. In this stage, we partition the graph with delegates, calculate
the visit probability of each vertex, and calculate the exit probability
of each link as described in Section 3.3. For an undirected graph, we
transform it into a directed graph. After delegate partitioning, each
processor can have a similar number of edges, and the subgraph
on each processor consists of both high-degree duplicates and low-
degree vertices.

The second stage is referred as parallel clustering with delegates,
corresponding to Lines 2 to 7. In this stage, the subgraph on each



A Distributed Infomap Algorithm ICPP 2018, August 13–16, 2018, Eugene, OR, USA

Algorithm 2 Parallel Infomap Algorithm on Each Processor
Require:

G = (V , E) : undirected graph, where V is vertex set and E is
the edge set;
p : processor number.

Ensure:
M : resulting module set;
L: resulting MDL;
δL: change of MDL.

1: Preprocessing
2: repeat
3: Local clustering with duplicates
4: Broadcast delegate states with the minimum δL
5: Swap community information
6: Update community information on each processor
7: until No vertex community state changing
8: Merge communities into a new graph, and partition the new

graph using 1D partitioning
9: repeat
10: repeat
11: Local clustering
12: Swap community states
13: Update community information on each processor
14: until No vertex movement
15: Merge communities into a new graph
16: until No improvement of MDL

processor consists of low-degree vertices and duplicated hubs. The
algorithm calculates the best community movement for each vertex
as Line 3. In order to make sure that each delegate has consistent
community movement information and δL, the algorithm broad-
casts the information of delegates that achieve the largest decrease
of MDL. Although this is a collective operation involving all proces-
sors, its cost is marginal because of a limited number of delegates.
After the information communication between Lines 4 and 5, the
algorithm updates local community information, such as the exit
probability and the visit probability of modules. This process con-
tinues until there is no more community changing for each vertex.

The third stage, corresponding to Line 8, merges the communities
into a new graph, and applies a normal 1D partition for the newly
merged graph. The reason for us to use the normal 1D partition is
that after the step of graph merging, the size of the new graph is
several orders of magnitude less than the original graph.

The fourth stage, corresponding to Lines 10 to 14, processes the
subgraphs in a way similar to Lines 2 to 7, except there are no
delegated vertices in the subgraphs. Thus, this stage is referred
as parallel clustering without delegates. The algorithm stops when
there is no more improvement of modularity.

3.3 Preprocessing
In our preprocessing stage, we first use delegate partitioning [20]
to achieve balanced workload and communication cost among pro-
cessors. The basic idea is that vertices with degrees greater than a
threshold are duplicated and distributed on all processors, while a

Figure 2: Delegate partitioning among two processors.

basic 1D partitioning is applied to low-degree vertices. The high-
degree vertices or hubs are referred as delegates. Ideally, after parti-
tioning, an outgoing edge whose source vertex is high-degree will
be stored in the partition containing the edge’s target vertex. In this
way, the delegate and the target vertex will co-locate in the same
partition. Thus, each processor can have a similar number of edges.

According to the map equation in Section 2.2, in the partitioning
phase, we need to initialize the visit probability of each vertex and
the exit probability of each link. For an input undirected graph G =
(V, E) with a vertex set V and an edge set E, the delegate partitioning
can be concluded as the following steps on p processors:

First, we calculate the degree degree(α) of each vertex α in a
distributed manner. The visit probability pα of each vertex α as
degree(α)/|E |, which is also its exit probability.

Second, we detect high-degree vertices and duplicate them on
all processors. The high-degree vertices are identified based on a
threshold dhiдh . Accordingly, the edge set E is partitioned into two
subsets: Ehiдh (whose source vertexes are high-degree) and Elow
(whose source vertex degrees are less than dhiдh ). The delegates of
high-degree vertices are created on all processors. After this step,
the local vertices on each processor include the duplicated high-
degree vertices, and the low-degree vertices that are partitioned by
the traditional 1D partitioning.

Third, we define a round-robin 1D partitioning, where we parti-
tion the edges in Elow according to their source vertex partitioning
mapping, and partition the edges in Ehiдh according to their target
vertex partitioning.

Fourth, we correct possible partition imbalances. Ideally, the
number of edges locally assigned to each processor (i.e., Elow and
Ehiдh ) should be close to |E |p for p processors. However, this may
not be gained through the previous steps. In order to achieve this
goal, we reassign an edge in Ehiдh to any partition because its
source vertex is duplicated on all processors. In particular, we reas-
sign these edges to those processors whose numbers of edges are
less than |E |p . In the original sequential Infomap algorithm, it treats
each undirected edge eab between two vertices a and b as a directed
edge. The direction is defined by the order of vertex ID, that is if
a < b, the edge eab is the outlink for the vertex a; otherwise, the
edge eab is the inlink for a. For each link, we also need to calculate
its exit probability, which is defined as 1

|E | . Compared with the
original work [20], we do not differentiate the delegates among the
master and worker processors.

Figure 2 shows an example of the delegate partitioning result.
Originally, all vertices are evenly distributed on 2 processors, as
shown in the left image. Because each vertex needs to calculate δL
for all its neighbor vertices, the workload of each vertex is propor-
tional to its edge number. If we add together the edge number of



ICPP 2018, August 13–16, 2018, Eugene, OR, USA Jianping Zeng and Hongfeng Yu

List 1Message Interface
1: struct {
2: // module ID
3: uint64_tmodID;
4: // sum of visit probability of the module
5: double sumPr ;
6: // sum of exit probability of the module
7: double exitPr ;
8: // vertex number in this module
9: int numMembers;
10: // whether this local module has been sent or not
11: bool isSent ;
12: }Module_In f o;

each vertex on each processor, we can clearly see that the work-
load is imbalance among the processors, where PE0 has 16 edges,
and PE1 has 12 edges. If we choose the degree threshold as 5, then
the vertex 2 is the delegate and is duplicated. In order to correct
possible partition imbalances, we move the edges connecting the
delegates and the low-degree vertices. For example, we move the
edge (2,5) on PE1 to PE0, as shown in the right image. Therefore,
each processor has 14 edges, and the final partition is balanced.

3.4 Parallel Local Clustering and Information
Swapping

After delegate partitioning, each processor gains a subgraph Gs =

(Vs , Es ), where Vs is the vertex set and Es is the edge set of the
subgraph Gs . As stated in Section 3.2, in the stage of parallel clus-
tering with delegates (Lines 2 to 7 in Algorithm 2),Vs is divided into
Vlow and Vhiдh , where Vlow is the low-degree vertices and Vhiдh
is the global high-degree vertices (i.e., hubs). In the stage of parallel
clustering without delegates ( Lines 10 to 14 in Algorithm 2), we
do not differentiate the high-degree vertices and the low-degree
vertices.

The parallel clustering algorithm runs on each subgraph follow-
ing similar steps as the sequential Infomap algorithm:
• Each processor calculates δL for each vertex in its subgraph. Each
processor broadcasts the high-degree vertices who achieve the
minimum local δL, and swaps the community IDs of its boundary
vertices with its neighbor processors. To decide the movement of
a vertex, each processor first checks whether the vertex should be
moved to a boundary community. If so, we use the minimum label
strategy to avoid the vertex bouncing problem [17]. Otherwise,
the vertex can be moved to any community.
• Each processor updates its local module information, calculates
its local minimal MDL value, and then uses the Allreduce func-
tion to obtain the global minimal MDL value from the other
processors.
• Each processor swaps its community information with its neigh-
bor processors for calculating δL in the next iteration.
• If there is no more vertex movement or there is no more MDL
optimization, the original graph is merged into a new graph (this
step will be described in Section 3.5).

Algorithm 3 Parallel Information Swapping on Each Processor
1: //Prepare information swapping
2: Vhiдh_min ← the hubs with the global minimal MDL
3: for all u ∈ Vhiдh_min do
4: if Module_In f o(u) NOT sent then
5: ConstructModule_In f o(u) with isSent as false
6: else
7: SetModule_In f o(u) with isSent as true
8: end if
9: end for
10: Vlow ← the low-degree vertices
11: for all u ∈ Vlow do
12: if u is a ghost vertex on other processors then
13: if Module_In f o(u) NOT sent then
14: ConstructModule_In f o(u) with isSent as false
15: else
16: SetModule_In f o(u) with isSent as true
17: end if
18: end if
19: end for
20: Swap module information with neighbor processors
21: //Update module information
22: for allm in received module information do
23: if m.modID NOT exist then
24: Build a new module according tom
25: else
26: if m.isSent == f alse then
27: Add the information ofm to the existing module
28: else
29: Continue
30: end if
31: end if
32: end for

• For the newly merged graph, where high-degree vertices and
low-degree vertices are not differentiated, the above steps are
applied until there is no more MDL change.

Although the collective operation (i.e., Allreduce) has been used,
its cost is marginal because of a limited number of hubs. In Sec-
tion 4, we evaluate the performance results to verify the workload
balancing and the scalability of our algorithm.

Figure 3: Example of information swap.



A Distributed Infomap Algorithm ICPP 2018, August 13–16, 2018, Eugene, OR, USA

In our distributed algorithm, a well-designed information swap-
ping strategy is needed. As illustrated in Figure 3, the vertices 0 and
3 on PE0 are in the same community, while the vertices 6, 7 and
8 on PE2 are in the same community. A naive information swap-
ping strategy is to let each processor only send the community
information of boundary vertices. For example, PE0 only sends the
information of the vertex 3 and PE2 only sends the information of
the vertices 6 and 8. In this case, after information swapping, the
vertex 5 cannot have the whole neighbor community information,
such that the vertex 5 does not know that the vertices 0 and 3 are
in the same community on PE0, and the vertex 7 is in the same
community with the vertices 6 and 8 on PE2. This inconsistency
on local community information incurs inaccurate results in the
following iterations, leading to a severe problem for detecting final
global communities.

To address this challenging issue, in our information swapping,
we consider swapping the whole community information of each
boundary vertex. However, this can incur a problem that the same
community information can be sent multiple times. Considering
Figure 3, when we send the community information of the vertices
6 and 8 from PE2 to PE1, because they are in the same community,
their community information will be received twice on PE1. In
order to overcome this disadvantage, we design a message interface
Module_In f o as List 1 for swapping the whole local community
information of boundary vertices. As we can see, the message inter-
faceModule_In f o contains not only the module information (e.g.,
ID, the sum of visit probability, the sum of exit probability, etc.),
but also the information on whether this module information has
been sent or not.

Based on this message interface, we develop the information
swapping algorithm as Algorithm 3. Each processor first prepares
its local module information that needs to be swapped with the
neighbor processors (Lines 2 to 19). Specifically, each processor
only needs to consider two types of vertices: the hubs that have
the global minimal MDL value, and the low-degree vertices that
are the ghost vertices on other processors. For each of these two
types of vertices, each processor constructs the message interface
Module_In f o. If the module information of a vertex has been sent,
its isSent attribute is set as true , otherwise f alse . Then, the pro-
cessors swap the module information (Line 20). After receiving the
information from its neighbor processors, each processor updates
its local module information (Lines 22 to 32). For newly received
module information, a processor builds a new module accordingly.
For the existing module information, if it has not been sent before,
it is added to the existing module; otherwise, it is skipped. Through
this means, we can effectively eliminate the possible duplication
of module information, while ensuring that the whole community
information of each boundary vertex can be synchronized to the
relevant processors.

3.5 Distributed Graph Merging
This step is relatively simple and intuitive. On each processor, the
algorithm merges the local communities into a new graph, where
a community becomes a vertex with the same community ID in

the newly merged graph. Then, the processor sends the informa-
tion of the new vertices and their adjacent edges to their assigned
processors according to the 1D partitioning.

4 EXPERIMENTS
We evaluate the quality and the scalability of our distributed In-
fomap algorithm using different datasets. We also assess the con-
vergence of our distributed algorithm. Finally, we show a detailed
performance evaluation, including the analysis of the partitioning,
the execution time breakdown, and the scalability.

Table 1: Datasets.

Name Description #Vertices #Edges
Friendster [8] An on-line gaming network 65.61M 1.81B
UK-2007 [8] Web crawl of the .uk domain in 2007 105.9M 3.78B
UK-2005 [8] Web crawl of the .uk domain in 2005 39.46M 936.4M
WebBase-2001 [9] A crawl graph by WebBase 118.14M 1.01B
ND-Web [1] A web network of University of Notre Dame 0.33M 1.50M
LiveJournal [9] A virtual-community social site 5.20M 76.94M
YouTube [28] YouTube friendship network 11.34M 29.87M
DBLP [28] A co-authorship network from DBLP 0.31M 1.04M
Amazon [28] Frequently co-purchased products from Amazon 0.33M 0.92M

As shown in Table 1, our experiment has used the datasets at dif-
ferent scales. These include small-scale graphs (the vertex number
is less than 1 million, and the edge number is around 1 million; e.g.,
Amazon, DBLP, and ND-Web), medium-scale graphs (the vertex
number is between 1 million and 10 million, and the edge number
is in the order of 10 million; e.g., LiveJournal and YouTube), and
large-scale graphs (the edge number is around 1 billion; e.g., UK-
2005, WebBase-2001, Friendster, and UK-2007). As far as we know,
the UK-2007 is one of the largest real-world undirected datasets
that are publicly available.

We implemented our algorithm using MPI and C++. Our experi-
ments are performed on Titan, a supercomputer at the Oak Ridge
Leadership Computing Facility at the Oak Ridge National Labora-
tory. Each compute node contains a 16-core 2.2GHz AMD Opteron
processor and 32GB memory. We set the threshold dhiдh as the
processor number to determine high-degree vertices (i.e., hubs).

4.1 Community Quality Analysis
It is non-trivial to achieve the convergence of a distributed Infomap
algorithm. To this end, we first examine the convergence of our al-
gorithm, and compare the quality of community detection between
our distributed algorithm and the sequential algorithm.

Due to the page limit, in Figure 4, we compare the convergence
of our distributed algorithm to the sequential algorithm using the
Amazon, DBLP, NDWeb, and YouTube datasets. As shown in each
plot of Figure 4, our distributed Infomap algorithm can achieve a
converged MDL close to the sequential algorithm. Similar results
have been also obtained on the other datasets. This shows that our
solution can address the challenging convergence problem when
involving delegates in distributed community detection.

We also compare the merging rate of the sequential Infomap
algorithm and our distributed algorithm in Figure 5. The merging
rate is the merged vertex number of each outer iteration compared
to the original graph vertex number. As shown in Figure 5, our
algorithm conveys a similar convergence pattern as the sequential



ICPP 2018, August 13–16, 2018, Eugene, OR, USA Jianping Zeng and Hongfeng Yu

Figure 4: Comparison of MDL between the sequential algorithm and our distributed algorithm.

Figure 5: Comparison of vertex merging rate between the sequential algorithm and our distributed algorithm.

algorithm. We notice that as our algorithm using delegates in clus-
tering, after the first iteration, the merging rate is usually around
50%. This means, after clustering with vertex delegates (Lines 2 to 7
in Algorithm 2), the original graph can be efficiently merged into a
graph that is several orders of magnitude smaller. Therefore, we do
not need the delegate partitioning in the second stage clustering
(Lines 10 to 14 in Algorithm 2).

Apart fromMDL, we have examined other quality measurements
to make sure that our algorithm can achieve high-quality results
of community detection. The measurements include Normalized
Mutual Information (NMI), F-measure, and Jaccard Index (JI). For all
these measurements, a high value corresponds to a high quality [27].
Table 2 shows the results for four datasets. All these values are
around 0.80, which means our distributed algorithm can achieve
similar results as the sequential algorithm.

Table 2: Quality Measurements.

Dataset NMI F-measure JI
DBLP 0.79 0.80 0.78
Amazon 0.82 0.81 0.80

4.2 Workload and Communication Balance
Analysis

There is very limited existing work on partitioning strategies of dis-
tributed Infomap algorithms. In other distributed graph clustering
research, the 1D partitioning is a common strategy for distributing
the original graph datasets [10, 21, 29, 30]. Thus, we compare our
delegate partitioning with the 1D partitioning on different datasets.

We first investigate the effect of different partitioningmethods on
the clustering workload balance. In order to compare the workload
balance between the 1D partitioning and our delegate partitioning,

we count the edge number of each subgraph on a processor. This is
because, for a distributed Infomap algorithm, each vertex needs to
calculate δL for all its neighbor vertices, and the total workload is
proportional to the total edge number on this processor. In Figure 6,
we examine the workload on each processor between the 1D parti-
tioning and our delegate partitioning. For all the large real-world
datasets, our delegate partitioning assigns each processor a simi-
lar number of edges. We find that on all these large datasets, the
difference can be significant between these two methods. For ex-
ample, when using the 1D partitioning on UK-2005, the maximum
workload can be O(107) edges for a processor, while the maximum
workload on each processor is similar and less than 106 when the
delegate partitioning is used. For WebBase-2001, Friendster, and
UK-2007, if using the 1D partitioning, the minimum workload can
be only hundreds of edges while the maximum workload can be up
toO(108). We also find that although UK-2005 has fewer edges than
WebBase-2001, the maximum workload of UK-2005 is O(107) and
the maximum workload of WebBase-2001 isO(106). This is because
the vertices in UK-2005 are more densely connected than those
in WebBase-2001. This means that high-degree vertices are more
prone to incur imbalanced workload using the 1D partitioning.

We also explore the effect of the 1D partitioning and our delegate
partitioning on the communication cost. Because the information
swapping is through boundary vertices in our distributed algorithm,
the communication cost correlates with the ghost vertex number.
By comparing the ghost vertices number between two partitioning
strategies, we can easily infer the communication cost. In Figure 7,
we compare the communication cost of two strategies on large
datasets. As shown in Figure 7, the difference of ghost vertex num-
ber can be extremely large for the 1D partitioning. For a distributed
algorithm, the communication cost is mostly determined by the
slowest part. Thus, with the 1D partitioning, there can be an ex-
tremely high number of ghost vertices on certain processors, which



A Distributed Infomap Algorithm ICPP 2018, August 13–16, 2018, Eugene, OR, USA

Figure 6: Comparison of workload balance between the 1D partitioning and the delegate partitioning.

Figure 7: Comparison of communication balance between the 1D partitioning and the delegate partitioning.

can cause intense communication and impair the total performance
of the distributed algorithm. Meanwhile, we can clearly see that
our delegate partitioning can effectively balance the local ghost ver-
tex number among processors for each dataset. Thus, our delegate
partitioning can significantly reduce the communication cost.

4.3 Execution Time Breakdown
We examine the main performance components of our algorithm
using large real-world datasets.We break down the key components
in our first clustering stage with delegates.

In the first clustering stage, there can be multiple iterations for
calculating δL of each vertex and swap community information. We
show one iteration running time on different datasets in Figure 8.
There are four key components in our profiling results, which are
Find Best Module, Broadcast Delegates, Swap Boundary Information
and Other. In Find Best Module, the algorithm calculates δL for each
vertex and moves the vertex to the neighbor community with the
minimum δL. After this step, each processor uses Broadcast Dele-
gates to broadcast the community information using the message
structure in List 1, and uses Swap Ghost Vertex State to send the
boundary community information. The Other part mainly updates
the information of communities, such as the visit probability and
the exit probability. Moreover, it creates new modules and updates
existing module information.

As we stated previously, the collective operation (broadcasting
hubs information) for all delegated vertices only needs a small
portion of time in each iteration.

In Figure 8, we also notice that the time of Find Best Module,
Broadcast Delegates and Other are reduced with the increasing
number of processors. For Find Best Module, it is much related to
the workload on each processor. With our delegate partitioning, we
can evenly partition the workload among processors. The number
of high-degree vertices decreases with the increasing number of

processors, and thus the time of Broadcast Delegates can also be
decreased. While in the Other part, our algorithm mainly updates
local community information, which is related to the number of
local communities. For Swap Boundary Information, we find its
execution time is relatively stable, and does not change significantly
with the processor number. The reason is that when the graph is
partitioned among more processors, the number of ghost vertices
on the different numbers of processors can still be the same order
and all these ghost vertices need to be swapped in each iteration.

4.4 Scalability Analysis
We examine the scalability of our algorithm on large real-world
datasets. As we stated in Section 3.2, our algorithm first clusters
subgraphs with delegates and then clusters merged graphs with-
out delegates, the running time of our algorithm should be the
sum of these two stages running times. As we discussed previ-
ously, our method can achieve balanced computation workload
and communication workload, which can assure a better scalability.
Figure 9 shows the running times of our distributed algorithm on
four large real-world datasets: UK-2005, WebBase-2001, Friendster,
and UK-2007. We can clearly see that the total running time for each
dataset is nearly inversely proportional to the processor number,
which indicates that our clustering algorithm can achieve a scalable
performance on large real-world datasets.

In order to quantify the scalability of our algorithm, we mea-
sure the parallel efficiency, more specifically, the relative parallel
efficiency τ that is defined as:τ = p1T (p1)

p2T (p2)
, where p1 and p2 are the

processor numbers, and T (p1) and T (p2) are their corresponding
running times. Figure 10 shows the parallel efficiency of our algo-
rithm for the small real-world datasets and the large real-world
datasets. For the baseline of each dataset, we use the running time
on a minimal number of processors that can suitably handle the
data size. Specifically, we use the running times on 16 processors



ICPP 2018, August 13–16, 2018, Eugene, OR, USA Jianping Zeng and Hongfeng Yu

Figure 8: Time breakdown on real-world datasets.

Figure 9: Scalability study of our algorithm using different datasets and different processor numbers. Our total clustering time
contains the times of the first clustering stage with delegates and the second clustering stage without delegates.

for Amazon, DBLP, and ND-Web, 64 processors for YouTube, 256
processors for UK-2005, Webbase-2001, and Friendster, and 1024
processors for UK-2007. Figure 10 (top) shows that our parallel al-
gorithm can achieve at least around 65% parallel efficiency for most
small- and medium-scale graphs, and achieve nearly 100% parallel
efficiency on 64 cores for the Amazon dataset. Figure 10 (bottom)
shows that our algorithm can achieve at least 70% parallel efficiency
for most large graphs. Through our analysis in Figure 9, we know
that the first clustering stage with delegates can be the dominant
part of the total running time. For those whose parallel efficiency is
around 100% (e.g., the Friendster dataset), the running time of the
first clustering stage with delegates is effectively reduced with the
increasing processor number. This states that through duplicating
high-degree vertices, our approach can effectively evenly distribute
the workload of graph clustering among all processors.

Table 3: Speedup of our algorithm on different datasets.

Dataset ND-Web LiveJournal WebBase-2001 UK-2007
Speedup 1.08 × 3.05 × 3.18 × 6.02 ×

We also compared the running time of our distributed algorithm
and the previous state-of-the-art Bae et al.’s work [4, 5]. We use
the fastest time in Bae et al.’s work to calculate the speedup of our
approach as shown in Table 3. We can see that for a small dataset
(e.g., ND-Web) the speedup is not significant. However, with the size
of graph increasing, our speedup is enlarged noticeably. Especially
on UK-2007, our approach archives about a 6× speedup.

5 DISCUSSION
Our experimental study clearly shows the scalability of our clus-
tering algorithm. However, we observe the different running times
of the first and second clustering stages across different datasets.
As shown in Figure 9, the running times of these two stages are
similar on UK-2005 and WebBase-2001. While on Friendster and

Figure 10: Parallel efficiency of our algorithm with (top) the
Amazon, DBLP, ND-Web, and YouTube datasets, and (bot-
tom) the UK-2005, WebBase-2001, Friendster, and UK-2007
datasets.

UK-2007, the running time of the second clustering stage is shorter
than the first stage.

We find that this is because the Friendster and UK-2007 datasets
can be clustered into a smaller number of clusters in the first stage.
Therefore, the running time of the second stage can bemuch shorter.
For the UK-2005 and WebBase-2001 datasets, in the first stage,
although their sizes are also reduced significantly, the resulting
cluster numbers are comparably larger. Moreover, we find that
for UK-2005 and WebBase-2001, the vertex movements reduce δL
relatively marginally in each iteration of the second stage. Thus, the



A Distributed Infomap Algorithm ICPP 2018, August 13–16, 2018, Eugene, OR, USA

second stage needs more iterations and a longer running time. We
will conduct a more detailed investigation on the different running
times of the first and second stages on different datasets.

6 CONCLUSION
We present a distributed Infomap algorithm for scalable and high-
quality community detection. Our algorithm can gain accurate
community detection results and achieve balanced computation
workload and communication among massive processors for large
graphs, which demonstrate a clear improvement over the previous
state-of-the-art. Our algorithm makes Infomap scalable and practi-
cal to achieve high-quality communities from large graphs. In the
future, we would like to extend our algorithm using heterogenous
architectures and exploit hardware accelerations (e.g., GPUs) to
further improve the scalability of community detection. Moreover,
we will study algorithms to effectively and efficiently visualize
community detection results of large graphs. We plan to apply our
solution on other very large graphs from different domains.

ACKNOWLEDGMENTS
This research has been sponsored by the National Science Founda-
tion through grants IIS-1423487 and IIS-1652846.

REFERENCES
[1] Réka Albert, Hawoong Jeong, and Albert-László Barabási. 1999. Internet: Diame-

ter of the world-wide web. nature 401, 6749 (1999), 130–131.
[2] Junya Arai, Hiroaki Shiokawa, Takeshi Yamamuro, Makoto Onizuka, and Sotetsu

Iwamura. 2016. Rabbit Order: Just-in-time parallel reordering for fast graph
analysis. In Parallel and Distributed Processing Symposium (IPDPS), 2016 IEEE
International. IEEE, 22–31.

[3] Seung-Hee Bae, Daniel Halperin, Jevin West, Martin Rosvall, and Bill Howe. 2013.
Scalable flow-based community detection for large-scale network analysis. In
Data Mining Workshops, 2013 IEEE 13th International Conference on. 303–310.

[4] Seung-Hee Bae, Daniel Halperin, Jevin D West, Martin Rosvall, and Bill Howe.
2017. Scalable and efficient flow-based community detection for large-scale graph
analysis. ACM Transactions on Knowledge Discovery from Data (TKDD) 11, 3
(2017), 32.

[5] Seung-Hee Bae and Bill Howe. 2015. GossipMap: a distributed community detec-
tion algorithm for billion-edge directed graphs. In Proceedings of the International
Conference for High Performance Computing, Networking, Storage and Analysis.

[6] Sanjukta Bhowmick and Sriram Srinivasan. 2013. A template for parallelizing the
Louvain method for modularity maximization. In Dynamics On and Of Complex
Networks, Volume 2. Springer, 111–124.

[7] Vincent D Blondel, Jean-Loup Guillaume, Renaud Lambiotte, and Etienne Lefeb-
vre. 2008. Fast unfolding of communities in large networks. Journal of statistical
mechanics: theory and experiment 2008, 10 (2008), P10008.

[8] Paolo Boldi, Bruno Codenotti, Massimo Santini, and Sebastiano Vigna. 2004. Ubi-
Crawler: A scalable fully distributed web crawler. Software: Practice & Experience
34, 8 (2004), 711–726.

[9] Paolo Boldi and Sebastiano Vigna. 2004. The WebGraph framework I: com-
pression techniques. In Proc. of the Thirteenth International World Wide Web
Conference (WWW 2004). 595–601.

[10] Chun Yew Cheong, Huynh Phung Huynh, David Lo, and Rick Siow Mong Goh.
2013. Hierarchical parallel algorithm for modularity-based community detec-
tion using GPUs. In Proceedings of the 19th International Conference on Parallel
Processing (Euro-Par’13). 775–787.

[11] Santo Fortunato. 2010. Community detection in graphs. Physics Reports 486, 3-5
(2010), 75–174.

[12] Michelle Girvan and Mark EJ Newman. 2002. Community structure in social and
biological networks. Proceedings of the national academy of sciences 99, 12 (2002),
7821–7826.

[13] Steve Harenberg, Gonzalo Bello, L Gjeltema, Stephen Ranshous, Jitendra Harlalka,
Ramona Seay, Kanchana Padmanabhan, and Nagiza Samatova. 2014. Community
detection in large-scale networks: a survey and empirical evaluation. Wiley
Interdisciplinary Reviews: Computational Statistics 6, 6 (2014), 426–439.

[14] Yucheng Low, Danny Bickson, Joseph Gonzalez, Carlos Guestrin, Aapo Kyrola,
and Joseph M Hellerstein. 2012. Distributed GraphLab: A framework for machine

learning and data mining in the cloud. Proceedings of the VLDB Endowment 5, 8
(2012), 716–727.

[15] Hao Lu, Mahantesh Halappanavar, Daniel Chavarría-Miranda, Assefaw Ge-
bremedhin, and Ananth Kalyanaraman. 2015. Balanced coloring for parallel
computing applications. In Parallel and Distributed Processing Symposium (IPDPS),
2015 IEEE International. IEEE, 7–16.

[16] Hao Lu, Mahantesh Halappanavar, Daniel Chavarria-Miranda, Assefaw H Ge-
bremedhin, Ajay Panyala, and Ananth Kalyanaraman. 2017. Algorithms for
balanced graph colorings with applications in parallel computing. IEEE Transac-
tions on Parallel and Distributed Systems 28, 5 (2017), 1240–1256.

[17] Hao Lu, Mahantesh Halappanavar, and Ananth Kalyanaraman. 2015. Parallel
heuristics for scalable community detection. Parallel Comput. 47 (2015), 19–37.

[18] Md Naim, Fredrik Manne, Mahantesh Halappanavar, and Antonino Tumeo. 2017.
Community detection on the GPU. In Parallel and Distributed Processing Sympo-
sium (IPDPS), 2017 IEEE International. IEEE, 625–634.

[19] Andrew Y Ng, Michael I Jordan, Yair Weiss, et al. 2002. On spectral clustering:
Analysis and an algorithm. Advances in neural information processing systems 2
(2002), 849–856.

[20] Roger Pearce, Maya Gokhale, and Nancy M Amato. 2014. Faster parallel traversal
of scale free graphs at extreme scale with vertex delegates. In Proceedings of the
International Conference for High Performance Computing, Networking, Storage
and Analysis. IEEE Press, 549–559.

[21] Xinyu Que, Fabio Checconi, Fabrizio Petrini, and John A Gunnels. 2015. Scalable
community detection with the Louvain algorithm. In Parallel and Distributed
Processing Symposium (IPDPS), 2015 IEEE International. IEEE, 28–37.

[22] Martin Rosvall, Daniel Axelsson, and Carl T Bergstrom. 2009. The map equation.
The European Physical Journal Special Topics 178, 1 (2009), 13–23.

[23] Scott Sallinen, Keita Iwabuchi, Suraj Poudel, Maya Gokhale, Matei Ripeanu, and
Roger Pearce. 2016. Graph colouring as a challenge problem for dynamic graph
processing on distributed systems. In Proceedings of the International Conference
for High Performance Computing, Networking, Storage and Analysis. 30.

[24] Christian L Staudt and Henning Meyerhenke. 2013. Engineering high-
performance community detection heuristics for massive graphs. In Parallel
Processing, 2013 42nd International Conference on. IEEE, 180–189.

[25] Christian L Staudt and Henning Meyerhenke. 2016. Engineering parallel al-
gorithms for community detection in massive networks. IEEE Transactions on
Parallel and Distributed Systems 27, 1 (2016), 171–184.

[26] Charith Wickramaarachchi, Marc Frincu, Patrick Small, and Viktor K Prasanna.
2014. Fast parallel algorithm for unfolding of communities in large graphs. In
High Performance Extreme Computing Conference (HPEC), 2014 IEEE. IEEE, 1–6.

[27] Jierui Xie, Stephen Kelley, and Boleslaw K Szymanski. 2013. Overlapping com-
munity detection in networks: The state-of-the-art and comparative study. Acm
computing surveys (csur) 45, 4 (2013), 43.

[28] Jaewon Yang and Jure Leskovec. 2012. Defining and evaluating network commu-
nities based on ground-truth. In Proceedings of the ACM SIGKDD Workshop on
Mining Data Semantics (MDS ’12). Article 3, 8 pages.

[29] Jianping Zeng and Hongfeng Yu. 2015. Parallel modularity-based community
detection on large-scale graphs. In 2015 IEEE International Conference on Cluster
Computing. IEEE, 1–10.

[30] Jianping Zeng and Hongfeng Yu. 2016. A study of graph partitioning schemes
for parallel graph community detection. Parallel Comput. 58 (2016), 131–139.


	Abstract
	1 Introduction
	2 Background and Motivation
	2.1 Related Work
	2.2 Infomap Algorithm
	2.3 Research Challenges

	3 Our Method
	3.1 Overview
	3.2 Distributed Infomap Algorithm Framework
	3.3 Preprocessing
	3.4 Parallel Local Clustering and Information Swapping
	3.5 Distributed Graph Merging

	4 Experiments
	4.1 Community Quality Analysis
	4.2 Workload and Communication Balance Analysis
	4.3 Execution Time Breakdown
	4.4 Scalability Analysis

	5 Discussion
	6 Conclusion
	Acknowledgments
	References

