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ABSTRACT 
Severe I/O bottlenecks on High End Computing platforms call for 
running data analytics in situ. Demonstrating that there exist 
considerable resources in compute nodes un-used by typical high 
end scientific simulations, we leverage this fact by creating an 
agile runtime, termed GoldRush, that can harvest those otherwise 
wasted, idle resources to efficiently run in situ data analytics. 
GoldRush uses fine-grained scheduling to “steal” idle resources, 
in ways that minimize interference between the simulation and in 
situ analytics. This involves recognizing the potential causes of 
on-node resource contention and then using scheduling methods 
that prevent them. Experiments with representative science 
applications at large scales show that resources harvested on 
compute nodes can be leveraged to perform useful analytics, 
significantly improving resource efficiency, reducing data 
movement costs incurred by alternate solutions, and posing 
negligible impact on scientific simulations.  

Categories and Subject Descriptors 
D.4.1 [Process Management]: Scheduling. 

General Terms 
Design, Measurement, Performance. 

1. INTRODUCTION 
Many large scale scientific simulations can routinely write out 
immense amounts of data on today’s High End Computing 
platforms. Such “Big Data” imposes steadily increasing pressure 
on the I/O and storage sub-systems. In fact, I/O is now widely 
recognized as a severe performance bottleneck for both simulation 
and data post-processing; and this is expected to worsen with 
expected order of magnitude increases in the disparity between 
computation and I/O capacity on future Exascale machines [35].  

In order to mitigate the I/O bottleneck, leadership scientific 
applications (e.g., GTS [41], S3D [9], and FLASH [39]) have 
begun to use in situ data analytics, where analytics are deployed 
on the same HEC platform where the simulation runs, with 
simulation output data processed online while it is being 

generated. Compared to conventional post-processing methods 
that first write data to storage and then read it back for analysis, in 
situ analytics can reduce on-machine data movement, disk I/O 
volume, and deliver faster insights from raw data [2]. 

The research presented in this paper has two goals: (1) to improve 
the resource efficiency of running in situ data analytics, and (2) to 
do so without perturbing the simulations running on the same 
nodes. In particular, we seek to over-subscribe compute nodes by 
co-locating simulation and analytics computations, without 
affecting the simulation execution, while at the same time, 
efficiently using compute node resources to run in situ analytics.  

Measurements of six representative scientific simulations 
motivate the argument that node over-subscription can be cost 
neutral to the core simulation. Specifically, we demonstrate that 
the well-tuned MPI/OpenMP implementations of these codes 
written for high end machines leave substantial unused resources 
(CPU and memory) on compute nodes, which can then be used to 
run online analytics. One cause is sequential periods in these 
codes (i.e., when the execution flow is outside their OpenMP 
parallel regions) in which worker threads wait on the MPI 
process’ main thread. Although most such sequential periods are 
short, their aggregate duration can be up to 65% of total execution 
time in these real-world codes.  

Previous work has sought to reduce sequential periods and utilize 
spare node resources by overlapping the main thread’s sequential 
work with OpenMP regions, but such application-specific tuning 
efforts are limited by data and control dependencies, and they can 
also impede code clarity and portability. In fact, none of the six 
codes in our study uses such overlapping in their production 
versions. The novel “GoldRush” method presented in this paper 
uses a different approach to exploiting idle node resources: it uses 
them to run the in situ data analytics needed to cope with I/O 
bottlenecks. Benefits include the efficient use of compute node 
resources and reductions in data movement overheads, as will be 
demonstrated with detailed performance measurements. 

The GoldRush method is made possible by the FlexIO transport in 
the ADIOS I/O system [19][47] widely used on high end 
machines. Specifically, with FlexIO and ADIOS, analytics 
pipelines can be configured to map to compute nodes only those 
portions of their computations that “fit into” available idle 
resources, with additional analytics mapped to dedicated 
resources and/or run as post-processing tasks after data has been 
moved to the machine’s attached parallel file system. Appropriate 
end-to-end mappings of analytics pipelines can reduce I/O data 
volumes and data movement overheads [1][45][47], to provide 
science end users with rapid insights into the data produced by  
their simulations. 
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Leveraging such flexibility in constructing data analytics 
pipelines, this paper addresses the key compute-node-level 
challenges for efficiently running in situ data analytics. The first 
challenge is that for well-tuned scientific simulations, idle 
compute-node CPU cycles exist in the form of a large number of 
short idle periods. This makes it difficult to schedule and allocate 
cores to analytics without causing undue runtime overheads for 
the simulation. Second, because co-located simulation and 
analytics codes share certain node resources (e.g., last level 
caches, memory busses and controllers), the execution of 
analytics must be managed to minimize the degrees to which 
simulations are perturbed. Measurements presented in this paper 
demonstrate that carefully managing how analytics are run is 
critical to achieving overall high performance for co-located 
simulation and analytics. Third, current operating systems on 
HEC platforms are not well equipped to deal with multi-
programmed simulation and analytics workloads, as they schedule 
processes based on core idleness, essentially allocating idle 
resources to analytics in a greedy manner, and they are also 
largely ignorant of potential interference effects. Therefore, even 
with carefully configured process priorities, such policies can lead 
to severe performance loss. As shown later, priority-based OS 
level scheduling of analytics processes can result in an up to 57% 
performance degradation of the simulations. 

To address those challenges, we have created a lightweight 
runtime system, named “GoldRush”, which supports resource-
efficient and non-intrusive in situ data analytics. GoldRush (i) 
uses low-overhead online monitoring to identify opportunity 
windows during which (ii) it can schedule analytics to run on 
cores not currently used by the simulation. It also (iii) 
continuously assesses interference between concurrently-running 
simulation and analytics, and (iv) controls the execution rate of 
analytics processes to mitigate harmful impacts on the simulation 
due to contention on shared node resources.  

GoldRush makes the following contributions: 

1) Fine-Granularity Operation: during simulation execution, it 
identifies idle periods, predicts the duration of each period, selects 
those periods with sufficient durations to run analytics, but skips 
those that are too small to dwarf context switching overheads. It 
completely suspends analytics when cores are in use by the 
simulation, to avoid perturbing the parallel simulation.  

2) Interference Awareness: it can detect interference between 
concurrently running simulation and analytics arising from 
contention on shared memory resources, and it dynamically 
mitigates such interference by throttling the execution rate of 
analytics.  

3) Low Overhead: runtime overheads (including monitoring and 
scheduling) are negligible, measured as never exceeding 0.3% of 
total runtime with representative HEC applications. 

4) Transparency: its methods are easily integrated into existing 
HEC runtimes, demonstrated by their use with OpenMP/MPI 
hybrid codes, thus imposing minimal restrictions on current 
simulation and analytics codes. 

By effectively managing co-located simulation and analytics 
workloads, GoldRush complements existing in situ data analytics 
techniques [2][6][7][42][46], opening up new opportunities to 
efficiently run such analytics without the need to dedicate 
compute node resources, leading to substantial performance 
improvements and cost savings at large scales.  

GoldRush is evaluated with real-world scientific applications on 
NERSC’s Hopper Cray XE6 and Oak Ridge National Laboratory’ 
InfiniBand cluster. In particular, measurements with co-located 
simulation and synthetic analytics show that GoldRush’s 
synergistic scheduling improves simulation performance by 9.9% 
on average (and up to 42%) over the OS scheduling. For a fusion 
application GTS, there is a clear trend that GoldRush’s advantage 
over the OS baseline native scheduling methods increases at 
larger scales (up to 7.5% at 12288 cores); and that the GoldRush-
managed analytics outperforms alternative analytics setups: for 
GTS at 12K cores, it achieves 30% performance improvement 
over “Inline” analytics and a 1.8x reduction in data movement 
volumes over “In-Transit” analytics. Additional evaluations on a 
32-core, multi-socket Intel Westmere machine demonstrate 
GoldRush’s node-level scalability and applicability across 
different architectures. 

The remainder of the paper is organized as follows. Section 2 
motivates GoldRush with experimental measurements that show 
the benefits and challenges of leveraging idle compute node 
resources for in situ data analytics. Section 3 describes the system 
design and implementation of GoldRush and the techniques used 
to gain high levels of performance and resource efficiency. 
Section 4 evaluates GoldRush with both synthetic benchmarks 
and real-world applications on different HEC platforms. Section 5 
reviews related work and Section 6 concludes the paper. 

2. MOTIVATION 
This section presents a detailed characterization of the idle 
resources on compute nodes, to quantify the potential benefits and 
challenges of using them. 

2.1 Characterizing Idle Resources 
Figure 1 illustrates the execution of a MPI process with multiple 
OpenMP threads. When only the main thread in the MPI process 
is actively executing some sequential code outside OpenMP 
regions (i.e., in sequential periods), the OpenMP worker threads 
are waiting and the cores on which they run become idle (“P1” to 
“P6” in Figure 1). Typical sequential periods involve MPI 
communications, file I/O, and/or non-parallelized computations. 
Analytics can be run asynchronously, in response to a 
simulation‘s data output action and using available idle cores, as 
long as there is sufficient free memory for buffering output data 
between successive simulation output actions.  
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Figure 1. Illustration of idle resources during execution of a 

MPI processes with 4 OpenMP threads. The 3 OpenMP 
worker threads are idle when the main thread is in 

sequential periods. 



We are interested in how many idle resources (CPU and memory) 
exist when running real-world HEC simulation codes and whether 
those idle resources are amenable for use by in situ analytics. 
Toward that end, we profile four widely-used and well-tuned 
MPI/OpenMP hybrid simulation codes: GTC (fusion) [13], GTS 
(fusion) [41], GROMACS (molecular dynamics) [8], LAMMPS 
(molecular dynamics) [28], plus two well-known MPI/OpenMP 
hybrid benchmark codes: BT-MZ and SP-MZ from the NPB 
benchmark suite [22].   

The six codes are profiled on NERSC’s Hopper Cray XE6 [10] 
and on ORNL’s Smoky InifiniBand cluster [34]. Hopper has 
6,384 compute nodes and uses Cray’s Gemini interconnect. Each 
Hopper compute node has two 12-core MagnyCours AMD 
processors. There are 4 NUMA domains, each with 6 cores and 
8GB DRAM. Smoky is an 80 node cluster, where each compute 
node has four quad-core AMD Opteron processors. There are 4 
NUMA domains, and each domain has 4 cores and 8GB DRAM. 
To accommodate the NUMA architecture, we run each MPI 
process in one NUMA domain and run as many OpenMP threads 
as the number of cores in each NUMA domain (which leads to 
peak performance for all simulation codes). Threads are pinned on 
cores, and memory affinity is enforced within each NUMA 
domain with the aprun and mpirun launch facility. 

GTC, GTS, BT-MZ and SP-MZ are built with the PGI compiler, 
and GROMACS and LAMMPS with the GCC compiler, 
respectively (as suggested by the developers). Codes are run with 
representative input configurations, and GROMACS, LAMMPS, 
BT-MZ, and SP-MZ are run with the multiple input decks 
distributed with these software packages. The CrayPAT [4] and 
Vampir [38] tools are used to collect profiling information.  

Each simulation’s main loop time is divided into three parts: (1) 
OpenMP periods (all threads are active), (2) MPI periods (only 
the main thread is active, performing MPI communications), and 
(3) “Other Sequential” periods (only the main thread is active, 
carrying out sequential activities like file I/O or others). In the 
latter two cases, the cores on which OpenMP worker threads run 
are idle. Figure 2 shows the percentages of execution time spent 
in those three parts.  

Interesting observations from these measurements include the 
following. First, jointly, all idle periods (MPI and Other 
Sequential periods) comprise up to 65% of the total main loop 
time for four of these applications (i.e., LAMMPS with the 
“Chain” input deck), and even 89% for the NPB BT-MZ 
benchmark with the class C input. Note that on Hopper’s compute 
nodes, 20 out of 24 cores are idle during those periods, leading to 
substantial amounts of idle compute capacities. Second, the 
percentage of total idle periods generally increases when scaling 
the simulation to run on more cores. For example, GTC’s idle 
period percentage increases from 21% to 23% when scaling from 
1536 to 3072 cores on Hopper. This holds for weak scaling codes 
like GTC, GTS, and LAMMPS in which MPI communication 
times increase at larger scale, and also for strong scaling codes 
like GROMACS and the NPB benchmarks, where in OpenMP 
times decrease with increased core counts. Third, although 
simulation performance varies across inputs (like LAMMPS and 
GROMACS), it is common that idle periods comprise a 
substantial portion of total simulation runtime. 

We also measure peak memory usage among all MPI processes. 
None of the simulation codes consume more than 55% on either 
Hopper or Smoky. The resulting available free memory makes it 
feasible to buffer simulation output data, thereby enabling the 
asynchronous execution of analytics and simulation codes. 

2.2 Challenges of Using Idle Resources 
Although the measurements shown so far demonstrate sufficient 
availability of idle resources, there are several challenges for 
effectively harvesting these idle resources for in situ data 
analytics, discussed next. 

2.2.1 Magnitude of Idle Resources 
Despite the substantial amounts of total idle CPU cycles, most 
individual idle periods are short in duration. Figure 3 shows the 
distribution of durations of idle periods in our six codes. The 
“Count” histograms show that for all simulation codes, the 
majority of idle periods are quite short (less than 1ms), while the 
“Aggregated Time” histograms show that the total amount of idle 
time is dominated by a modest number of large idle periods.  
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(a) On Hopper, simulations run on 1056 (256 MPI proc. × 6 OpenMP threads) and 3072 cores (512 MPI proc. × 6 OpenMP threads). 
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(b) On Smoky, simulations run on 512 (128 MPI proc. × 4 OpenMP threads) and 1024 cores (256 MPI proc. × 4 OpenMP threads). 
Figure 2. Breakdown of simulation main loop time. The input decks are specified in parentheses following the simulation names. 
When the simulation is in non-threaded sequential periods, only its main thread is active and OpenMP worker threads are idle. 



This distribution pattern has important implications. First, it is not 
likely useful, in terms of cost vs. benefit, to harvest small idle 
periods. As a result, one must determine, at runtime, which idle 
periods will be sufficiently large to warrant their use for running 
desired data analytics. Second, inaccurate methods for identifying 
appropriately long idle periods will lead to inefficiencies for two 
reasons: (1) insufficient benefits or worse, undue overheads when 
using periods that are too small, and (2) missed larger periods 
leading to loss of major portions of total available idle time. 

2.2.2 Contention on Shared Resources 
Beyond finding idle periods suitable for running analytics, 
another issue is the potential interference of analytics imposed on 
the simulation’s main thread running in its sequential phase 
(during which analytics processes concurrently run on idle cores 
not used by the simulation’s OpenMP worker threads). 
Interference is due to contention on resources shared between 
both sets of threads, such as the last level cache, the memory bus, 
and the memory controller (as shown in Figure 4); it is 
particularly harmful for tightly synchronized parallel simulations, 
as the slowdown of each individual MPI process may cascade and 
be amplified when running at larger scales [11]. 

2.2.3 Limitations of Operating System Scheduling 
A baseline solution for co-running analytics with simulation 
threads is to leave it to the Linux OS scheduler and the OpenMP 
runtime to manage both workloads. We realize this approach as 
follows.  

1) On each compute node, fork some number of analytics 
processes. Set their CPU affinities so that they can run on the 
cores where the simulation’s OpenMP worker threads are run, but 
not on the cores hosting the simulation’s main threads. The 
analytics processes are given the lowest priority (with “nice” 
values set to 19).   

2) Configure the simulation’s OpenMP runtime so that worker 
threads yield CPUs when they are outside OpenMP regions. For 

the Intel OpenMP runtime, this can be achieved by setting the 
KMP_BLOCKTIME environment variable to 0. The PGI and 
GNU OpenMP runtimes can be similarly configured, by setting 
the OMP_WAIT_POLICY environment variable to “PASSIVE”. 
The priorities of the simulation’s OpenMP worker threads are set 
to default (their “nice” values are equal to 0). 

This baseline solution is evaluated by co-running the six 
simulations with the five analytics benchmarks listed in Table 1. 
These benchmarks each stress a certain subsystem in the machine. 
On Smoky, we run each simulation with 512 cores (128 MPI 
processes and 4 OpenMP threads per process) and with 1024 
cores (256 MPI processes, each with 4 OpenMP threads). In both 
cases, there are 16 simulation threads and 12 analytics processes 
on each compute node, as shown in Figure 4. 

Figure 5 shows the performance of four simulations with co-
running analytics. Each simulation’s main loop time is divided 
into two parts:  parallel OpenMP periods and Main-Thread-Only 
periods (the latter correspond to MPI and Other Sequential 
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Figure 3. Distribution of idle period duration. All simulations 
run with 1536 cores on Hopper. 
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on Smoky’s 16-core compute node. 
Table 1. Analytics Benchmarks 

Benchmark  Tasks for Each Process 

PI Iteratively calculate Pi.  

PCHASE Traverse randomly linked lists (200MB in total).  

STREAM Sequentially scan large arrays (200MB in total).  

MPI Collectively call MPI_Allreduce() on 10MB data. 

IO Write 100MB data to parallel file system. 
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(a) Simulation main loop time with 512 cores on Smoky. 
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(b) Simulation main loop time with 1024 cores on Smoky. 

Figure 5. Simulation performance with co-located analytics. 



periods in Figure 2). With the pure OS-based management 
solution, co-located analytics slow down simulations by up to 
57% compared to simulations’ solo runs, and performance 
degradation generally becomes worse at larger scales. 

The ineffectiveness of pure OS-based management is caused by 
several factors. First, the significant slowdown of the Main-
Thread-Only periods shown in Figure 5 indicates that the 
simulation’s main threads experience severe interference from 
concurrently running analytics. This is particularly true for cases 
in which the simulation’s main threads co-run with memory 
intensive codes like PCHASE and STREAM, because those 
benchmarks cause severe contention on the last level cache, 
memory controller, and other shared resources in the memory 
hierarchy. Linux’ default OS scheduler does not recognize those 
facts, as its main focus is on core idleness.  

Second, there are increases in some simulations’ OpenMP times 
with the presence of co-located analytics. One reason is the OS 
scheduler’s greedy nature, which always schedules analytics 
threads as soon as the OpenMP worker threads yield the CPU. For 
short idle periods, analytics threads will be forced to suspend soon 
after they begin to run, to return cores back to higher priority 
simulation threads. Another reason is the Linux scheduler’s 
imposition of fairness on analytics vs. simulation threads, causing 
it to allocate time slots for, rather than completely suspend, low-
priority analytics processes while the simulation’s worker threads 
are active (i.e., in a parallel OpenMP period). This causes jitter to 
the simulation and negatively impacts its performance.  

The GoldRush runtime methods described next remedy these 
shortcomings of the OS baseline solution. 

3. GOLDRUSH RUNTIME SYSTEM 

3.1 Overview 
GoldRush manages the execution of data analytics co-located 
with simulation processes, in ways that (i) leverage unused idle 
resources on compute nodes, and (ii) mitigate potential 
interference between simulation and analytics.  

GoldRush is implemented as a runtime library and residing at 
both the simulation and analytics sides of these compute node-
based computations (highlighted in yellow in Figure 6). For 
simulation processes, GoldRush generates performance 
monitoring metrics used by a prediction module to estimate the 
lengths of upcoming idle periods at the exit of each OpenMP 
parallel region. If the next idle period is predicted to be “usable”, 
GoldRush sends signals to analytics processes to resume their 
execution; if no signal is produced, analytics processes remain 
suspended throughout the next idle period. Once resumed, 
analytics processes run on the cores yielded by the simulation’s 
OpenMP worker threads, while the simulation’s main threads 
continue to run on their own, dedicated cores. When the 
simulation’s main threads reach the end of their idle periods (i.e., 
the start of next parallel OpenMP region), signals are sent to 
suspend analytics processes, thereby permitting the simulation’s 
OpenMP worker threads to re-gain exclusive use of their cores for 
executing the subsequent parallel OpenMP period. 

To assess potential interference between simulation and analytics, 
the GoldRush runtime also periodically updates a shared memory 
monitoring buffer with performance data about the simulation’s 
main threads. The analytics-side GoldRush scheduler periodically 

reads this information, assesses interference severity and if 
significant interference is detected, the scheduler throttles, i.e., 
slows down, the execution rate of analytics processes. This serves 
to reduce contention on shared resources, at the cost of reduced 
progress with analytics processing. A limit on possible slowdown 
is imposed by the fact that analytics processing must be 
completed before the simulation’s next output steps are taken. On-
compute-node analytics, therefore, have to be “sized” 
appropriately, and we do so by leveraging the placement 
flexibility offered by the ADIOS IO library and its FlexIO IO 
methods, described in [47]. With ADIOS and FlexIO, analytics 
pipelines can be defined and (re-)structured to match available 
compute node resources, with “overflow” analytics actions 
performed in separate “staging nodes” reserved for online 
analytics and/or postmortem, after data has been moved to disk. 
Another attribute of the FlexIO transport used by GoldRush is its 
efficient intra-node data movement from simulation to analytics 
via a shared memory transport. 

Compared to the baseline solution described in Section 2, 
GoldRush adds potential overheads to the simulation side for 
performance monitoring and idle period prediction, and for 
suspending and resuming analytics. There are also additional 
costs at the analytics side for online monitoring and execution 
control. As shown in Section 4, these overheads are negligible, 
permitting GoldRush to significantly improve application 
performance and resource efficiency over the baseline solution. 

3.2 Inter-Posing GoldRush 
GoldRush is implemented as a C library, for which we offer two 
approaches to integrating it with simulation codes. The first 
approach directly inserts the GoldRush API (listed in Table 2) 
into the simulation’s source code. In particular, a gr_start() call is 
placed at the end of an OpenMP code region (e.g., after a “!$omp 
end parallel” statement) to mark the start of an idle period; and a 
gr_end() call is put before the beginning of an OpenMP parallel 
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region (e.g., before a “!$omp parallel” statement ) to mark the end 
of an idle period. At runtime, those markers are executed by the 
main thread of each simulation process to identify the beginning 
and end of idle periods, and to perform operations that monitor 
performance and resume/suspend analytics processes. 

The second approach integrates the library with the simulation in 
a more transparent fashion, avoiding changes to simulation codes, 
by adding its functions into appropriate routines within the 
OpenMP runtime library. As a proof of concept, we modify 
GCC’s libgomp runtime library by instrumenting the runtime 
routines associated with PARALLEL and FOR directives. Those 
are sufficient to cover all of the top-level OpenMP regions in the 
GTC, GTS, LAMMPS, GROMACS, and NPB codes. Other 
directives can be supported similarly, left for future work. 

In comparison, the source code instrumentation approach is more 
general and flexible at the cost of manual code modification. The 
instrumented OpenMP runtime library approach is transparent to 
simulation codes, but requires modifying internals of the OpenMP 
library. In practice, we have instrumented the sources of 
simulation codes requiring Intel or PGI compilers, as those 
compilers’ OpenMP runtime libraries are not available to us for 
modification. Besides, source instrumentation may be automated 
with source transformation [23] or binary re-writing tools [22].  

Analytics codes only need to add gr_init() and gr_finalize()  
functions, permitting an instance of the GoldRush scheduler to be 
activated in each analytics process at runtime. 

3.3 Online Monitoring and Prediction 
3.3.1 Predicting Idle Period Durations 
At the beginning of an idle period (i.e., in a gr_start() call), the 
simulation’s OpenMP worker threads have yielded their cores, 
and the main thread is about to enter a sequential code region. An 
important decision to make at this point is: should the analytics 
processes be allowed to run on idle cores during this upcoming 
idle period? As discussed in Section 2.2, idle periods are 
appropriate only if they are sufficiently long. To predict their 
expected durations, the GoldRush runtime records the timings and 
number of occurrence of each executed idle period. Each idle 
period is uniquely identified by its start and end locations (the file 
name and line number arguments passed to marker API calls). 
When a gr_end() marker is executed, the idle period that just 
completed is identified. The duration of that idle period is 
measured as the elapsed time between the two successive 
gr_start() and gr_end() calls made by the main thread. The online 
history maintains a running average duration and occurrence 
counts for each unique idle period seen so far.  

We currently use a simple heuristic to predict idle period duration, 
using the above online history information. The method has high 
accuracy and low overheads for simulations with strong locality 
and regularity in their execution flows (a typical behavior for 

many scientific codes), as those codes usually have a small 
number of unique idle periods with small variations in idle period 
duration. The heuristic works as follows. During the execution of 
gr_start(), a prediction function is called. It first finds all idle 
periods in the history that match the start location (file name and 
line number) of the upcoming idle period, selects the one with the 
highest occurrence count, and uses its running average duration as 
an estimate of the upcoming period’s duration. If the estimated 
duration is greater than a pre-defined, tunable threshold value or 
no matching history record is found, the upcoming idle period is 
considered as “usable” for analytics. 

Costs: The time and space costs of idle period prediction are 
proportional to the number of unique idle periods in a 
simulation’s execution flow. As shown in Figure 8, the numbers 
of unique idle periods in the six simulation codes range from 2 to 
at most 48, resulting in low runtime overheads.  

Prediction Accuracy: The purpose of prediction is to decide 
whether an idle period is usable (long) or not (short) with respect 
to a threshold value. Therefore, instead of using the absolute error 
in predicted duration values, we define a prediction of an idle 
period to be “accurate” if the predicted usability (short or long) of 
the idle period matches the indication of the actual duration. 
Specifically, we divide prediction results into four categories: (i) 
“Predict Short”: correctly predict a short period to be short (not 
usable for analytics); (ii) “Predict Long”: correctly indicate a long 
period to be long (usable); (iii) “Mispredict Short”: wrongly 
predict a short period to be long; and (iv) “Mispredict Long”: 
wrongly predict a long period to be short.  

To quantify prediction accuracy, we record the predicted duration 
at the beginning of each idle period, and measure the actual 
duration at the end of the period, based on which we then count 
the number of predictions falling into each of the four categories 
described above. Table 3 presents the percentages of the four 
categories among all predicted periods, using a threshold value of 
1ms. Accurate predictions range from 88.7%~100% of all 
predictions for the six simulations, showing that our prediction 
method is highly accurate for codes with regular execution flows.  

Table 2. GoldRush Public API 
Function  Description 
int gr_init (MPI_Comm comm); Initialize the GoldRush runtime 

int gr_start (char *file, int line); Mark the start of an idle period 

int gr_end (char *file, int line); Mark the end of an idle period 

int gr_finalize (); Finalize the GoldRush runtime 
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Figure 8. Number of unique idle periods and idle periods with 
the same start location (due to branching in execution flow).  

Table 3. Prediction Accuracy with 1ms Threshold (1536 
Cores on Hopper). 

Simulation Predict 
Short 

Predict 
Long 

Mispredict 
Short 

Mispredict 
Long 

GTC 31.6% 57.1% 6.4% 4.9% 

GTS 58.5% 36.8% 3.6% 1.1% 

LAMMPS 49.7% 49.7% 0.3% 0.3% 

GROMACS 99.6% 0.1% 0.1% 0.2% 

BT-MZ.E 66.6% 33.4% 0.0% 0.0% 

SP-MZ.E 50.1% 49.9% 0.0% 0.0% 

 

 



Figure 9 shows how sensitive prediction accuracy is to the 
threshold value. When varying the threshold value from 0.1 to 2 
milliseconds, prediction accuracy for all six simulations never 
falls below 84.5%, and remains 100% for BT-MZ and SP-MZ 
cases. Figure 9 also shows that 1ms is an appropriate threshold 
value since it leads to high accuracy and in addition, ensures that 
the selected usable periods are sufficiently large to amortize 
context switch overheads. 

Despite good results with the six simulation codes used in our 
work, there remain substantial opportunities for future 
improvements and optimizations of methods for idle period 
prediction. For instance, for codes with dramatically varying idle 
periods and runtimes (e.g., Adaptive Mesh Refinement codes), 
more sophisticated methods like dynamic call stack tracking plus 
statistical forecasting are likely preferable, which we will 
investigate as future work. 

3.3.2 Monitoring Interference during Idle Periods 
To manage potential interference between a simulation’s main 
threads and concurrent analytics processes, GoldRush installs a 
timer and signal handler on each main thread to inspect relevant 
hardware performance counter values through the PAPI 
performance counter library [26], done every millisecond during 
idle periods. Measured are the number of CPU cycles and retired 
instructions, and IPC (Instructions per Cycle) is calculated to 
quantify the performance of the simulation’s main thread. The 
IPC value is written to a per-simulation-process buffer in shared 
memory, and is periodically read by the analytics-side GoldRush 
schedulers. The timer is disabled at the end of each idle period. 

3.4 Controlling Execution of Analytics 
Analytics are run when an idle period is predicted as usable. This 
involves the simulation main thread sending a SIGCONT signal 
to resume the execution of analysis processes. Conversely, when 
the simulation main thread calls gr_end() at the end of the idle 
period, it sends a SIGSTOP signal to suspend analytics. Analytics 
threads, therefore, are run only during selected idle periods; they 
are quiescent when the simulation is in its OpenMP regions. The 
signaling costs incurred are small (see Section 4). 

An alternative to using signals to suspend and resume analytics 
processes is to set the simulation processes to use a real-time 
scheduling policy via the sched_setscheduler() system call. 
However, this privileged feature is not generally available in HPC 
environments (e.g., Hopper and ORNL’s Titan Cray XK7). 

3.5 Scheduling Analytics 
At the analytics side, the GoldRush scheduler regulates the 
execution of analytics processes to mitigate potential interference 
effects experienced by the simulation’s main threads. The 
scheduler is implemented as a signal handler in each analytics 
process and is periodically triggered by a timer. Two scheduling 
policies are presented below.  

3.5.1  Interference-Aware Policy 
The Interference-Aware scheduler works in three steps. 

1) Assessing the Severity of Interference: once triggered, the 
scheduler reads the IPC value of the simulation’s main thread 
from the shared memory monitoring buffer. Interference is 
determined as IPC being lower than some threshold value, 

whereupon the scheduler enters the next step; otherwise, the 
signal handler returns and analytics process runs at full speed 
until the next scheduling point. 

2) Identifying Contentious Analytics Processes: each GoldRush 
scheduler instance determines whether the local analytics process 
to which it belongs is contributing to interference. Toward that 
end, it uses the L2 Cache Miss Rate (L2 Cache Misses per 
Thousand Cycles) as the indicator for the analytics process’ 
contentiousness. If this miss rate is greater than some threshold 
value, then the analytics process is subject to execution rate 
throttling. This is because an analytics process with high L2 
Cache Miss Rate is likely to impose pressure on the shared L3 
cache and on other shared resources, such as memory controllers 
and memory bus bandwidth. 

3) Throttling the Execution Rate of Analytics: the scheduler 
throttles an offending analytics process’ execution rate by putting 
it to sleep for some short period of time, by calling the usleep() 
function. When the sleep duration is exceeded, the scheduler’s 
signal handler returns. The analytics then runs at full speed until 
the signal handler is triggered again, repeating the three 
scheduling steps. Since sleep duration controls the amount of idle 
cycles not used by analytics, the duration’s value along with the 
scheduling interval used jointly provide useful knobs for 
controlling the percentages of idle cycles being harvested. 

3.5.2 Greedy Policy 
Under the Greedy policy, the analytics-side scheduler is disabled 
so that analytics processes run at full speed for all idle periods 
selected by the simulation-side prediction module. This policy 
differs from the OS baseline solution in that it relies on 
simulation-side prediction to filter out short idle periods. 
Comparing this Greedy policy with the Interference Aware policy 
and the baseline solution helps isolate the effects of simulation-
side prediction and analytics-side scheduling. 

3.6 Usage of GoldRush 
GoldRush makes it feasible to deploy in situ analytics onto 
compute nodes so that useful analytics can run on otherwise-
wasted idle resources, close to the data source (simulation), and in 
parallel with the simulation. It can improve the performance 
and/or resource usage of scientific applications’ online analytics 
and I/O pipelines. A sample usage of GoldRush is to run as much 
analytics work on idle resources as the idle capacity permits, so 
that the amount of dedicated resources (e.g., dedicated cores [6] 
or staging nodes [46]) for online analytics can be reduced or even 
avoided. Another usage is to perform data-reduction analytics 
operations with idle resources in compute nodes to reduce 
downstream data movements along the I/O pipeline.  
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Figure 9. Sensitivity of prediction accuracy to the threshold 
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4. PERFORMANCE EVALUATION 
This section’s experimental evaluations have three purposes: (i) 
analyze the cost and benefit of GoldRush runtime and its 
advantages over the OS baseline solution; (ii) measure the 
improvement of application performance and resource efficiency 
achieved by GoldRush for real-world applications; and (iii) assess 
the scalability of GoldRush with increasing machine size and 
node core count. The experiments are conducted on NERSC’s 
Hopper Cray XE6 [10] and ORNL’s Smoky cluster [34].  

4.1 Benefits of Synergistic Scheduling 
Our first set of experiments co-runs simulation with “unrelated” 
analytics (the analytics does not operate on simulation output but 
on its private data set) under different scheduling policies. Here 
we evaluate scenarios where there is interference between the 
simulation and analytics. Note those are less likely to occur with 
“related” analytics in which there is cache-friendly, constructive 
data sharing between simulation and analytics -- due to producer-
consumer data reuse relationships. The purpose of these 
experiments is to assess GoldRush’s ability to mitigate destructive 
interference between simulation and analytics. We co-run the four 
simulation codes (GTC, GTS, GROMACS and LAMMPS) with 
the five synthetic analytics benchmarks in Table 2. The 
simulation and analytics are set to run in four different 
configurations: 

Case 1 (Simulation in Solo): Simulation is run without analytics; 
OpenMP worker threads do busy waiting in idle periods.  

Case 2 (OS Baseline Solution): Simulation and analytics are co-
located; OS schedules analytics processes to run whenever 
simulation’s OpenMP worker threads yield CPUs. 

Case 3 (Greedy Scheduling): Simulation-side GoldRush runtime 
selects idle periods, resumes and suspends analytics with signals; 
Analytics-side GoldRush scheduler is disabled. 

Case 4 (Interference Aware Scheduling): Simulation-side 
GoldRush selects idle periods to run analytics, resumes and 
suspends analytics, and also records simulation main threads’ IPC 
values in shared memory buffer during idle periods. Analytics-
side GoldRush scheduler does interference detection and control. 

Simulations and analytics are run with 1024 cores on the Smoky 
cluster. They are placed in compute nodes as shown in Figure 4.  

4.1.1 Benefits of GoldRush 
Figure 10 shows the simulation’s main loop time in the four cases. 
GoldRush with its greedy policy can improve the performance of 
the four simulations over the OS baseline solution. This 
demonstrates the importance of selecting proper idle periods at 
the simulation side. GoldRush with its interference aware policy 
can further improve simulation performance over the greedy 
policy, resulting in 9.9% on average and up to 42% performance 
improvement over the OS baseline solution. Figure 10 shows that 
such improvements are due to the reduction of the “Main-Thread-
Only” portion of the main loop time. The difference of simulation 
run time in solo vs. under interference aware scheduling is at most 
9.1% (GROMACS running with PCHASE) and 1.7% on average 
among all test cases, meaning that the simulations’ performance is 
close to the optimal. These results demonstrate that GoldRush’s 
interference aware scheduling can mitigate potential interference 
effects between the simulation’s main threads and analytics 
processes during idle periods. Such advantage is the most evident 
for memory intensive benchmarks like STREAM and PCHASE, 
as they cause severe contention on shared resources in memory 
hierarchy. 

There is a trade-off between the amounts of idle cycles to harvest 
vs. the impact on simulation.  Such tradeoff can be managed by 
tuning the parameters of scheduling policy (Section 3.5). In our 
tests, we conservatively set the idle period duration selection 
threshold to 1ms, scheduling interval to 1ms, IPC threshold to 1, 
L2 Miss Rate to 5, and sleep duration to 200µs. Such setup results 
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                                             (c) GROMACS                                                                                 (d) LAMMPS 

Figure 10. Simulation performance with 1024 cores on Smoky cluster. The legend “GoldRush” refers to the time which the 
simulation spends in GoldRush operations (monitoring, prediction and signaling). Such overheads are very low (<0.3%). 



in significant performance improvements at simulation side as 
shown in Figure 10, and meanwhile the aggregated amount of 
harvested idle periods is at least 34%, and 64% on average, of 
total available idle time. A thorough study of parameter tuning is 
left for future work. 

4.1.2 Costs of GoldRush 
The runtime cost of GoldRush at the simulation side can be 
quantified by the performance difference between GTS running in 
solo vs. co-running with analytics under the control of GoldRush. 
As mentioned earlier, this difference is 1.7% on average.  

The simulation side cost of GoldRush can be further divided into 
two parts: the first part is the time spent in the GoldRush runtime 
itself (i.e., the time to execute the GoldRush marker APIs and 
monitoring signal handler), and the second part is simulation 
slowdown due to context switches and remaining interference 
from analytics. We internally instrument GoldRush and find that 
the aggregated time of the GoldRush runtime itself is small, 
constituting no more than 0.3% of the simulation’s main loop 
time. Concerning runtime monitoring, the measured memory 
usage of storing GoldRush monitoring data in main memory is no 
more than 5KB per simulation process in all test cases. 

4.2 GTS Application with In Situ Analytics 
GTS (Gyrokinetic Tokamak Simulation) is a global three-
dimensional Particle-In-Cell (PIC) code used to study the micro-
turbulence and associated transport in magnetically confined 
fusion plasma of tokamak toroidal devices [41]. GTS outputs 
particle data during simulation. We apply GoldRush to manage 
GTS to co-run with two representative particle data analytics. 

4.2.1 Parallel Coordinate Visual Analytics 
Parallel coordinates is a visualization method commonly used to 
depict and analyze multivariate data [12][31].  We implement this 
method for GTS particle data. Each GTS particle has seven 
attribute, including coordinates, velocities, weight and particle ID. 
Each processor first generates its local plot of parallel coordinates 
from the selected particles. Then, all processors collectively 

generate the final plot through parallel image compositing [44]. 
Multiple plots of parallel coordinates can be generated and 
composited to show the relationship between different groups of 
particles. Figure 11 shows the parallel coordinates for two time 
steps, where the green areas correspond to all particles, and the 
red areas corresponds to the particles with the absolute 20% 
largest weights. Our parallel coordinate analytics can clearly 
show the evolution of particle data distribution at large scale. 

GTS is run with a typical setup, which results in particle data 
output size of 230MB per process. GTS outputs particle data 
every 20 iterations. Each GTS MPI process with 6 OpenMP 
threads is placed onto a separate socket on Hopper’s 4-socket 
compute node. Weak scaling is applied to GTS from 768 to 12288 
cores. Within each node, 20 visual analytics processes are placed 
onto the cores where the simulation’s OpenMP threads are 
running. The 20 analytics processes are divided into 5 groups. 
Each group has 4 processes with one process running on a 
separate socket. GTS particles output data of successive timesteps 
are distributed among the 5 analytics process groups in a round-
robin manner via the ADIOS shared memory transport [47]. Both 
the original particle data and the generated images are written to 
the file system. 

For comparison, we also run GTS and visual analytics “Inline”: 
the simulation directly calls the visual analytics routine. In this 
way, simulation and analytics are performed synchronously. We 
use a multi-threaded OpenMP version of the parallel coordinates 
processing routine to get the best possible inline performance.  

Performance: Figure 12 (a) shows the main loop time of GTS 
simulation with 12288 cores on Hopper. Similar to previous 
experiments, the performance of GTS is best with GoldRush 
interference-aware scheduling. “Inline” has worst performance, 
due to synchronously performing analytics and file I/O. Figure 13 
(a) shows the scaling of simulation-side slowdown. The GoldRush 
interference aware policy has better scalability than the OS 
baseline solution, which promises its utility at even larger scales. 
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Figure 12. GTS performance with 12288 cores on Hopper. 
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Figure 13. Scaling results on Hopper. Figure 13 (a) shows the 
slowdown of GTS (comparing to Solo case) with different 

scheduling policies. Figure 13 (b) compares the data movement 
costs of running parallel coordinates in situ vs. in transit. 

 

 
Figure 11. Parallel coordinates for GTS particle data. The 

two images are drawn from 2 timesteps of particle data each 
with 120GB in size. The red lines highlight particles with the 

absolute 20% largest weights. 



Cost I (CPU Hours): with the same number of compute nodes 
used, using GoldRush leads to the least usage of CPU Hours. 

Cost II (Data Movement Volumes): an alternative to co-locating 
simulation and analytics is to perform analytics “In-Transit”: 
additional compute nodes are allocated to host analytics; data is 
moved from the simulation to analytics through the RDMA-based 
data staging transport in ADIOS I/O library [1]. This makes it 
possible to avoid contention on compute nodes, but results in 
additional data movement across the interconnect (which can also 
introduce perturbation to simulation [1]). Figure 13 (b) compares 
the data movement volumes under the GoldRush vs. In-Transit 
setups, where a 1:128 ratio of compute to staging nodes is used. 
We note that placing analytics onto a smaller number of staging 
nodes reduces MPI communication cost within the parallel 
coordinates analytics (for the image composition), but doing so 
adds data movements between the simulation and analytics (i.e., 
the staging traffic). Since placing analytics within the compute 
node and using GoldRush to schedule its execution can already 
achieve close-to-optimal performance, it is more efficient to use 
GoldRush rather than In-Transit for this GTS analytics use case. 
More generally, of course, In-Transit solutions remain important, 
because one must “size” on-compute-node analytics to match 
available idle resources. We leave the creation of general methods 
for such sizing to future work. 

4.2.2 Time Series Analytics 
Time series analysis [27] is essential for understanding particle 
temporal behavior. A basic operation of time series analysis is to 
iteratively access the data of each particle in the arrays of 
different time steps. A common data access pattern can be simply 
represented as A[ti][p] = f(B[ti][p], B[ti+1][p]) for two time steps, 
where, for a particle p, A is a derived variable whose value at the 
time step ti depends on the original variable B at ti ad ti+1. For 
example, the displacement of a particle is computed from its 
positions at two time steps. However, we note that it is non-trivial 
to generate the particle trajectories in parallel [27][29], which is 
out of the scope of this paper. In our study, we assume that we 
already have the time-series data of each particle and emulate the 
data access pattern with a synthetic code.  

We co-run the code that exercises the data access pattern on GTS 
particle output data. Due to its streaming access pattern, the time 
series analytics causes 15.2 L2 cache misses per thousand 
instructions on Hopper. As shown in Figure 12 (b) and 13 (a), this 
results in up to 9.4% slowdown of the GTS simulation with 12288 
cores under the OS scheduler. The GoldRush interference aware 
scheduler reduces such interference to at most 1.9% and manages 
to complete all analytics processing with available idle resources. 

4.3 Varying Architecture - Intel Westmere 
In order to evaluate the effectiveness of GoldRush across different 
architectures and its scalability within a node, we conduct 
experiments on a 32-core Intel Westmere machine. The machine 
has 4 sockets each with 8 cores at 2.13GHz, with a 32KB D-
Cache, 32KB I-Cache, and a 256KB inclusive unified L2 Cache. 
All 8 cores within a socket share a 24MB inclusive unified L3 
Cache. Each of the 4 sockets belongs to one NUMA memory 
domain with 32GB DDR3 memory in each domain. We run GTS 
with 4 MPI processes and 8 threads per process on this machine.  

Figure 14 (a) shows the main loop time of the GTS simulation co-
running with parallel coordinate analytics. The simulation’s 

OpenMP time increases by up to 5% under OS scheduler. This is 
because the OS scheduler does not entirely suspend analytics and 
thus, incurs unnecessary scheduling overhead. GoldRush with its 
greedy policy, however, results in GTS performance within 99% 
of the optimal. The less than 1% performance loss is due to time 
spent in the shared memory transport and the GoldRush runtime. 

When co-running GTS with the contentious time series analytics 
under OS baseline scheduling, GTS can be significantly slowed 
down (up to 11%), as shown in Figure 14 (b). On the other hand, 
with the interference aware GoldRush scheduling, interference is 
again greatly reduced. This, together with previous results, 
demonstrates GoldRush’s ability to mitigate interference between 
co-running simulation and analytics across different architectures. 

5. RELATED WORK 
In Situ Scientific Data Analytics. In situ data analytics and 
visualization has gained much recent attention from the HPC 
community. Current work falls into two categories: (i) data 
analytics and visualization algorithms, such as in situ indexing 
[43], compression [14], feature extraction [39], and visualization 
techniques [2][42], and (ii) supporting platforms. Regarding the 
first category, the GoldRush system can be readily used to run 
various data analytics with idle resources in compute nodes for 
resource-efficient, near-source data processing. As to the second 
category, systems like PreDatA [46], GLEAN [39], NESSIE [25] 
and DataSpaces [5], all support In-Transit data processing (i.e., 
deploy data analytics on auxiliary nodes and move data from 
simulation to analytics across interconnect), which is orthogonal 
to our work. One attractive usage of GoldRush is to run data-
reducing operations on compute nodes to filter or pre-process 
simulation output data before sending data to In-Transit 
processing nodes. Finally, Damaris [6] and Functional 
Partitioning [15] use dedicated cores on compute nodes for file 
I/O and other data operations; such solutions are easily realized 
with GoldRush. 

Cycle Stealing. Idle CPU cycles pervasively exist on PCs and 
servers. There has been extensive work on leveraging unused idle 
cycles for useful computation. Examples include Condor [17], 
BOINC [3], and other volunteer computing systems. To the best 
of our knowledge, GoldRush is the first system to harvest fine-
grained idle cycles from large-scale scientific simulations on HEC 
platforms for online data analytics. Linger Longer [32] shares 
similarity with our work since it enables aggressive resource 
sharing between host applications and background jobs. 
GoldRush differs in its demonstrated scalability and in its ability 
to control interference for tightly synchronized host applications 
(parallel simulations).  

Contention Mitigation on Multi-Core Platforms. Resource 
contention has been recognized as a severe performance issue for 
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Figure 14. Simulation and analytics execution timeline. 



consolidated workloads on multi-core platforms. Software 
solutions to this problem include thread mapping [48] and 
scheduling [15], cache partitioning [18], and compiler-time code 
transformation for cache behavior optimization [33][36]. We 
borrow from such work to implement a special case for contention 
aware scheduling in which analytics processes detect contention 
with high-priority simulation and dynamically back off to 
mitigate interference. Most similar to our work are CAER [21] 
and ReQoS [37], both of which target data center applications.  

Optimizing MPI/OpenMP Hybrid Programs. There has been 
previous work on tuning performance and/or power efficiency for 
MPI/OpenMP hybrid codes. One approach is to overlap 
sequential code regions with parallel OpenMP regions [30], but its 
applicability is application-specific, constrained by data and 
control dependencies as well as by thread safety in MPI libraries. 
Another approach by Li et al. [18] applies Dynamic Concurrency 
Throttling and Dynamic Voltage and Frequency Scaling to 
OpenMP parallel phases, for power savings. The slack prediction 
used in that approach is akin to GoldRush’s idle period 
prediction: it estimates the difference in the duration of OpenMP 
parallel phases between the non-critical vs. critical (the slowest) 
MPI processes (i.e., the slack time), so that the non-critical 
processes can be run with reduced CPU frequencies during slack 
time. The duration of a sequential period between two successive 
OpenMP parallel phases is measured directly and used as input 
parameters to slack prediction. GoldRush, instead, dynamically 
predicts the duration of those sequential periods within each MPI 
process; and its purpose is not to reduce the power consumption 
of a simulation code running in solo, but to orchestrate the 
execution of coupled simulation and analytics to improve their 
overall performance and resource efficiency. It would be 
interesting, however, for a MPI/OpenMP hybrid simulation code, 
to use both methods: to optimize power efficiency of the OpenMP 
parallel phases and to apply GoldRush to schedule in situ 
analytics during idle periods outside the OpenMP phases. Also 
interesting to GoldRush is to leverage Li’s work on dynamically 
varying OpenMP thread count for simulation’s OpenMP phases: 
this may help yield even more idle resources for in situ analytics.   

6. CONCLUSIONS AND FUTURE WORK 
In situ scientific data analytics has been gaining wide adoption by 
scientific applications to cope with the severe I/O bottleneck on 
HEC platforms. This paper makes several key contributions to 
improving the online execution of data analytics. We first show 
that even leadership simulations leave considerable compute node 
resources unused. This is not because such codes are ill-tuned or 
configured, but because many such unused resources often occur 
as modestly sized idle periods not easily utilized by the dense 
core methods constituting the bulk of a typical simulation’s 
computation. Unfortunately, this fact also makes such idle periods 
difficult to use for analytics. This is the key challenge addressed 
by the GoldRush system developed in our work. GoldRush 
applies fine-grained scheduling to “steal” idle resources from 
simulation in ways that incur negligible runtime overheads and 
minimize interference between the simulation and analytics. Key 
to its effectiveness are (i) judiciously selecting appropriate idle 
periods based on online performance monitoring and prediction, 
and (ii) dynamically detecting interference and mitigating it by 
throttling analytics’ execution. Experiments with representative 
applications at large scales (up to 12288 cores) and on different 
architectures show that resources harvested on compute nodes can 

be used to perform useful analytics, significantly improving 
resource efficiency, reducing data movement costs incurred by 
alternate solutions, and posing negligible impact on simulations. 

There are several directions for future work. First, we plan to 
develop automated resource provisioning methods, on top of 
GoldRush, to properly “size” the amount of analytics co-located 
with the simulation. Second, we will consider the challenges 
posed by graph-based analytics, which will likely be more 
disruptive to co-running simulations than the analytics used in this 
paper. Third, the prediction of idle period duration will benefit 
from the use of rigorous forecasting methods, particularly for 
simulations with more irregular and dynamic performance 
characteristics (e.g., AMR codes).  
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