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ABSTRACT
As system scales and application complexity grow, manag-
ing and processing simulation data has become a signif-
icant challenge. While recent approaches based on data
staging and in-situ/in-transit data processing are promis-
ing, dynamic data volumes and distributions,such as those
occurring in AMR-based simulations, make the efficient use
of these techniques challenging. In this paper we propose
cross-layer adaptations that address these challenges and
respond at runtime to dynamic data management require-
ments. Specifically we explore (1) adaptations of the spatial
resolution at which the data is processed, (2) dynamic place-
ment and scheduling of data processing kernels, and (3) dy-
namic allocation of in-transit resources. We also exploit co-
ordinated approaches that dynamically combine these adap-
tations at the different layers. We evaluate the performance
of our adaptive cross-layer management approach on the In-
trepid IBM-BlueGene/P and Titan Cray-XK7 systems us-
ing Chombo-based AMR applications, and demonstrate its
effectiveness in improving overall time-to-solution and in-
creasing resource efficiency.

Categories and Subject Descriptors
H.4 [Information Systems Applications]: Miscellaneous;
C.2.4 [Computer - Communication Networks]: Dis-
tributed Systems; D.2.8 [Software Engineering]: Met-
rics—performance measures
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Cross-layer adaptation, in-situ/in-transit, coupled simula-
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tion workflows, staging, data management

1. INTRODUCTION
Advanced coupled simulation workflows running at ex-

treme scales are providing new capabilities and new op-
portunities for insights in a wide range of application ar-
eas. These workflows compose multiple physical models and
codes along with data processing and analysis services, and
are presenting new challenges due to their scales, coupling
and coordination behaviors and overall complexities, which
must be addressed before their potential can be fully real-
ized. For example, many of these simulations are based on
dynamically adaptive formulations such as Adaptive Mesh
Refinement (AMR), which exhibit dynamic runtime behav-
iors and result in large and dynamically changing volumes
of data. Efficiently managing, transporting and analyzing
this data have become significant and immediate challenges.

Recent approaches based on data staging [5, 6, 16] and
in-situ/in-transit data processing [25, 3] that are attempt-
ing to address these challenges are promising – these ap-
proaches offload data processing to separate resources on
the same systems (in-transit) and/or perform the process-
ing directly on the resources that are running the simulation
(in-situ). For example, our previous work [3] demonstrated
how a simulation plus analytic workflow can efficiently run
on current high-end computing systems using a hybrid in-
situ/in-transit approach. Specifically, we proposed to de-
compose the analytic components of the workflow into pieces
that can scalably run in-situ, and pieces that must be exe-
cuted in-transit – e.g., the raw data is down-sampled in-situ
using a predefined sampling rate and is then transported to
in-transit resources for further analysis. The effectiveness of
this approach clearly depends on the mapping of workflow
components, the size and distribution of the data and the
resources available in-situ and in-transit, and achieving effi-
ciency and scalability requires carefully configuring the stag-
ing resources and the mappings based on application behav-
iors. While these can be pre-configured for relatively simple
and static workflows, such an approach becomes ineffective
when application behaviors become dynamic, as is the case



for AMR-based simulations – in AMR-based simulations,
dynamic refinements can lead to imbalanced data distribu-
tions and heterogeneous resource (memory, CPU, network
bandwidth) requirements.

In this paper we explore a cross-layer adaptive runtime
approach to address these challenges. Specifically, we ex-
plore runtime adaptations at three different layers, viz., ap-
plication layer, middleware layer, and resource layer. We
implement these adaptations as part of an autonomic run-
time and evaluate their abilities to respond to dynamic data
processing requirements and resource constraints for cou-
pled AMR-based simulation workflows. At the application
layer, we dynamically adapt the spatial and temporal resolu-
tion of the data being written and processed; at the middle-
ware layer, we adapt the in-situ and/or in-transit placement
and scheduling of data processing operations; and at the re-
sources layer we adapt the allocation of in-transit resources.
We also explore a coordinated management approach that
combines these adaptations in a cross-layer manner to fur-
ther optimize the end-to-end performance of the workflow
and to address requirements or constrains that cannot be
effectively satisfied by adaptations at one layer alone.

We have deployed the adaptive cross-layer management
runtime on the Intrepid IBM BlueGene/P system at Ar-
gonne National Laboratory and the Titan Cray-XK7 system
at Oak Ridge National Laboratory. We use these deploy-
ment along with the Chombo [1]-based AMR simulations
plus data visualization workflow to experimentally evaluate
the behavior and performance of the individual adaptations
at each layer, as well as the effectiveness of the dynamic
and coordinated cross-layer approach in improving overall
time-to-solution, increasing resource efficiency, and mitigat-
ing I/O costs.

The rest of this paper is organized as follows. Section 2
presents the data management challenges of advanced cou-
pled simulation workflows and highlights the challenges of
dynamic, AMR-based simulation plus data visualization work-
flows. Section 3 describes the conceptual architecture and
operation of the adaptive cross-layer management runtime
and its components. Section 4 develops specific adaptation
policies at the 3 layers and the combined cross-layer adapta-
tion. Section 5 presents the results of our experiments using
the Chombo-based application workflow on Intrepid and Ti-
tan. Section 6 discusses related work. Section 7 concludes
the paper and outlines future work.

2. PROBLEM DESCRIPTION
As noted in the introduction above, dynamically adaptive

formulations of simulations, such as those based on Adaptive
Mesh Refinement (AMR), exhibit dynamic runtime behav-
iors and result in large and dynamically changing volumes
of data, imbalanced data distributions and heterogeneous
resource (memory, CPU, network bandwidth) requirements.
To illustrate the dynamic data management and processing
requirements of AMR-based simulations, consider the 3-D
AMR Polytropic Gas application that is part of the Chombo
package [1] developed by the Lawrence Berkeley National
Laboratory. This application implements the Godunov un-
split algorithm for integrating systems of conservation laws
(e.g., the Euler equations of gas dynamics). Figure 1 plots
parts of a profile of the distribution of the application’s peak
memory usage on 4000 CPU cores over 50 time steps. As
we can see from this plot, memory usage varies significantly,

Figure 1: Distribution of the peak memory con-
sumption for an AMR-based Polytropic Gas sim-
ulation using the Chombo library.

both across cores and over time. More importantly, the peak
memory usage can be as high as several Gigabytes per node
if multiple memory hungry process are placed in the same
multi-cores node.

Such dynamic runtime behaviors of SAMR-based simu-
lation workflows increase the complexity of managing and
processing the data they produce, including managing the
staging resources and scheduling in-situ and/or in-transit
data processing while satisfying constraints on the amount
of data movement, the overhead on the simulation, and/or
the level of analytics. For example, AMR-based simulations
involve dynamic local refinements, which can significantly
increase the resources consumed by the simulation on a sub-
set of nodes. This in turn reduces the resources available
for in-situ analytics. At the same time, it also increases the
spatial and temporal resolutions of data, and correspond-
ingly the computational and storage requirements for the
analytics as well as the cost of data movement if the analyt-
ics have to be executed in-transit. The increasing compu-
tational and storage requirements of the analytics can also
impact in-transit resource requirements. Note that as the
simulations evolves, refined regions maybe further refined or
coarsened, which can result in different sets of requirements
and constraints.

Clearly, making staging and in-situ/in-transit processing
approaches effective for these dynamic applications given
performance, overhead and resource constraints requires run-
time adaptations and tradeoffs. Furthermore, these adapta-
tions may be explored at different levels. At the applica-
tion level, the application may be able to adapt the spatial
and/or temporal resolution of the analytics or limit the an-
alytics to “interesting” regions, to meet constraints on the
type of analytics, the available resources, and/or acceptable
overheads. Similarly, at the runtime level, the placement
and scheduling of in-situ/in-transit tasks can be adapted,
and at the resource level, the number of in-transit resources
can be adapted. In this paper we explore how we can realize
these dynamic adaptations at runtime for AMR-based sim-
ulation workflows on large-scale systems. We also explore
policies and mechanisms for combining these adaptations in
a coordinated and cross-layer manner to better address ap-



Figure 2: A conceptual architecture of an autonomic
approach for realizing runtime adaptations for in-
situ/in-transit implementations of coupled simula-
tion workflows.

plication requirements and constraints.

3. REALIZING CROSS-LAYER ADAPTAT-
IONS FOR LARGE-SCALE SIMULATI-
ON WORKFLOWS

This section describes our approach for efficiently and
scalably realizing runtime adaptations for in-situ/in-transit
implementations of coupled simulation workflows. The con-
ceptual architecture follows an autonomic approach and con-
sists of three key components, a monitor, the adaptation
engine, and adaptation policies, as illustrated in Figure 2
and described below. In our approach, users can provide
two types of inputs. User preferences define the objectives
that users expect to achieve, such as minimizing time-to-
solution, minimizing data movement, using highest available
data resolution, etc. User hints provide additional informa-
tion to the adaptation engine based on the user’s knowledge
of the application workflow and on past experience, for ex-
ample, tolerance to data downsampling, nature of regions of
interest, possible adaptation phases and/or patterns, etc.

The Monitor captures runtime status information at the
different layers, i.e., application, middleware, and resource,
and uses it to characterize the current operational state of
the system and application and trigger adaptations if appro-
priate. Status information includes resource utilization and
resource availability (memory, bandwidth, CPU cores) as
well as application execution time, analysis time and the size
of the generated data. The Adaptation Engine is responsible
for selecting and executing appropriate adaptations based on
user preference and hints, the operational state provided by
the monitor, and adaptation policies.

Three adaptation mechanisms are explored in this paper.
In the first mechanism, the application layer changes the
spatial and/or temporal resolution of data generated in-situ
before its is moved to the in-transit resources for processing.
This mechanism can adjust the frequency of in-situ data
reduction as well as the type of reduction performed by ap-
propriately selecting the parameters of the data reduction
module (e.g., down-sample factor, compression rate, etc.).
The second adaptive mechanism adapts the placement of the
data processing operations at middleware layer. Placements
can be in-situ, in-transit or hybrid (i.e., in-situ + in-transit).
The third adaptation mechanism targets the resource layer.
It determines the number of in-transit resources needed and
dynamically allocates resources for in-transit processing if

Figure 3: An overview of the autonomic adaptation
process.

necessary.
The Adaptation Policies specify which adaptation mech-

anism(s) should be executed based on user inputs and the
operational state. In the following Section, we develop adap-
tation policies at each of the layers as well as a policy for
combined cross-layer adaptation.

The overall adaption process is illustrated in Figure 3.
The operational status of the simulation workflow is period-
ically (e.g., after every specified number of simulation time
steps) sampled by theMonitor and forwarded to the Adap-
tation Engine, which determines if an adaptation is required
and triggers the appropriate adaptation(s).

4. DEFINING ADAPTATION POLICIES
In this section, we develop adaptation policies for an AMR-

based simulation workflow. Note that rather than finding
optimal adaptations, our goal is to develop policies that can
be efficiently and scalably implemented at runtime on very
large scale system while satisfactorily addressing application
requirements/constraints. Specifically, we develop policies
for each of the 3 layers as well as a cross-layer policy of co-
ordinated adaptations, which are described in the following
subsections. Table 1 summarizes the notation used in this
discussion.

4.1 Policy for Adaptation at the Application
Layer

The application layer adaptive mechanism controls the
resolution of the data that is forwarded to the analysis meth-
ods, and enables a trade-off between the time and resources
spent on analysis and the resolution at which the analysis is
performed. For example, it may be beneficial to have some
analysis done even if it is performed at a lower resolution.
The goal of this adaptation is to determine the data resolu-



Symbol Description Equations numbers where used
Sdata size of simulation output (1)(8)(10)
X down-sampling factor (1)(3)

fdata reduce(Sdata, X) data reduction operation (2)
Memdata reduce(Sdata, X) memory needed to perform data reduction (2)

Memavailable total available memory (2)
Tsum insitu total wallclock time at in-situ resources (4)(6)
Tsum intransit total wallclock time at in-transit resources (5)(6)

N number of simulation processors (4)
M number of in-transit processors (5)

ITER total number of iterations (4)
Di final decision for executing analysis: 1 for in-situ, 0 for in-transit (4)(5)(7)(8)

Ti sim(N) execution time of the ith iteration of the simulation (4)(9)
Ti insitu(N,Si data) execution time for the ith in-situ analysis on N processors (4)(7)

Ti intransit(M,Si data) execution time for the ith in-transit analysis on M processors (5)(9)
Ti intransit wait idle time on the in-transit side (5)
Ti insitu wait idle time on the in-situ side (4)

Tj intransit remaining(M,Sj data) remaining execution time for the jth in-transit processing iteration (7)
Meminsitu(Si data, N) memory cost for in-situ processing (8)

Memintransit(Si data,M) memory cost for in-transit processing (8)(10)
Ti sd(Sdata) latency associated with sending data (9)
Ti recv(Sdata) latency associated with receiving data (9)

Table 1: Notation used in formulating adaptation policies.

tion that can be effectively processed in-situ or transferred
to in-transit resources given user preferences and the current
operational state. Specifically, it determines the factor (X)
by which to downsample the simulation data. This is either
selected from a set of acceptable downsampling factors pro-
vided by the user as a hint, or generated automatically based
on information content of interest. The selection is made
based on the available memory and the memory needed to
implement downsampling factor X, and the smallest value of
X that can be used given the memory constrains is selected.
The downsampling factor for the ith simulation iteration is
determined by the following policy:

Maximize

Sdata − fdata reduce(Sdata, X) (1)

Subject to

Memdata reduce(Sdata, X) 6Memavailable (2)

(memory requirement)

whenXε{X1, X2, · · · , Xn} (3)

(set of acceptable down-sample factors)

4.2 Policy for Adaptation at the Middleware
Layer

Adaptations at the middleware layer target the placement
of the analytics, in-situ, in-transit or hybrid, to minimize
the overall time-to-solution under the current resource con-
straints. The policy considers three cases: (1) If there are
sufficient memory resources to perform the analysis either
in-transit or in-situ but not both, the adaptation will place
the analysis at the location where the memory resources are
available. (2) If there are sufficient memory resources at
both locations and in-transit CPU resources are available,
the analysis will be placed in-transit since the analysis can
run in parallel with the simulation. (3) If the in-transit cores
are busy processing simulation data generated at previous
time steps, the adaptation engine will estimate the remain-
ing time for such in-transit data processing as well as the
execution time if the current data is processed in-situ. If

Figure 4: Illustration of the analysis placement
adaptation policy. For adaptation at ts=1 and 2, in-
transit resources are idle, and as a result analysis is
placed in-transit. For adaptations at ts=30, since in-
transit resources are busy, the analysis time for in-
situ and in-transit processing are estimated, and the
analysis is placed in-situ is the estimated processing
time there is shorter. Note that the data transfer is
asynchronous and its is assumed that the effective
time for transferring the data is much smaller than
the time for processing the data.

the in-situ data processing is estimated to be faster, the
analysis will be performed in-situ. Otherwise, the data will
be asynchronously transferred to the in-transit nodes and
will be processed as soon as in-transit cores become avail-
able. These latter two cases are illustrated in Figure 4 and
are expressed in the formulations below:

Since
Tsum insitu '

∑ITER
i=1 {Ti sim(N)+Di·(Ti insitu(N,Si data))

+D̄i · (Ti insitu wait)} (4)



Tsum intransit '
∑ITER
i=1 {D̄i · Ti intransit(M,Si data)

+Ti intransit wait} (5)

Minimize

max{Tsum insitu, Tsum intransit} (6)

(minimized time-to-solution)
Subject to
D̄i·(Tj intransit remaining(M,Sj data) < Ti insitu(N,Si data))

= 1, j < i; (7)

(execution time estimation)
Di·(Memintransit(Si data,M) < Sdata)+D̄i·(Memavailable

6Meminsitu(Si data, N)) = 1 (8)

(resource constraints).

4.3 Policy for Adaptation at the Resource Layer
Performing analysis in-transit minimizes its impacts on

the simulation and can achieve better time-to-solution. How-
ever, this approach reduces the computational resource avail-
able to the simulation, which in turn can offset this advan-
tage.

The resource layer adaptation targets this trade-off be-
tween minimizing the impacts of analysis on the simula-
tion (i.e., improving time-to-solution) and minimizing the re-
sources used for in-transit processing. For in-transit process-
ing, the ideal time-to-solution can be achieved if in-transit
analysis on simulation data generated during the ith time
step finishes before data from the (i+ 1)th simulation time
step is ready to be sent. In other words, the smaller the
idle time at the in-transit resources, the more efficiently the
in-transit resources are utilized. On the other hand, suffi-
cient in-transit resources are needed to cache the simulation
data generated at current time step. Therefore, the resource
layer adaptation first determines the minimum number of
in-transit cores required based on the size of the simulation
data and the required in-transit memory resources. It then
estimates the in-transit processing time, and if this time is
greater than the time required for a simulation time step,
the number of in-transit cores is increased until the ideal
in-transit processing time is achieved, i.e., time for the in-
transit analysis is less than the time for a simulation time
step and the in-transit idle time is minimized. This policy
is expressed in the formulations below:

Minimize M
Subject to
Ti+1 sim(N) + Ti+1 sd(Si+1 data) = Ti intransit(M,Sdata)

+Ti recv(Si data) (9)

(Expected same execution time on both simulation side and
in-transit side)

and

Memintransit > Sdata (10)

(in-transit memory constraint)

4.4 Policy for Combined Cross-Layer Adap-
tation

The cross-layer adaptation policy explores the coordinated
use of the adaptive mechanisms at the three layers described
above to satisfy user objective or constraints, e.g., for desired

time-to-solution or acceptable data movement, that cannot
be satisfied using adaptations at one layer alone, or to fur-
ther improve performance. Specifically, we design a heuris-
tic root-leaf policy for the selection of adaptation mecha-
nisms across the three layers. This policy consists of three
steps: selecting root mechanisms, selecting leaf mechanisms,
and executing selected mechanisms. Consider “minimizing
time-to-solution” as an example objective to illustrate these
steps of the policy. First, the policy selects the mechanisms
that can address the objectives of the cross-layer adapta-
tion, and marks them as root mechanisms. Based on the
descriptions of adaptation mechanisms above, the middle-
ware layer adaptation can address our example object of
minimizing time-to-solution and should be automatically in-
cluded in the set of root mechanisms. Second, the policy
goes through the formulation of root mechanisms and looks
for data dependencies with mechanisms at other layers not
in the set. In our example, the data size Si data and the
number of in-transit cores M are two significant inputs for
root mechanism, i.e., the middleware layer adaptation mech-
anism, and these parameters also impacted by the applica-
tion layer adaptation mechanism for data reduction and re-
source layer adaptation mechanism. Therefore, these mech-
anisms are marked as leaf mechanisms. Finally, once both
root mechanisms and leaf mechanisms are selected, the pol-
icy executes these adaptations, first the leaf mechanisms and
then the root mechanisms. If there are data dependencies
among the selected leaf mechanisms, the execution is in the
order of the dependencies, i.e, leaf mechanisms that do not
rely on outputs from the other selected mechanisms are exe-
cuted first, followed by the mechanisms that depend on their
outputs. In our example, the application layer adaptation
will be executed first since its output Si data will impact the
resource layer adaptation mechanism, i.e., the other selected
leaf mechanism. The middleware adaptation mechanism will
be executed last as it is the root mechanism in our example.

Similarly, if the user-defined objective is to maximize in-
transit resource utilization, the policy would select resource
layer adaptation as the root mechanism and the application
layer adaptation as the leaf mechanism. The middleware
layer adaptation mechanism will not be included in this case
since it has no data dependency with the root mechanism.

5. EXPERIMENTAL EVALUATION
In this section we present an experimental evaluation of

the adaptive runtime management framework presented in
this paper. We first evaluate adaptations at each of the three
layers individually, and then evaluate combined cross-layer
adaptations.

5.1 Experiment Setup

AMR-based Simulation Workflow.
The evaluation presented in this section uses a simula-

tion workflow that is composed of a Chombo [1]-based AMR
simulation and a visualization service, which are described
below.

Chombo-based AMR Simulations: We use two differ-
ent AMR-based simulations that are distributed as part of
the Chombo AMR package [1]. Both these simulations im-
plement the AMR Godunov unsplit algorithm but show very
different performance characteristics. The AMR Advection-
Diffusion simulation implements an adaptive conservative



transport (advection-diffusion) solver, while the AMR Poly-
tropic Gas implements the AMR Godunov unsplit algorithm
for integrating systems of conservation laws (e.g., the Euler
equations of gas dynamics). While both simulations exhibit
runtime adaptations, the latter is more memory and com-
pute intensive, especially in 3-D.

Visualization Service: The visualization service imple-
ments the marching cubes algorithm [13, 21], the de facto
standard isosurface extraction algorithm in scientific visu-
alization, to construct triangular meshes from AMR data
according to user specified isovalues. The algorithm scans
each cell and conducts triangulation depending only on the
values of the current cell, and thus the isosurface construc-
tion is performed locally. The ghost regions are managed by
Chombo, and there is nearly no communication needed for
the marching cubes algorithm. Using this algorithm we can
extract isosurfaces from full-resolution data in-situ, which
can generate a high-quality triangular mesh to capture the
fine structural information.

Implementation of the Adaptive Runtime.
The adaptive runtime is implemented on the top of our

DataSpaces data-management substrate [3, 6, 5]. DataS-
paces provides distributed interaction and coordination ser-
vices to support in-situ and in-transit simulation-analysis
workflows on very large-scale systems, and its data trans-
port layer provides the required asynchronous communica-
tion and data transfer services.The Adaptation Engine is in-
tegrated with DataSpace to enable runtime coordination and
adaptation at different the layers. In addition, the embedded
performance tools within Chombo provides runtime system
information such as memory usage and execution time, and
are used by the Monitor.

Systems.
Our experiments were conducted on the Intrepid IBM

BlueGene/P system at Argonne National Laboratory and
Titan Cray-XK7 systems at Oak Ridge National Labora-
tory. Intrepid consists of totally 40960 nodes, each of which
has quad-core processor and 2GB RAM (i.e., 500MB per
core). Its peak performance can reach 557 teraflops.

Titan has 18,688 nodes connected through the Gemini in-
ternal interconnect, and each node has a single 16-core AMD
6200 series Opteron processor and 32GB RAM (i.e., 2GB
per core). The total system memory is 600 terabytes and
the system peak performance can reach 20 petaflops. Be-
sides, it has 18688 K20 Keplers GPUs, although We didn’t
use them in our experiments.

5.2 Evaluation and Discussion

5.2.1 Evaluation of Adaptations at the Application
Layer

For these experiments we used the memory intensive 3-D
AMR Polytropic Gas application with a domain size of 128×
64×64 at the base level. The experiments were performed on
4K cores of the Intrepid IBM BGP system, which has only
500MB of memory per core. Furthermore, we experimented
with two different types downsampling approaches that can
be used by the application layer adaptation mechanism as
described below.

User-defined range-based data downsampling: In
this experiment, the application layer adaptation mechanism
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Figure 5: Evaluation of application layer adapta-
tion of the spatial resolution of the data using user-
defined downsampling factors, and based on runtime
memory availability. Note that at the 31st time step,
the spatial data resolution is reduced due to limited
availability of memory resources, and at the 40th
time step, the data resolution reaches the minimal
value.

used an in-situ downsampling method with user-defined ranges
of down-sampling factors. These ranges of acceptable down-
sampling factors were specified as user hints, and were {2, 4}
for the first half of the simulation, and {2, 4, 8, 16} for the
second half.

In this experiment, the peak memory used on a processor
varied from 20MB to > 300MB. Figure 5 plots the online
memory availability for a single processor over 40 time steps.
The Figure also shows the actual memory usage during the
same period when using adaptive downsampling factors, as
well as the memory requirements when maximum and min-
imum acceptable spatial resolutions were used for the data.
When sufficient memory was available (between time step 0
to 30), the adaptive mechanism correctly selected the min-
imum down-sampling factor, which produced a larger data
volume at a higher spatial resolution. However, starting
at the 31st time step, the available memory could no longer
support this higher spatial resolution. As a result, the adap-
tive mechanism increased the downsampling factor as seen
in the figure.

Entropy based data down-sampling: In these exper-
iments, the down-sampling factors used by the application
layer adaptation mechanism were automatically tuned based
on information theory, which provided us with a theoretical
framework to measure the information content of a vari-
able [20]. For each data block within the AMR dataset, we
compute the entropy value to quantify the distribution of its
variables. For a discrete random variable χ and probability
mass function p(x), x ∈ χ, the entropy of X can be defined
as

H(X) = −
∑
x∈χ

p(x)logp(x) (11)

where p(x) ∈ [0, 1],
∑
x∈χ p(x) = 1.0, and −logp(x) rep-

resents the information associated with a single occurrence



(a)

(b)

Figure 6: Evaluation of application layer adaptation
of the spatial resolution of the data using entropy
based data down-sampling. (a) shows a simultane-
ous rendering of two isosurfaces of the full-resolution
Polytropic Gas simulation data set. The surfaces are
extracted from the density variable at the 60th time
step, corresponding the isovalues 1.23 (red) and 4.18
(green), respectively. The right and left images show
close up views of the two regions. (b) shows the re-
sult after the dynamic adaptation of its spatial res-
olution. The right region has its entropy value (at
5.14) that is lower than the specified threshold and
thus is down-sampled at every 4th grid point. The
left region has a higher entropy value (at 9.21) and
its resolution is not changed.

of x. The higher the value of H(x), the more information
the data block contains. The unit of H(X) is a bit. For
example, at the 60th time step for the Polytropic Gas case,
the entropy values of the data blocks at the finest level are
between 5.14 and 9.85. We can now adaptively downsample
the data blocks based on their entropy values by specifying
a set of thresholds. Figure 6 compares visualizations using
the full-resolution data and the adaptively down-sampled
data. We can see that the fine structural information is well
preserved for regions with higher entropy values, while re-
gions with lower entropy values can potentially be reduced
aggressively without losing much information or impacting
our understanding of the data.

These results clearly show that our approach successfully
adapts the down-sampling factor at runtime to meet the
constraints on acceptable data resolution at the application
layer as well as constraints due to the limited size of avail-
able memory at the resource layer. The results also show
that such adaptations can potentially allow memory inten-
sive simulation workflows to run on systems with contained
memory resources.

5.2.2 Evaluation of Adaptations at the Middleware
Layer
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Figure 7: Comparison of cumulative end-to-end ex-
ecution time between static and adaptive in-situ/in-
transit placement of the visualization service. The
end-to-end overhead plotted is the overhead on the
overall time-to-solution and includes data process-
ing time, data transfer time, and other system over-
heads.

In these experiments, we used the AMR Advection-Diffusion
simulation and evaluated both, an adaptive placement and
a static placement of the visualization service within the
application workflow. The experiments were performed on
Titan and evaluated how middleware layer adaptations can
optimize overall time-to-solution at different scales. We ran
the simulation on 2K, 4K, 8K and 16K cores, with a 16:1
ratio of the number of the simulation core to the number of
the in-transit cores. The initial 3D grid domain sizes used
in the experiments were 1024× 1024× 512 for the 2K case,
1024× 1024× 1024 for the 4K case, 2048× 1024× 1024 for
the 8K case, and 2048× 2048× 1024 for the 16K case.

End-to-end execution time (or time-to-solution) was used
as the key metric in our evaluation and is composed of two
components as seen in Figure 7: end-to-end simulation time
and end-to-end overhead. End-to-end overhead includes the
data processing time, data transfer times and other sys-
tem overheads such as due to adaptation. The adaptive
in-situ/in-transit placement approach shows significant ben-
efits as compared to a static approach in terms of the time-
to-solution – it achieves the smallest cumulative end-to-end
execution time, which demonstrates that our policy achieves
it goal, i.e., to minimizes time-to-solution using adaptive
placement. Quantitatively, the cumulative end-to-end exe-
cution overhead for the adaptive placement case decreased
by 50.00%, 50.31%, 50.50%, 56.30% compared with static
in-situ placement, and 75.42%, 38.78%, 21.29%, 48.22% as
compared with static in-transit placement, for the 2K, 4K,
8K, and 16K core cases respectively. The end-to-end over-
head in all these cases were less than 6% percent of the sim-
ulation time. Furthermore, since the analysis at some time
steps were adaptively performed in-situ, the overall data
movement for adaptive placement was reduced by 50.00%,
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Figure 8: Comparison of total data movement be-
tween static and adaptive in-situ/in-transit place-
ment of the visualization service.

48.00%, 47.90%, 39.04% as compared to static placement for
the 2K, 4K, 8K, and 16K core cases respectively, as shown
in Figure 8.

5.2.3 Evaluation of Adaptations at the Resource Layer
In this experiment, we performed local adaptations at the

resource layer to dynamically change the number of cores
allocated for in-transit processing. With 4,096 simulation
cores, the initial number of cores available as in-transit pro-
cessing was 256. The rest of the setup for this experiment
was the same as that described in Section 5.2.1. The goal of
the experiment was to evaluate how effectively the resource
layer mechanism respond to dynamic in-transit resource re-
quirements while achieving efficient resource utilization.

Figure 9 plots the number of in-transit cores used at each
time step. At the beginning of the simulation, the size of
data generated and processed in-transit is relatively small.
Therefore, only around 50 in-transit cores are needed. How-
ever, as the grid gets refined, the size of the data generated
increases, and additional in-transit resources are required to
satisfy memory requirement for in-transit analysis as well as
time-to-solution constraints.

The adaptation approach uses fewer in-transit processor
cores to achieve the same time-to-solution, compared with
using a static number of in-transit cores. As a result, the
resource utilization of the in-transit staging area is greatly
improved. To quantify the improvement in CPU utilization,
we define the cpu utilization efficiency as follows:

∑TS
j=1

∑Mj

i=1{Tintransit analysis i j}∑TS
j=1

∑Mj

i=1{Tintransit total i j}
(12)

where TS is the maximum time step, Mj is the number of in-
transit cores allocated at the jth time step, Tintransit analysis i j
is the execution time at the ith in-transit cores for data
analysis at the jth time step, Tintransit total i j is the total
execution time at the ith in-transit cores at the jth time
step.

Using this definition of utilization efficiency, we find that
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Figure 9: Number of in-transit processor cores per-
forming analysis when using resource layer adapta-
tions.

the utilization efficiency when using resource layer adapta-
tions is 87.11% as compared to only 54.57% in the static
allocation case.

5.2.4 Evaluation of Time-to-Solution Aware Cross-
layer Adaptations

Adaptations at a single layer may not meet the scientists’
requirements in some scenarios. For example, the scientists
often attempt to find abnormities in an AMR-based simu-
lation by visualizing the output data on-the-fly. In these
cases visualizing data with lower spatial resolution is often
sufficient and is more efficient. Furthermore, this visual-
ization must be performed in-situ and/or in-transit while
satisfying constraints on the overheads on the simulation,
the resources used, and the overall execution time. Achiev-
ing this requires coordinated adaptations at the application
layer to adapt the data resolution, and the middleware layer
to appropriately place the visualization.

This experiment evaluates such a combined cross-layer
adaptation across multiple layers. The objective is defined
as minimizing time-to-solution, and to facilitate comparison,
the basic experiment setup is the same as that used for the
experiments described in Section 5.2.2. The experiment also
used the same acceptable user-defined data sampling rates
that were used in the experiments described in Section 5.2.1,
which were once again provided as user inputs for possible
application layer adaptations.

The experiment results demonstrate that, in this case,
adaptations at all three layers are triggered and execute in
a coordinated manner. Figure 10 plots the values of overall
cumulative end-to-end overhead, which decrease by 52.16%,
84.22%, 97.84%, 88.87% for the combined cross-layer adap-
tation cases (i.e., global adaptations) for the 2K, 4K, 8K and
16K core cases respectively, as compared to the correspond-
ing middleware layer only adaptations (i.e., local adapta-
tions) that were presented in Section 5.2.2. Since the data
is reduced in-situ using downsampling, the time required for
in-situ analysis and in-transit analysis decreases due to the
decreasing data volume. On the other hand, faster in-transit



Cases Total Time Steps No. of Time Steps for Different Utilizations of the In-Transit Cores

No. of Sim Cores : No. of Staging Cores 100% Cores 75% Cores 50% Cores Less than 50% Cores
2K:128 27 25 2 - -
4K:256 42 8 13 4 17
8K:512 49 4 23 22 -

16K:1024 41 10 12 10 9

Table 2: Actual utilization of in-transit cores while performing in-transit analysis.
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Figure 10: Comparison of cumulative end-to-end ex-
ecution time between for combined cross-layer adap-
tations (i.e., global adaptations) and middleware
layer only adaptations (i.e., local adaptations).
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Figure 11: Comparison of the total data movement
for combined cross-layer adaptations (i.e., global
adaptations) and middleware layer only adaptations
(i.e., local adaptations).

analysis implies that there is a greater possibility that in-
transit resources will be idle between simulation time steps.
In this case, middleware layer adaptations policy places the
analysis in-transit more frequently, as demonstrated by the
result in Table 2.

While performing more of the analysis in-transit implies
a larger amount of data transfer, Figure 11 shows that the
data reduction achieved due to the application layer adap-
tation dominates and the overall amount of data transfer
actually decreased by 45.93%, 17.25%, 5.76%, and 32.41%
or the 2K, 4K, 8K and 16K core cases respectively, as com-
pared to the corresponding middleware layer only adapta-
tions (i.e., local adaptations) that were presented in Sec-
tion 5.2.2. Meanwhile, Table 2 shows that fewer in-transit
cores are used to achieve the same time-to-solution, which
demonstrates another benefit of this combined cross-layer
adaptation. Specifically, for the 4K and 16K core cases, the
fraction of the initially allocated in-transit cores used drops
to less than 50% for some of the time steps.

In summary, our cross-layer adaptation approach can be
triggered and can dynamically respond at runtime to meet
user-defined objectives under varying resource limitation and
user’s constraints. Compared to static approaches, both the
local adaptations at a single layer and global combined cross-
layer adaptations demonstrate significant benefits in terms
of time-to-solution, data movement, and resource utilization
efficiency. Since our experiments use Chombo-based appli-
cations and a third-party adjustable visualization code, our
cross-layer adaptive runtime can be used with other adaptive
application frameworks, as well as other scalable analysis
services with no/rare communications, such as descriptive
statistic analysis, data subsetting, etc.

6. RELATED WORK
Simulation-time Data Processing: The increasing per-

formance gap between computation and I/O in high-end
computing environment is rendering traditional post-processing
data analysis approaches based on disk I/O infeasible and
inefficient. As a result, simulation-time data processing ap-
proaches have emerged, which operate on in-memory data
before it is written to the disk or file systems. Several re-
search projects have focused on two specific simulation-time
analysis techniques, namely in-situ processing and in-transit
processing.

In-situ data processing allows direct access to in-memory
simulation data, and has been used in visualization [14], [22], [7],
indexing building [10], data compression [11], multi-physics
coupling [25], etc. This technique greatly reduces the costs
due to data movement across the network because most data
is available in local memory. However, due to the resource
sharing nature of in-situ processing, it can increase the over-
all time-to-solution.

In-transit data processing executes data operations on
dedicated compute resources in parallel with the simulations



and thus minimizes the impact on the performance of the
simulation and the overall time-to-solution. Many projects
have studied the use of dedicated “staging” resources to sup-
port potential in-transit operations, such as DataStager [2],
PreDatA [26], DataSpaces [5, 6]/ActiveSpaces [4], XpressS-
pace [24], GLEAN [19] and Nessie [15]. Our previous work
also integrates a messaging system with data staging to sup-
port flexible data publish and subscribe patterns [9]. How-
ever, the data movement across the network in this approach
can introduce large overheads as well as increase power con-
sumption.

To take advantage of both in-situ and in-transit analytic
placements, recent research [3] has explored the benefits of
combining both in-situ and in-transit approaches on lead-
ership class supercomputers, and demonstrated the impor-
tance of where the analytics execute in a hybrid in-situ/in-
transit staging system. FlexIO [27] explored the trade-offs
between performing analytics at different levels of the I/O
hierarchy and supported a variety of simulation-analytics
workloads through flexible placement options. However, these
research efforts target static application workflows and pre-
schedule the the placement of the analysis components. The
adaptive placement supported by the cross-layer adaptive
runtime framework presented in this paper can respond to
the dynamic data management requirements of complex sim-
ulation analysis workflows based on adaptive formulations
such as AMR, by scheduling the placement of analysis dy-
namically at runtime.

Single-Layer and Cross-Layer Adaptation: Previ-
ous research efforts have focused on improving performance
by using a single-layer adaptive approach. Tapus et al. [18]
introduced Resource Specification Language (RSL), a pro-
totype language that performs adaptations by selecting ap-
propriate program libraries and adaptively adjusting appli-
cation parameters to tune the overall performance. This
approach performs adaptations only at the application layer
and does not adapt other layers. Similarly, Hsu et al. [8]
proposed an algorithm that specifically targets the hard-
ware layer, and automatically adapts CPU settings such as
voltage and frequency to reduce power consumption in HPC
environment.

Meanwhile, many researchers have noted that cross-layer
adaptation can achieve performance improvements, espe-
cially when dealing with more complex workflows. For ex-
ample, cross-layer adaptation methods can result in encour-
aging energy savings for mobile devices. Sachs et al. [17]
employs a hierarchical approach that performs exhaustive
global adaptation in conjunction with local adaptations. Al-
though, at a smaller scale, they were able to achieve greater
energy efficiency at four system layers: hardware layer, net-
work layer, operating system layer, and application layer.
Similarly, the GRACE-1 [23] framework, designed and im-
plemented for mobile multimedia systems, supports appli-
cation QoS under CPU and energy constraints via coordi-
nated adaptation at the hardware, OS, and application lay-
ers. Moreover, the idea of cross-layer has been employed in
gird computing environment to deal with the issues related
to dynamic resource management [12].

However, the cross-layer adaptation approach has not been
explored for dynamic simulation-analysis workflows on high-
end systems. Our work proposes the cross-layer adaptation
approach to enable dynamic adaptation for simulation-time
data management and processing, and our large-scale exper-

iments demonstrate the effectiveness in increasing resource
efficiency and reducing overall time-to-solution on high-end
HPC systems.

7. CONCLUSION AND FUTURE WORK
In this paper, we explored adaptive cross-layer adapta-

tions to address the dynamic data volumes and data pro-
cessing requirements of adaptive simulation workflows, such
as those based on SAMR formulations. Specifically, we fo-
cussed on run-time adaptations across three different layers:
application layer, middleware layer, and resource layer and
demonstrated that such adaptations are necessary for meet-
ing application requirements while meeting application and
system constraints. Furthermore, we demonstrated that co-
ordinated cross-layer adaptations can not only improve over-
all performance but can also enable the runtime to satisfy
requirements and constraint that cannot be addressed by
adaptations at a single layer alone.

The paper presented the design, implementation and eval-
uation of an autonomic cross-layer adaptation runtime com-
posed of three key components: a monitor, the adaptation
engine, and adaptation policies. The paper also presented
adaptation policies at the different layers with correspond-
ing triggers. The experimental evaluation presented results
using AMR-based simulation codes implemented within the
Chombo framework, and running on bot, the Intrepid IBM
BlueGene/P system at ANL and the Titan Cray-XK7 sys-
tem at ORNL. The evaluation results demonstrated the ef-
fectiveness of adaptation at each layer. The results also
demonstrated that, in comparison to static approaches, the
cross-layer approach with coordinated adaptations provides
better performance, in terms of reducing network data move-
ment, improving resource utilization and minimizing time-
to-solution.

Our future work includes (1) designing and formalizing
corresponding programming abstractions to support cross-
layer adaptations and enable the user to express objectives
and constraints and to formulate adaptation policies, (2)
exploring adaptations involving data-placement across deep
memory hierarchies, and (3) incorporating power/energy ef-
ficiency and power/performance trade-offs as part of the ob-
jectives.
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