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Abstract—We have devised and implemented a key technol-
ogy, SpatioTemporal Adaptive-Resolution Encoding (STARE), in
an array database management system, i.e. SciDB, to achieve
unparalleled variety scaling for Big Earth Data, enabling rapid-
response visual analytics. STARE not only serves as a unifying
data representation homogenizing diverse varieties of Earth
Science Datasets, but also supports spatiotemporal data place-
ment alignment of these datasets to optimize a major class of
Earth Science data analyses, i.e. those requiring spatiotemporal
coincidence. Using STARE, we tailor a data partitioning and
distribution strategy for the data access patterns of our scien-
tific analysis, leading to optimal use of distributed resources.
With STARE, rapid-response visual analytics are made possible
through a high-level query interface, allowing geoscientists to
perform data exploration visually, intuitively and interactively.
We envision a system based on these innovations to relieve
geoscientists of most laborious data management chores so that
they may focus better on scientific issues and investigations. A
significant boost in scientific productivity may thus be expected.
We demonstrate these advantages with a prototypical system
including comparisons to alternatives.

Index Terms—STARE; SciDB; array database; variety; data
analysis; load balancing; indexing; GIS

I. INTRODUCTION

Earth Science data obtained from diverse sources have been
routinely leveraged by scientists to study various phenomena.
The principal data sources include observations and model
simulation outputs. These data are characterized by spatiotem-
poral heterogeneity originating from different instrument de-
sign specifications and/or computational model requirements
that are preserved in data generation processes. Such inherent
heterogeneity poses several challenges in exploring and ana-
lyzing geoscience data. First, scientists often wish to identify
features or patterns co-located among multiple data sources to
derive and validate hypotheses. Heterogeneous data make it a
tedious task to look for such features in dissimilar datasets.
Second, Earth Science data are multivariate. It is challenging
to tackle the high dimensionality of Earth Science data and
explore relationships among multiple variables in a scalable
fashion. Third, there is a shortage of lucidity in traditional
automated approaches, such as feature detection or clustering,
in that scientists often cannot adeptly interact with data during
analysis and intuitively interpret results.

To address these issues, we present a new scalable approach

that facilitates the scientific analysis of voluminous and diverse
geoscience data in a distributed environment. The major con-
tributions of our work are:
• SpatioTemporal Adaptive-Resolution Encoding (STARE).

We have implemented STARE as the basis of a unified
data model and an indexing scheme for geo-spatiotemporal
data to address the variety challenge of Big Data in Earth
Science. With the generality of unifying at least the three
popular geospatial data models, i.e. Grid, Swath, and Point,
used in current Earth Science data products, data preparation
time for interactive analysis of diverse datasets can be
drastically reduced, achieving unparalleled variety scaling.

• Spatiotemporal data placement alignment in a distributed
environment. We have applied STARE to extending the capa-
bilities of the array database SciDB using a data placement
strategy employing STARE-based data access patterns of our
scientific analysis in a distributed environment. With these
STARE-enabled tools, we can scalably co-locate data spa-
tiotemporally by placing data chunks directly to the correct
nodes, avoiding costly data transfer and repartitioning and
ensuring scalable performance.

• A visual analytics prototype. We have constructed a high-
level graphical query interface that allows users to easily
express customized queries to search for features of inter-
est across multiple heterogeneous datasets. For identified
features, we have developed a visualization interface that
enables interactive exploration and analytics in a linked-
view fashion. Specific visualization techniques are employed
in each view to facilitate easy and interactive exploration
into various aspects of identified features. A user can inter-
actively and iteratively build insights into the data through
a variety of intuitive visual analytic operations.

II. BACKGROUND AND MOTIVATION

Facing the deluge of ever-increasing data volume, there
have been many efforts attempting to address the growing
challenge of Earth Science data practice with Big Data tech-
nologies. Three data models generally represent the spatial
variety of geoscience data: Grid, Swath, and Point. These
data are typically volumetric, multivariate, and time-varying.
Most of the Big-Data efforts emphasize the volume aspect
of the challenge. We, however, have recognized variety as
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Fig. 1. Three Earth Science data models.

the key [1] beyond volume to attaining optimal scientific
value. Moreover, after identifying certain regions of interest,
scientists often conduct detailed data analysis and visualization
using combinations of queries based on possibly complex
functions of the primary variables [2]. Without special care,
variety coupled with complex analysis naturally leads to poor
data access patterns impacting data placement and system
performance. This grand challenge can be illustrated by the
disparity between data placement and data variety.

A. Data Placement Challenge

Data placement is especially important for technologies
in which compute and storage are tightly coupled such as
a database management system (DBMS). However, most
existing frameworks for distributed big data analytics, such
as MapReduce [3] and Spark [4], are only loosely coupled
with the storage system (e.g., HDFS [5], Cassandra [6],
etc.). Loosely coupled technologies provide better flexibility
or elasticity but suboptimal performance and efficiency with
equivalent resources. For example, Hadoop [7], the open-
source version of MapReduce, is simple and worthy of high
praise for one-pass computations, but it is inherently inefficient
for multi-pass computations due to the lack of primitives for
sharing intermediate states of the computation among passes,
instead sending and retrieving intermediate states across a
distributed file system. Thus, the communication and I/O
overheads affect the overall performance.

B. Data Variety Challenge

Researchers have proposed various solutions based on the
loosely coupled frameworks (e.g., Spark and Hadoop) and
exploited multiple computer nodes (e.g., a cluster) in a
distributed environment [8]. These solutions are viable for
tackling the volume challenge of Big Earth Data, but have
mostly downplayed even neglected the variety challenge.

Figure 1 illustrates the three data models: Grid, Swath, and
Point. The Grid is shown in a black grid mesh with fixed
latitude and longitude spacing. A simple linear relation exists
between array indices and latitude-longitude geolocation coor-
dinates. Swath retains a spaceborne instrument’s observation
geometry (e.g., cross-track × along-track) for its Instanta-
neous Fields of View (IFOV), and no simple relation exists

between data array indices and geolocations. Point model is
used mostly for in-situ observations at irregularly distributed
locations. In contrast to a Grid’s regular relationship between
index and geolocation, geolocations of Point and Swath data
elements are specified individually.

However, the different data models are specified using
different reference frames and have different resolutions re-
sulting in arrays of different shapes, even different geolocation
representations. Thus, without a unifying representation, it
is difficult, if not impossible, to spatiotemporally align their
partitions when they are placed across cluster nodes. Mis-
aligned arrays must be aligned on-the-fly, a computationally
expensive process, before they can be processed together
for integrative analysis, such as conditional subsetting and
comparisons between multiple, dissimilar datasets. Since most
integrative analysis requires spatial and/or temporal coinci-
dence, data should be laid out so that data for the same
spatiotemporal partition reside on the same node. Difference
in data representations and array shapes thus gives rise to a
formidable challenge to data co-alignment.

III. OUR APPROACH

We aim to enable scalable data storage and analytics by
holistically addressing Big Earth Data. We develop a new
indexing scheme, named SpatioTemporal Adaptive-Resolution
Encoding (STARE), to spatiotemporally co-align arrays of
different shapes and data models. Using STARE, we tailor a
data placement strategy to the data access patterns of scientific
analysis, leading to optimal data partitioning and distribution
in a distributed environment.

A. STARE

In our effort of developing viable approaches to achieve
optimal scientific value from Big Earth Data, we realize that
an appropriate indexing scheme for geolocation is crucial. The
primary requirements for such an indexing scheme include:
R1: Support spatiotemporal data placement alignment.
R2: Include resolution information of the underlying data.

The rationale for the first requirement is straightforward.
Most integrative analyses in Earth Science require spatiotem-
poral coincidence. Data placements aligned spatiotemporally
ensure the minimization of node-to-node communication on a
distributed parallel database and, as a result, optimization of
performance. The second requirement ensures set operations
over multiple, diverse datasets for integrative analyses can
be carried out robustly and consistently without sacrificing
performance.

STARE is an innovative outcome satisfying the require-
ments. It consists of two parts, a spatial component and a
temporal component.

1) Spatial component: Hierarchical triangular mesh
(HTM) [9] is a way to address the surface of a sphere using
a hierarchy of spherical triangles. We build on the work of
Kunszt et al. [9] who used HTM to index for the Sloan
Digital Sky Survey (SDSS) [10]. The mesh is generated with
the procedure below:
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(a) (b)

Fig. 2. (a): HTM evolution within 5 iterations. (b): An example illustrating
hierarchical triangular mesh: triangles N0 shown in red, N01 shown in green,
N012 shown in blue, and N0123 shown in yellow.

1: Start with an inscribing octahedron (or other platonic
solid) of a sphere. South (north) is labeled with a 0 (1),
and the 4 triangles of each half are labeled 0-3 starting
from the triangle nearest the x-axis proceeding counter-
clockwise around the sphere as viewed from outside and
above the poles.

2: Bisect each edge of the triangular facets.
3: Bring the bisecting points to inscribe the sphere to form

4 smaller spherical triangles.
4: Repeat from Step 2, until a desired resolution is reached.

We show the results of HTM evolution within 5 iterations
in Figure 2(a). After the initial octahedron, each iteration is
termed a quadfurcation, i.e., division/branching into 4 parts,
requiring 2 more bits to index. An example is illustrated in
Figure 2(b).

The spatial component of STARE is a customized variant
of the HTM with two distinctions. First, while right-justified
encoding is used for the original HTM indexing, we choose
a left-justified encoding to facilitate spatial data placement
alignment. Second, data resolution is added to the encoding
using a few least-significant bits to facilitate set operations
among diverse datasets.

The conventional HTM implementation had a simple map
from symbols to integers in a Right Justified Mapping (RJM).
However, RJM maps points in geometric proximity (e.g.,
in the offspring triangles of the same parent) to multiple,
separated locations on the number line. Thus, implementing
set operations (e.g., intersection) under RJM is complicated
by this one-to-many mapping of the geometric points (in
triangles) along the number line. For example, as shown in
Figure 3, geometrically S0123 (corresponding to the digital
value 539 in RJM) contains S01230 (2156 in RJM), but when
mapped to integers N0123 (795 in RJM) it lies in between,
even though S0123 and S01230 share the same prefix to
the 3rd level. Thus, mapping HTM regions to contiguous
RJM integer intervals holds only within the same HTM index
levels, whereas our diverse datasets have a range of spatial
resolutions.

Instead of using RJM, we use a Left Justified Mapping
(LJM) bit format to encode HTM. Figure 4 shows the cor-
responding result of our example (using 12 bits for clarity).

S0123 ⇒ 0b1000011011 = 0x21b = 539
N0123 ⇒ 0b1100011011 = 0x31b = 795
S01230 ⇒ 0b100001101100 = 0x86c = 2156

Fig. 3. RJM encoding example.

S0123 ⇒ 0b100001101100 = 0x86c = 2156
N0123 ⇒ 0b110001101100 = 0x31b = 3180
S01230 ⇒ 0b100001101100 = 0x86c = 2156

Fig. 4. LJM encoding example.

However, in this case, we have an aliasing problem, e.g.,
with S0123 and S01230. LJM cannot distinguish between
levels, as it does not track how many bits from the left are
significant. To address this issue, we use a few least significant
bits of a signed 64-bit integer to encode the approximate data
resolution. Since we limit the number of quadfurcations to
27 (corresponding to ∼7-cm resolution), together with the
starting 8 facets of the octahedron, only 57(= 27 × 2 + 3)
bits are needed. Excluding the sign bit, we have 6 bits left
to encode the quadfurcation level with the closet resolution to
(but covering) that of the data.

Table I lists the bit-field arrangement of STARE’s spatial
index. Figure 5 shows the triangles from our previous example.
This encodes the difference between S0123 and S01230 and
integer comparisons and can tell us that the former contains
the latter.

S0123 ⇒ 0x06c0000000000003
S01230 ⇒ 0x06c0000000000004
N0123 ⇒ 0x46c0000000000003

Fig. 5. STARE spatial encoding example.

Essentially, STARE’s spatial index concisely and uniquely
maps a floating-point latitude-longitude 2-tuple to an integer
with a given precision. For example, at the 23rd quadfurcation
level the mapping has a ∼1-m uncertainty.

2) Temporal component: STARE’s temporal component
is also hierarchical but uses conventional date/time units to
avoid unnecessary translations between temporal frameworks.
Table II provides just one example encoding with a maximum
time resolution of milliseconds, common for observations
obtained from spacecraft. As an example, for an observation
made on 2015 June 12, 8:10 AM with millisecond resolution,
STARE yields

[+] 000-002015-06-3-3 08:0600.000 (07).

Here, the (07) corresponds to the highest level (finest) res-
olution available, milliseconds, and the [+] signifies positive

TABLE I
LEFT JUSTIFIED MAPPING OF STARE SPATIAL ENCODING.

Starting
Bit

Ending
Bit

No.
Bit

Meaning

63 63 1 Reserved (Most Significant)
62 62 1 North-South Bit
60 61 2 Octahedral triangle index (Resolution level 0: ∼10,000 km)
6 59 54 Quadtree triangle index (Resolution levels 1-27: ∼5,000 km to ∼7 cm)
5 5 1 Reserved
0 4 5 Resolution level (Least Significant)
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TABLE II
AN EXAMPLE OF STARE TEMPORAL ENCODING.

Starting
Bit

Ending
Bit

No.
Bit

Meaning

0 2 3 Resolution/Unit
3 12 10 Millisecond
13 24 12 Second
25 29 5 Hour
30 32 3 Day of week
33 34 2 Week
35 38 4 Month
39 48 10 Year
49 58 10 Kilo-annum
59 62 4 Mega-annum
63 63 1 Before/After

years. With the Unix-based convention of numbering months
starting at 0 and days at 1, the native STARE format can
be read (partly) as the 3rd day of week 3 of month 6 (the
7th regularized 28-day month). Conversion to an array index
is simple, and alternative encodings may be devised to meet
application requirements.

3) Deployment: We use STARE to support our research
into the automated analysis of phenomena such as blizzards
as moving objects. We are extending the capabilities of the
array database SciDB and developing tools (database ingest,
preprocessing, and visualization) using STARE through a
software library and APIs.

SciDB [11] is an open-source distributed data manage-
ment system used primarily for application domains involving
very large-scale array data. SciDB automatically distributes
data and computational load across an arbitrary number of
hardware instances while presenting an end user with the
experience of a single, unified system. Unlike relational
databases, which store data in flat tables, SciDB stores data
in multidimensional arrays. Not only do multi-dimensional
arrays generally lend themselves well to the representation of
complex scientific data, they also permit the construction of
an ever-growing library of efficient mathematical operators. In
addition to its built-in libraries, SciDB provides user-defined
types (UDTs), user-defined functions (UDFs), and user-defined
operators (UDOs) to extend its core capabilities.

We have incorporated STARE to SciDB using its UDT and
UDF facilities, including a STARE UDT verifying functions
for constructing SciDB indices. Tagging Earth Science data
with STARE ranges allows the geometric comparison, co-
registration, and selection of diverse kinds of data via efficient
metadata operations.

B. Data Placement Strategy

Building on our STARE indexing scheme, we study data
access patterns in user analytics operations, and employ a
STARE-based data placement strategy to effectively partition
and distribute Earth Science data in a distributed environment.

1) Data access patterns: With the advances in computing
and visualization techniques, nowadays Earth Science data
is mostly explored and studied via visual analytics. Visual
analytics operations can be roughly categorized into two types:
view-dependent and data-dependent. For view-dependent op-
erations, users access data by specifying their camera or view

(a) (b)

Fig. 6. The spatial decomposition of a spherical surface using STARE and its
corresponding hierarchical triangular mesh. A preorder traversal of triangle
leaves is equivalent to the space-filling curve on the spherical surface. (a)
shows that we evenly assign the triangle leaves among three processors from
left to right in the hierarchical triangular mesh tree, and the distribution
of their regions is contiguous along the space-filling curve. In this case,
each processor’s regions may not be always visible from different viewing
directions. (b) shows that we assign the triangle leaves among three processors
in round robin, and the neighboring regions are largely assigned to different
processors. In this case, a portion of a processor’s regions can be visible from
any viewing direction.

positions (e.g., visualizing data within a view port). For data-
dependent operations, users access data by specifying their
data of interest (e.g., querying data within a certain range or
within a certain time interval). These two types of operations
are often combined in practice. For example, users can apply
visualization techniques to control the visual properties of
queried data variables and find the features or regions of
interest.

2) Data partitioning and distribution: In a distributed en-
vironment, to achieve workload balancing among different
processors, a common practice is to use regular gridding to
divide a dataset into uniform blocks and evenly or randomly
assign the blocks among the processors. When the block size is
sufficiently small, it is easy to achieve workload balancing, but
the overhead (increased bookkeeping due to the large number
of blocks) counteracts overall performance.

We can achieve a more sparseness-adaptive assignment by
leveraging the spatial locality encoded in a tree structure,
such as a linear quadtree or a hierarchical triangular mesh
quadtree [9], when data exhibit unbalanced density. STARE
indexing scheme essentially encodes geolocations of multiple
datasets, resulting in a unified quadtree for each time slice.
A preorder traversal of the corresponding quadtree leaves is
a space-filling curve which groups spatially nearby triangles
together on the spherical surface. This characteristic can be
used for optimizing data layout.

If we assign the processors contiguously along the space-
filling curve for parallel processing, each processor will be
responsible for contiguous regions on the surface as shown in
Figure 6(a). However, users may only see a part of a region on
the earth, and other regions are occluded from a certain camera
position. Therefore, a contiguous assignment may result in
unbalanced workload and suboptimal data locality. To address
this issue, we distribute the triangles among the processors
along the space-filling curve in the round robin fashion as
shown in Figure 6(b). Data operations and calculations asso-
ciated with a given triangle are also distributed in the same
scheme. This guarantees that, given a sufficient number of
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Fig. 7. The framework of our distributed storage and analytics system.

processors, the neighboring regions are assigned to different
processors to achieve load balancing during users’ interactive
exploration.

IV. SYSTEM FRAMEWORK

We develop a distributed storage and analytics system based
on our STARE indexing scheme and data placement strategy
to tackle Big Earth Data.

The overall framework of our system is a typical three
tier web application that is composed of a SciDB distributed
database, a shim layer acting as the web server, and a front-
end with STARE as a plugin of UDF to SciDB, as shown in
Figure 7. Shim is a basic SciDB client that exposes SciDB
functionality through a simple HTTP API. We implement
the front-end to query data through the shim web server to
SciDB and render data as an overlay on Google Maps within
a browser. Every query from the front-end is encapsulated in
the HTTP GET request as the suffix of the Uniform Resource
Identifier (URI) and is encoded appropriately.

The back-end of our system, SciDB, is designed to run on
a shared nothing architecture and allow scientists to analyze
voluminous datasets as arrays with little concern for the details
as to how massively parallel processing is achieved. It is
comprised of a large set of worker nodes, a subset of which
also act as coordinator nodes. A Postgres database runs on
a coordinator node to manage all the metadata about the
nodes, instances, arrays and so on. Each node contains its
local SciDB engine and data store. Doan et al. [12] evaluated
the impact of data placement on SciDB and Spark. SciDB can
outperform Spark+HDFS and Spark+Cassandra by a factor of
approximately 3-10 for equivalent integrative analysis, when
data placement alignment is exploited.

Similar to a relational database, SciDB also has a query
executor to parse, optimize, and execute queries written in
the Array Query Language (AQL) and the Array Functional
Language (AFL), which can be extended with UDTs, UDFs,
and UDOs.

Using STARE to organize data before database ingests, we
can place data chunks directly to the correct nodes, avoiding
costly data transferring and repartitioning. With the enormous
scale of Earth Science datasets, the savings from eliminat-

TABLE III
DATASETS USED IN OUR EXPERIMENTAL STUDY.

name type time interval latitude range longitude range resolution size/slice
MERRA-2 grid 1 hour 90◦S - 90◦N 180◦W - 180◦E 576×361 0.83M

NMQ grid 5 minutes 20◦S - 55◦N 130◦W - 60◦E 7001×3501 98M
TRMM swath 15 slices/day 40◦S - 40◦N 180◦W - 180◦E 1601×7201 46M

ing costly data repartitioning (or redimensioning) cannot be
overemphasized. Because STARE uniformly translates geolo-
cations and times to integer spatial and temporal indices with
resolutions encoded therein, placements of data represented
by different models and with different resolutions are aligned
in storage. They naturally co-locate in space and time when
distributed across computing and storage resources.

We developed two UDFs to ingest data using STARE with
intuitive APIs, specifically,

hstmFromLevelLatLon(int64 level, double

latitude, double longitude)

converting a geospatial location into a STARE spatial index,
and

temporalIndexFromTradYrMoDyHrMiSeMsRl(int64

year, int64 month, int64 day, int64 hour,

int64 minute, int64 second, int64 minisecond,

int64 resolution)

converting a time into a STARE temporal index. Then, the
process of ingesting data consists of three steps:

1: Use SciDB built-in apply operator to add the computed
STARE spatial indices and temporal indices as new
attributes into the array.

2: Use SciDB built-in redimension operator to change the
spatial and temporal indices as the current array indices.

3: Store the redimensioned array into a new array.
Note that for data external to SciDB that is already indexed

with STARE, it can be loaded and distributed directly without
this redimensioning, a usually expensive step.

V. RESULT

In order to study the performance characteristics of our
framework, we use a concrete set of typical queries in Earth
Science domain. The queries operate on three multidimen-
sional Grid and Swath datasets as described below. Since the
handling of Point data is similar to that of Swath, it is not
specifically demonstrated in this study.

A. Datasets

Two regular gridded datasets and one swath dataset for
the period of Winter 2010 (i.e., from December 1st, 2009 to
February 28th, 2010) are used to conduct our experiments. The
first regular gridded dataset is extracted from an hourly dataset
of the NASA Modern Era Retrospective-analysis for Research
and Applications (MERRA-2) [13] data collection, while
the second dataset is extracted from a reprocessed 5-minute
National Mosaic and Multi-sensor QPE (NMQ, where QPE
stands for quantitative precipitation estimate) [14]. MERRA-2
has global coverage, whereas NMQ is only available for the
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Fig. 8. Rendering of one time slice of MERRA-2 and a partial trajectory of
TRMM.

contiguous United States (CONUS), specifically 20◦N - 55◦N
in latitude and 130◦W - 60◦W in longitude. They are also of
different resolutions. For MERRA-2, it is 5

8

◦ × 1
2

◦ (longitude
× latitude) in space and hourly in time, whereas it is 0.01◦ ×
0.01◦ in space and every 5 minutes in time for NMQ.

The swath dataset, from NASA’s Tropical Rainfall Measur-
ing Mission (TRMM), derives vertical hydrometeor profiles
using data from Precipitation Radar (PR) and TRMM Mi-
crowave Imager (TMI) that were orbiting the tropics of Earth
(between 40◦S and 40◦N) ∼15 times per day generating a
scan line every 600ms [15].

Three types of data are displayed within different ranges
of location and they are not synchronized due to their dif-
ferent time intervals between contiguous time steps. Table III
summarizes the characteristics of the three datasets.

B. Computing Environment

A cluster with 16 nodes is set up to carry out our ex-
periments. All nodes have the same features: 32GB of main
memory, an 8-core CPU and 9TB of local disk storage. They
all run Centos 7 Linux operating system. The nodes are
interconnected with 10 Gigabit Ethernet. We use the enterprise
edition of SciDB release 16.9 that supports replication and
advanced linear algebra operations, such as singular value
decomposition (SVD).

C. Evaluation

1) Data placement: We first verify the data placement
result of our approach. Figure 8 shows the rendering result that
illustrates the distinct shapes and coverages of the MERRA-2
and TRMM datasets. Figure 9 visualizes the data placement of
these two datasets on the 16 compute nodes using our STARE-
based scheme and the conventional regular-grid partitioning
and distribution scheme. From this qualitative comparison, we
can clearly see that our solution can lead to co-alignment
and co-location of the two datasets with completely different
shapes and coverage. Next, we will show the quantitative
evaluations to detail the advantages of our STARE indexing
scheme and data placement strategy.

2) Join operation performance: There are two operators
available for the join operation in SciDB: cross-join and join.
The former is a generic join operator that makes no assumption
about the schema of its array operands, while the latter requires

Fig. 9. Comparison between different data placements. (a): The top row shows
the results using our STARE-based partitioning and distribution. Both the
MERRA-2 and TRMM datasets are indexed using STARE (see Section III-A)
and partitioned and distributed among 16 compute nodes using our round
robin strategy (see Section III-B). Different nodes are denoted using 16
different colors in the top color map. The left image shows the partitioning
and distribution of both datasets. The right image shows the zoom-in view
in the highlight region (Gulf of Mexico and Caribbeans) of the left image.
We can clearly see that the two datasets are well co-aligned and co-located
among the nodes. (b): The bottom row shows the corresponding results using
the regular-grid partitioning and distribution, which cannot co-align and co-
locate the two datasets.

Fig. 10. After using STARE, we show the TRMM data in yellow meshes,
NMQ data in purple meshes, and the intersection part in red triangle meshes.

its array operands to be aligned (i.e., corresponding chunks
co-located on the same nodes). Figure 10 illustrates the join
operation between the TRMM swath and the NMQ grid. The
yellow triangle mesh encodes the TRMM swath data, the
purple triangle mesh encodes the NMQ grid, and the red mesh
indicates the joined intersection.

We compare the timing results of the join operation between
STARE-based scheme and the regular-grid partitioning and
distribution scheme using the MERRA-2, TRMM, and NMQ
datasets. With STARE, because all three datasets are co-
aligned, we can directly conduct join queries for any com-
bination of these datasets. Without STARE, the three datasets
are misaligned, and cross-join is thus required for regular grid
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Fig. 11. Comparison of timing results of joining operation between STARE
and regular gridding using all the time slices within different numbers of days.
The time axis is plotted in a logarithmic scale. The empty entries in the table
are the data points that we did not get for regular gridding due to its long
running time.

Fig. 12. Comparison of timing results of joining operation between contiguous
and round robin strategies for STARE using all the time slices of the TRMM
and MERRA-2 datasets within different numbers of days.

partitioning.
Figure 11 shows the timing results of join operation using

STARE and regular gridding. We first query the MERRA-2
grid cells where the precipitation rates according to TRMM are
greater than 0.7 mm/hr for all the time steps within different
numbers of days. The blue curve in Figure 11 shows that,
with STARE, the time increases slowly and it only costs
around 1.31 seconds for all the time slices within 90 days.
The effect of data placement alignment afforded by STARE
is plainly visible. As indicated by the red curve in Figure 11,
without co-alignment before the query, the time has almost
a linear increase. It costs around 843.43 seconds for a 40-
day duration, beyond which the queries cannot complete in
reasonable amount of time and are thus terminated. This is
due to the fact that misaligned data chunks, as evidenced by
the images in the bottom row of Figure 9, incur unnecessary
communications.

The green and purple curves in Figure 11 show the com-
parison of the timing results for the join operation between
STARE and regular partitioning methods using three datasets,
i.e., MERRA-2, TRMM, and NMQ. Even with three datasets,
the execution time of our STARE-based method only shows
marginal increases relative to that with two datasets, further
demonstrating the value of STARE in assuring data placement
alignment. The timing results of the regular-grid method are
significantly, but unsurprisingly, worse.

Fig. 13. Comparison of timing results of multiple users’ random join
operations between STARE and regular gridding using the TRMM and
MERRA-2 datasets for different numbers of users. The time axis is plotted
in a logarithmic scale. The empty entries in the table are the data points that
we did not get for regular gridding due to its long running time.

As discussed in Section III-B, we adopted the round robin
strategy to traverse the STARE quadtree for partitioning, rather
than the contiguous strategy. Figure 12 shows the comparison
between these two strategies. The round robin strategy clearly
outperforms the contiguous strategy. For example, more than
51% improvement has been achieved using the round robin
strategy in a 50-day query. This performance gain is essential
for supporting highly interactive analytics operations.

3) Multiple user queries: We also investigate the impact
of multiple simultaneous users on STARE and regular-grid
partitioning methods. We test different numbers of simultane-
ous users, and use random join operations of the TRMM and
MERRA-2 datasets for a 10-day duration to simulate different
user queries. As shown in Figure 13, again, only a marginal
increase is observed for the STARE results from 1 to 100
simultaneous users. This further shows the effectiveness of our
method with distinct operations across multiple users, achieved
by the careful consideration of user data access patterns in our
design (see Section III-B).

In contrast, the regular-grid partitioning cannot effectively
support multiple users operations. As shown in Figure 13,
system performance is quickly degraded with an increasing
number of users. At 30 users, it took around 42 minutes for
the system to respond, making interactivity unpractical and
weakening user experience.

D. User Interface

To evaluate our system design for interactive analysis,
we have constructed a high-level graphical query interface
featuring multiple visual analytics capabilities, as shown in
Figure 14. Our rudimentary user interface supports three es-
sential functions: visualization, query, and statistical analysis.

First, all the datasets can be visualized in the main win-
dow. We provide a time slider at the bottom of the user
interface to allow users choose any time slice and show the
rendering results of the datasets. As shown in Figure 14,
the TRMM precipitation dataset is shown in yellow to red,
which looks like a ribbon across the map, while the NMQ
precipitation dataset, only available for the contiguous United
States (CONUS), is shown in green to purple. There are four
buttons to the left of the time slider with the functions of
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choosing different datasets, changing opacity, playing the time
series visualization, and stopping the playing, respectively.

Second, users also can input their customized queries, such
as Precip ≥ 1.0, x ≥ 800 and y ≤ 3600, in the search box
at the top of the user interface to easily search for features of
interest across multiple heterogeneous datasets.

Third, our user interface supports a few real-time statistical
analytics (such as histogram and correlation). Figure 14 shows
two examples. Users can interactively drag a rectangle to
select their region of interest on the map. The corresponding
histogram of each dataset will be displayed in the top-right
analytics panel. Users can also put a marker on a specific
location on the map to display time series of multiple datasets
at this location in the analytics panel. Moreover, users can also
download these time series values as a csv (comma-separated
values) file by clicking the download button.

Fig. 14. The user interface of our system.

Our STARE indexing scheme and the data placement strat-
egy ensure the scalability of various operations with possible
combinations of variables, time slices, geolocations, datasets,
and user numbers, to deliver interactive performance to each
individual end user, rendering our user interface a practical
and effective analytics tool for Big Earth Data.

VI. CONCLUSION

Big Earth Data imposes grand challenges in the devel-
opment of a scalable end-to-end data analytics system. Al-
though previous studies have proposed feasible solutions to
address the large volume challenge by mostly leveraging
loosely coupled techniques, scalable performance is still dif-
ficult to achieve when diverse large datasets are involved.
We must holistically consider both the volume and variety
challenges and address both the data co-location and co-
alignment in a distributed environment. To this end, we present
the SpatioTemporal Adaptive-Resolution Encoding, STARE,
for uniform indexing of diverse, heterogeneous Earth datasets
and, thus, for spatiotemporal co-alignment and co-location
of data chunks. In addition, we partition and distribute the
chunks along the traversal of the resulting STARE quadtree
leaves in a round robin fashion, leading to balanced workload
among the processors. We conduct an extensive experimental
study by comparing our STARE-based approach with the
conventional regular gridding based approach. We demonstrate
the effectiveness of our approach using queries into different
combinations of variables, time slices, geolocations, datasets,
and user numbers. Our end-to-end distributed storage and
analytics system is able to achieve scalable performance.

For future works, we hope to enhance our system per-
formance using Graphics Processing Units (GPUs). More
sophisticated visual analytics tasks, such as feature extraction
and tracking and volume rendering, may then be carried out
interactively by leveraging GPUs. We plan to investigate effect
of complex data access patterns that are expected to exist
across the storage hierarchy from persistent storage to main
memory to GPU memory, and study the possibility [16] of
extending STARE to indexing data among multiple GPUs.
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