
GoldRush: Resource Efficient In Situ Scientific Data
Analytics Using Fine-Grained Interference Aware

Execution

Fang Zheng1, Hongfeng Yu2, Can Hantas1, Matthew Wolf1,3,
Greg Eisenhauer1, Karsten Schwan1, Hasan Abbasi3, Scott Klasky3

1Georgia Institute of Technology

2University of Nebraska Lincoln

3Oak Ridge National Laboratory

ABSTRACT
Severe I/O bottlenecks on High End Computing platforms call for
running data analytics in situ. Demonstrating that there exist
considerable resources in compute nodes un-used by typical high
end scientific simulations, we leverage this fact by creating an
agile runtime, termed GoldRush, that can harvest those otherwise
wasted, idle resources to efficiently run in situ data analytics.
GoldRush uses fine-grained scheduling to “steal” idle resources,
in ways that minimize interference between the simulation and in
situ analytics. This involves recognizing the potential causes of
on-node resource contention and then using scheduling methods
that prevent them. Experiments with representative science
applications at large scales show that resources harvested on
compute nodes can be leveraged to perform useful analytics,
significantly improving resource efficiency, reducing data
movement costs incurred by alternate solutions, and posing
negligible impact on scientific simulations.

Categories and Subject Descriptors
D.4.1 [Process Management]: Scheduling.

General Terms
Design, Measurement, Performance.

1. INTRODUCTION
Many large scale scientific simulations can routinely write out
immense amounts of data on today’s High End Computing
platforms. Such “Big Data” imposes steadily increasing pressure
on the I/O and storage sub-systems. In fact, I/O is now widely
recognized as a severe performance bottleneck for both simulation
and data post-processing; and this is expected to worsen with
expected order of magnitude increases in the disparity between
computation and I/O capacity on future Exascale machines [35].

In order to mitigate the I/O bottleneck, leadership scientific
applications (e.g., GTS [41], S3D [9], and FLASH [39]) have
begun to use in situ data analytics, where analytics are deployed
on the same HEC platform where the simulation runs, with
simulation output data processed online while it is being

generated. Compared to conventional post-processing methods
that first write data to storage and then read it back for analysis, in
situ analytics can reduce on-machine data movement, disk I/O
volume, and deliver faster insights from raw data [2].

The research presented in this paper has two goals: (1) to improve
the resource efficiency of running in situ data analytics, and (2) to
do so without perturbing the simulations running on the same
nodes. In particular, we seek to over-subscribe compute nodes by
co-locating simulation and analytics computations, without
affecting the simulation execution, while at the same time,
efficiently using compute node resources to run in situ analytics.

Measurements of six representative scientific simulations
motivate the argument that node over-subscription can be cost
neutral to the core simulation. Specifically, we demonstrate that
the well-tuned MPI/OpenMP implementations of these codes
written for high end machines leave substantial unused resources
(CPU and memory) on compute nodes, which can then be used to
run online analytics. One cause is sequential periods in these
codes (i.e., when the execution flow is outside their OpenMP
parallel regions) in which worker threads wait on the MPI
process’ main thread. Although most such sequential periods are
short, their aggregate duration can be up to 65% of total execution
time in these real-world codes.

Previous work has sought to reduce sequential periods and utilize
spare node resources by overlapping the main thread’s sequential
work with OpenMP regions, but such application-specific tuning
efforts are limited by data and control dependencies, and they can
also impede code clarity and portability. In fact, none of the six
codes in our study uses such overlapping in their production
versions. The novel “GoldRush” method presented in this paper
uses a different approach to exploiting idle node resources: it uses
them to run the in situ data analytics needed to cope with I/O
bottlenecks. Benefits include the efficient use of compute node
resources and reductions in data movement overheads, as will be
demonstrated with detailed performance measurements.

The GoldRush method is made possible by the FlexIO transport in
the ADIOS I/O system [19][47] widely used on high end
machines. Specifically, with FlexIO and ADIOS, analytics
pipelines can be configured to map to compute nodes only those
portions of their computations that “fit into” available idle
resources, with additional analytics mapped to dedicated
resources and/or run as post-processing tasks after data has been
moved to the machine’s attached parallel file system. Appropriate
end-to-end mappings of analytics pipelines can reduce I/O data
volumes and data movement overheads [1][45][47], to provide
science end users with rapid insights into the data produced by
their simulations.

Copyright 2013 Association for Computing Machinery. ACM
acknowledges that this contribution was authored or co-authored by an
employee, contractor or affiliate of the United States government. As
such, the United States Government retains a nonexclusive, royalty-free
right to publish or reproduce this article, or to allow others to do so, for
Government purposes only.
SC13 November 17-21, 2013, Denver, CO, USA
Copyright 2013 ACM 978-1-4503-2378-9/13/11...$15.00.
http://dx.doi.org/10.1145/2503210.2503279

Leveraging such flexibility in constructing data analytics
pipelines, this paper addresses the key compute-node-level
challenges for efficiently running in situ data analytics. The first
challenge is that for well-tuned scientific simulations, idle
compute-node CPU cycles exist in the form of a large number of
short idle periods. This makes it difficult to schedule and allocate
cores to analytics without causing undue runtime overheads for
the simulation. Second, because co-located simulation and
analytics codes share certain node resources (e.g., last level
caches, memory busses and controllers), the execution of
analytics must be managed to minimize the degrees to which
simulations are perturbed. Measurements presented in this paper
demonstrate that carefully managing how analytics are run is
critical to achieving overall high performance for co-located
simulation and analytics. Third, current operating systems on
HEC platforms are not well equipped to deal with multi-
programmed simulation and analytics workloads, as they schedule
processes based on core idleness, essentially allocating idle
resources to analytics in a greedy manner, and they are also
largely ignorant of potential interference effects. Therefore, even
with carefully configured process priorities, such policies can lead
to severe performance loss. As shown later, priority-based OS
level scheduling of analytics processes can result in an up to 57%
performance degradation of the simulations.

To address those challenges, we have created a lightweight
runtime system, named “GoldRush”, which supports resource-
efficient and non-intrusive in situ data analytics. GoldRush (i)
uses low-overhead online monitoring to identify opportunity
windows during which (ii) it can schedule analytics to run on
cores not currently used by the simulation. It also (iii)
continuously assesses interference between concurrently-running
simulation and analytics, and (iv) controls the execution rate of
analytics processes to mitigate harmful impacts on the simulation
due to contention on shared node resources.

GoldRush makes the following contributions:

1) Fine-Granularity Operation: during simulation execution, it
identifies idle periods, predicts the duration of each period, selects
those periods with sufficient durations to run analytics, but skips
those that are too small to dwarf context switching overheads. It
completely suspends analytics when cores are in use by the
simulation, to avoid perturbing the parallel simulation.

2) Interference Awareness: it can detect interference between
concurrently running simulation and analytics arising from
contention on shared memory resources, and it dynamically
mitigates such interference by throttling the execution rate of
analytics.

3) Low Overhead: runtime overheads (including monitoring and
scheduling) are negligible, measured as never exceeding 0.3% of
total runtime with representative HEC applications.

4) Transparency: its methods are easily integrated into existing
HEC runtimes, demonstrated by their use with OpenMP/MPI
hybrid codes, thus imposing minimal restrictions on current
simulation and analytics codes.

By effectively managing co-located simulation and analytics
workloads, GoldRush complements existing in situ data analytics
techniques [2][6][7][42][46], opening up new opportunities to
efficiently run such analytics without the need to dedicate
compute node resources, leading to substantial performance
improvements and cost savings at large scales.

GoldRush is evaluated with real-world scientific applications on
NERSC’s Hopper Cray XE6 and Oak Ridge National Laboratory’
InfiniBand cluster. In particular, measurements with co-located
simulation and synthetic analytics show that GoldRush’s
synergistic scheduling improves simulation performance by 9.9%
on average (and up to 42%) over the OS scheduling. For a fusion
application GTS, there is a clear trend that GoldRush’s advantage
over the OS baseline native scheduling methods increases at
larger scales (up to 7.5% at 12288 cores); and that the GoldRush-
managed analytics outperforms alternative analytics setups: for
GTS at 12K cores, it achieves 30% performance improvement
over “Inline” analytics and a 1.8x reduction in data movement
volumes over “In-Transit” analytics. Additional evaluations on a
32-core, multi-socket Intel Westmere machine demonstrate
GoldRush’s node-level scalability and applicability across
different architectures.

The remainder of the paper is organized as follows. Section 2
motivates GoldRush with experimental measurements that show
the benefits and challenges of leveraging idle compute node
resources for in situ data analytics. Section 3 describes the system
design and implementation of GoldRush and the techniques used
to gain high levels of performance and resource efficiency.
Section 4 evaluates GoldRush with both synthetic benchmarks
and real-world applications on different HEC platforms. Section 5
reviews related work and Section 6 concludes the paper.

2. MOTIVATION
This section presents a detailed characterization of the idle
resources on compute nodes, to quantify the potential benefits and
challenges of using them.

2.1 Characterizing Idle Resources
Figure 1 illustrates the execution of a MPI process with multiple
OpenMP threads. When only the main thread in the MPI process
is actively executing some sequential code outside OpenMP
regions (i.e., in sequential periods), the OpenMP worker threads
are waiting and the cores on which they run become idle (“P1” to
“P6” in Figure 1). Typical sequential periods involve MPI
communications, file I/O, and/or non-parallelized computations.
Analytics can be run asynchronously, in response to a
simulation‘s data output action and using available idle cores, as
long as there is sufficient free memory for buffering output data
between successive simulation output actions.

Main
Thread

OpenMP
Worker thread

OpenMP
Worker thread

OpenMP
Worker thread

Time

Sequential Period

Idle Period

OpenMP Period

Output
Data

P1 P3P2

P5 P6P4

Figure 1. Illustration of idle resources during execution of a

MPI processes with 4 OpenMP threads. The 3 OpenMP
worker threads are idle when the main thread is in

sequential periods.

We are interested in how many idle resources (CPU and memory)
exist when running real-world HEC simulation codes and whether
those idle resources are amenable for use by in situ analytics.
Toward that end, we profile four widely-used and well-tuned
MPI/OpenMP hybrid simulation codes: GTC (fusion) [13], GTS
(fusion) [41], GROMACS (molecular dynamics) [8], LAMMPS
(molecular dynamics) [28], plus two well-known MPI/OpenMP
hybrid benchmark codes: BT-MZ and SP-MZ from the NPB
benchmark suite [22].

The six codes are profiled on NERSC’s Hopper Cray XE6 [10]
and on ORNL’s Smoky InifiniBand cluster [34]. Hopper has
6,384 compute nodes and uses Cray’s Gemini interconnect. Each
Hopper compute node has two 12-core MagnyCours AMD
processors. There are 4 NUMA domains, each with 6 cores and
8GB DRAM. Smoky is an 80 node cluster, where each compute
node has four quad-core AMD Opteron processors. There are 4
NUMA domains, and each domain has 4 cores and 8GB DRAM.
To accommodate the NUMA architecture, we run each MPI
process in one NUMA domain and run as many OpenMP threads
as the number of cores in each NUMA domain (which leads to
peak performance for all simulation codes). Threads are pinned on
cores, and memory affinity is enforced within each NUMA
domain with the aprun and mpirun launch facility.

GTC, GTS, BT-MZ and SP-MZ are built with the PGI compiler,
and GROMACS and LAMMPS with the GCC compiler,
respectively (as suggested by the developers). Codes are run with
representative input configurations, and GROMACS, LAMMPS,
BT-MZ, and SP-MZ are run with the multiple input decks
distributed with these software packages. The CrayPAT [4] and
Vampir [38] tools are used to collect profiling information.

Each simulation’s main loop time is divided into three parts: (1)
OpenMP periods (all threads are active), (2) MPI periods (only
the main thread is active, performing MPI communications), and
(3) “Other Sequential” periods (only the main thread is active,
carrying out sequential activities like file I/O or others). In the
latter two cases, the cores on which OpenMP worker threads run
are idle. Figure 2 shows the percentages of execution time spent
in those three parts.

Interesting observations from these measurements include the
following. First, jointly, all idle periods (MPI and Other
Sequential periods) comprise up to 65% of the total main loop
time for four of these applications (i.e., LAMMPS with the
“Chain” input deck), and even 89% for the NPB BT-MZ
benchmark with the class C input. Note that on Hopper’s compute
nodes, 20 out of 24 cores are idle during those periods, leading to
substantial amounts of idle compute capacities. Second, the
percentage of total idle periods generally increases when scaling
the simulation to run on more cores. For example, GTC’s idle
period percentage increases from 21% to 23% when scaling from
1536 to 3072 cores on Hopper. This holds for weak scaling codes
like GTC, GTS, and LAMMPS in which MPI communication
times increase at larger scale, and also for strong scaling codes
like GROMACS and the NPB benchmarks, where in OpenMP
times decrease with increased core counts. Third, although
simulation performance varies across inputs (like LAMMPS and
GROMACS), it is common that idle periods comprise a
substantial portion of total simulation runtime.

We also measure peak memory usage among all MPI processes.
None of the simulation codes consume more than 55% on either
Hopper or Smoky. The resulting available free memory makes it
feasible to buffer simulation output data, thereby enabling the
asynchronous execution of analytics and simulation codes.

2.2 Challenges of Using Idle Resources
Although the measurements shown so far demonstrate sufficient
availability of idle resources, there are several challenges for
effectively harvesting these idle resources for in situ data
analytics, discussed next.

2.2.1 Magnitude of Idle Resources
Despite the substantial amounts of total idle CPU cycles, most
individual idle periods are short in duration. Figure 3 shows the
distribution of durations of idle periods in our six codes. The
“Count” histograms show that for all simulation codes, the
majority of idle periods are quite short (less than 1ms), while the
“Aggregated Time” histograms show that the total amount of idle
time is dominated by a modest number of large idle periods.

0%
20%
40%
60%
80%

100%

1536 3072 1536 3072 1536 3072 1536 3072 1536 3072 1536 3072 1536 3072 1536 3072 1536 3072 1536 3072 1536 3072 1536 3072 1536 3072 1536 3072

GTC GTS GROMACS
(D.DPPC)

GROMACS
(ADH_Cubic)

LAMMPS
(LJ)

LAMMPS
(EAM)

LAMMPS
(Chain)

LAMMPS
(Rhodopsin)

BT-MZ
(Class C)

BT-MZ
(Class D)

BT-MZ
(Class E)

SP-MZ
(Class C)

SP-MZ
(Class D)

SP-MZ.E
(Class E)

M
ai

n
L

op
p

T
Im

e

Other Sequential
MPI
OpenMP

(a) On Hopper, simulations run on 1056 (256 MPI proc. × 6 OpenMP threads) and 3072 cores (512 MPI proc. × 6 OpenMP threads).

0%
20%
40%
60%
80%

100%

512 1024 512 1024 512 1024 512 1024 512 1024 512 1024 512 1024 512 1024 512 1024 512 1024 512 1024 512 1024 512 1024 512 1024

GTC GTS GROMACS
(D.DPPC)

GROMACS
(ADH_Cubic)

LAMMPS
(LJ)

LAMMPS
(EAM)

LAMMPS
(Chain)

LAMMPS
(Rhodopsin)

BT-MZ
(Class C)

BT-MZ
(Class D)

BT-MZ
(Class E)

SP-MZ
(Class C)

SP-MZ
(Class D)

SP-MZ.E
(Class E)

M
ai

n
L

op
p

T
Im

e

Other Sequential
MPI
OpenMP

(b) On Smoky, simulations run on 512 (128 MPI proc. × 4 OpenMP threads) and 1024 cores (256 MPI proc. × 4 OpenMP threads).
Figure 2. Breakdown of simulation main loop time. The input decks are specified in parentheses following the simulation names.
When the simulation is in non-threaded sequential periods, only its main thread is active and OpenMP worker threads are idle.

This distribution pattern has important implications. First, it is not
likely useful, in terms of cost vs. benefit, to harvest small idle
periods. As a result, one must determine, at runtime, which idle
periods will be sufficiently large to warrant their use for running
desired data analytics. Second, inaccurate methods for identifying
appropriately long idle periods will lead to inefficiencies for two
reasons: (1) insufficient benefits or worse, undue overheads when
using periods that are too small, and (2) missed larger periods
leading to loss of major portions of total available idle time.

2.2.2 Contention on Shared Resources
Beyond finding idle periods suitable for running analytics,
another issue is the potential interference of analytics imposed on
the simulation’s main thread running in its sequential phase
(during which analytics processes concurrently run on idle cores
not used by the simulation’s OpenMP worker threads).
Interference is due to contention on resources shared between
both sets of threads, such as the last level cache, the memory bus,
and the memory controller (as shown in Figure 4); it is
particularly harmful for tightly synchronized parallel simulations,
as the slowdown of each individual MPI process may cascade and
be amplified when running at larger scales [11].

2.2.3 Limitations of Operating System Scheduling
A baseline solution for co-running analytics with simulation
threads is to leave it to the Linux OS scheduler and the OpenMP
runtime to manage both workloads. We realize this approach as
follows.

1) On each compute node, fork some number of analytics
processes. Set their CPU affinities so that they can run on the
cores where the simulation’s OpenMP worker threads are run, but
not on the cores hosting the simulation’s main threads. The
analytics processes are given the lowest priority (with “nice”
values set to 19).

2) Configure the simulation’s OpenMP runtime so that worker
threads yield CPUs when they are outside OpenMP regions. For

the Intel OpenMP runtime, this can be achieved by setting the
KMP_BLOCKTIME environment variable to 0. The PGI and
GNU OpenMP runtimes can be similarly configured, by setting
the OMP_WAIT_POLICY environment variable to “PASSIVE”.
The priorities of the simulation’s OpenMP worker threads are set
to default (their “nice” values are equal to 0).

This baseline solution is evaluated by co-running the six
simulations with the five analytics benchmarks listed in Table 1.
These benchmarks each stress a certain subsystem in the machine.
On Smoky, we run each simulation with 512 cores (128 MPI
processes and 4 OpenMP threads per process) and with 1024
cores (256 MPI processes, each with 4 OpenMP threads). In both
cases, there are 16 simulation threads and 12 analytics processes
on each compute node, as shown in Figure 4.

Figure 5 shows the performance of four simulations with co-
running analytics. Each simulation’s main loop time is divided
into two parts: parallel OpenMP periods and Main-Thread-Only
periods (the latter correspond to MPI and Other Sequential

0
20
40
60
80

100

0 2.4 4.8 7.2 9.6 12 >14.4

Pe
rc

en
ta

ge
 (%

)

Length of Period (Milli-Seconds)

Counts
Aggregated. Time

0
20
40
60
80

100

0 11.4 22.8 34.2 45.6 57 >68.5

Pe
rc

en
ta

ge
 (%

)

Length of Period (Milli-Seconds)

Counts
Aggregated. Time

 (a) GTC (b) GTS

0
20
40
60
80

100

0 0.18 0.36 0.54 0.72 0.9 >1.08

Pe
rc

en
ta

ge
 (%

)

Length of Period (Milli-Seconds)

Counts
Aggregated. Time

0
20
40
60
80

100

0 3.3 6.7 10.1 13.4 16.8 >20.2

Pe
rc

en
ta

ge
 (%

)

Length of Period (Milli-Seconds)

Counts
Aggregated. Time

 (c) GROMACS (D.DPPC) (d) LAMMPS (EAM)

0
20
40
60
80

100

0 3.3 6.6 9.9 13.3 16.6 >19.9

Pe
rc

en
ta

ge
 (%

)

Length of Period (Milli-Seconds)

Counts
Aggregated. Time

0
20
40
60
80

100

0 0.65 1.3 1.97 2.62 3.28 >3.94

Pe
rc

en
ta

ge
 (%

)

Length of Period (Milli-Seconds)

Counts
Aggregated. Time

 (e) BT-MZ (Class E) (f) SP-MZ (Class E)

Figure 3. Distribution of idle period duration. All simulations
run with 1536 cores on Hopper.

Simulation Main Thread

Simulation Worker Thread

Analytics Process

C
4

C
5

C
6

C
7

L3 Cache

Mem. Controller

C
0

C
1

C
2

C
3

L3 Cache

Mem. Controller

C
8

C
9

C
10

C
11

L3 Cache

Mem. Controller

C
12

C
13

C
14

C
15

L3 Cache

Mem. Controller Simulation Memory

Analytics Memory
Figure 4. Placement of simulation and in situ data analytics

on Smoky’s 16-core compute node.
Table 1. Analytics Benchmarks

Benchmark Tasks for Each Process

PI Iteratively calculate Pi.

PCHASE Traverse randomly linked lists (200MB in total).

STREAM Sequentially scan large arrays (200MB in total).

MPI Collectively call MPI_Allreduce() on 10MB data.

IO Write 100MB data to parallel file system.

0
20
40
60
80

100
120
140
160

SO
LO PI

ST
R

EA
M

PC
H

A
SE M
PI IO

SO
LO PI

ST
R

EA
M

PC
H

A
SE M
PI IO

SO
LO PI

ST
R

EA
M

PC
H

A
SE M
PI IO

SO
LO PI

ST
R

EA
M

PC
H

A
SE M
PI IO

GTC GTS GROMACS LAMMPS

M
ai

n
L

oo
p

T
im

e
(%

)
Main Thread Only

OpenMP

(a) Simulation main loop time with 512 cores on Smoky.

0
20
40
60
80

100
120
140
160

SO
LO PI

ST
R

EA
M

PC
H

A
SE M
PI IO

SO
LO PI

ST
R

EA
M

PC
H

A
SE M
PI IO

SO
LO PI

ST
R

EA
M

PC
H

A
SE M
PI IO

SO
LO PI

ST
R

EA
M

PC
H

A
SE M
PI IO

GTC GTS GROMACS LAMMPS

M
ai

n
L

oo
p

T
im

e
(%

)

Main Thread Only

OpenMP

(b) Simulation main loop time with 1024 cores on Smoky.

Figure 5. Simulation performance with co-located analytics.

periods in Figure 2). With the pure OS-based management
solution, co-located analytics slow down simulations by up to
57% compared to simulations’ solo runs, and performance
degradation generally becomes worse at larger scales.

The ineffectiveness of pure OS-based management is caused by
several factors. First, the significant slowdown of the Main-
Thread-Only periods shown in Figure 5 indicates that the
simulation’s main threads experience severe interference from
concurrently running analytics. This is particularly true for cases
in which the simulation’s main threads co-run with memory
intensive codes like PCHASE and STREAM, because those
benchmarks cause severe contention on the last level cache,
memory controller, and other shared resources in the memory
hierarchy. Linux’ default OS scheduler does not recognize those
facts, as its main focus is on core idleness.

Second, there are increases in some simulations’ OpenMP times
with the presence of co-located analytics. One reason is the OS
scheduler’s greedy nature, which always schedules analytics
threads as soon as the OpenMP worker threads yield the CPU. For
short idle periods, analytics threads will be forced to suspend soon
after they begin to run, to return cores back to higher priority
simulation threads. Another reason is the Linux scheduler’s
imposition of fairness on analytics vs. simulation threads, causing
it to allocate time slots for, rather than completely suspend, low-
priority analytics processes while the simulation’s worker threads
are active (i.e., in a parallel OpenMP period). This causes jitter to
the simulation and negatively impacts its performance.

The GoldRush runtime methods described next remedy these
shortcomings of the OS baseline solution.

3. GOLDRUSH RUNTIME SYSTEM

3.1 Overview
GoldRush manages the execution of data analytics co-located
with simulation processes, in ways that (i) leverage unused idle
resources on compute nodes, and (ii) mitigate potential
interference between simulation and analytics.

GoldRush is implemented as a runtime library and residing at
both the simulation and analytics sides of these compute node-
based computations (highlighted in yellow in Figure 6). For
simulation processes, GoldRush generates performance
monitoring metrics used by a prediction module to estimate the
lengths of upcoming idle periods at the exit of each OpenMP
parallel region. If the next idle period is predicted to be “usable”,
GoldRush sends signals to analytics processes to resume their
execution; if no signal is produced, analytics processes remain
suspended throughout the next idle period. Once resumed,
analytics processes run on the cores yielded by the simulation’s
OpenMP worker threads, while the simulation’s main threads
continue to run on their own, dedicated cores. When the
simulation’s main threads reach the end of their idle periods (i.e.,
the start of next parallel OpenMP region), signals are sent to
suspend analytics processes, thereby permitting the simulation’s
OpenMP worker threads to re-gain exclusive use of their cores for
executing the subsequent parallel OpenMP period.

To assess potential interference between simulation and analytics,
the GoldRush runtime also periodically updates a shared memory
monitoring buffer with performance data about the simulation’s
main threads. The analytics-side GoldRush scheduler periodically

reads this information, assesses interference severity and if
significant interference is detected, the scheduler throttles, i.e.,
slows down, the execution rate of analytics processes. This serves
to reduce contention on shared resources, at the cost of reduced
progress with analytics processing. A limit on possible slowdown
is imposed by the fact that analytics processing must be
completed before the simulation’s next output steps are taken. On-
compute-node analytics, therefore, have to be “sized”
appropriately, and we do so by leveraging the placement
flexibility offered by the ADIOS IO library and its FlexIO IO
methods, described in [47]. With ADIOS and FlexIO, analytics
pipelines can be defined and (re-)structured to match available
compute node resources, with “overflow” analytics actions
performed in separate “staging nodes” reserved for online
analytics and/or postmortem, after data has been moved to disk.
Another attribute of the FlexIO transport used by GoldRush is its
efficient intra-node data movement from simulation to analytics
via a shared memory transport.

Compared to the baseline solution described in Section 2,
GoldRush adds potential overheads to the simulation side for
performance monitoring and idle period prediction, and for
suspending and resuming analytics. There are also additional
costs at the analytics side for online monitoring and execution
control. As shown in Section 4, these overheads are negligible,
permitting GoldRush to significantly improve application
performance and resource efficiency over the baseline solution.

3.2 Inter-Posing GoldRush
GoldRush is implemented as a C library, for which we offer two
approaches to integrating it with simulation codes. The first
approach directly inserts the GoldRush API (listed in Table 2)
into the simulation’s source code. In particular, a gr_start() call is
placed at the end of an OpenMP code region (e.g., after a “!$omp
end parallel” statement) to mark the start of an idle period; and a
gr_end() call is put before the beginning of an OpenMP parallel

Main
Thread

OpenMP
Worker thread

OpenMP
Worker thread

OpenMP
Worker thread

Time

Sequential Period

Skipped Idle Period

OpenMP Period

Output
Data

P1 P3P2

P5 P6P4
Harvested Idle Period

Resume Analytics

Suspend Analytics

gr_end()

gr_start()

gr_end()

gr_start()

gr_start()
gr_end()

gr_start()

Figure 7. Simulation and analytics execution timeline.

Shared Memory
Data Buffer

Suspend/Resume SignalsSimulation Output Data Monitoring Data

Monitoring Buffer

Simulation

ADIOS
Monitoring

Analytics

ADIOSGoldRush
Scheduler

Prediction

Figure 6. Architecture of GoldRush runtime.

region (e.g., before a “!$omp parallel” statement) to mark the end
of an idle period. At runtime, those markers are executed by the
main thread of each simulation process to identify the beginning
and end of idle periods, and to perform operations that monitor
performance and resume/suspend analytics processes.

The second approach integrates the library with the simulation in
a more transparent fashion, avoiding changes to simulation codes,
by adding its functions into appropriate routines within the
OpenMP runtime library. As a proof of concept, we modify
GCC’s libgomp runtime library by instrumenting the runtime
routines associated with PARALLEL and FOR directives. Those
are sufficient to cover all of the top-level OpenMP regions in the
GTC, GTS, LAMMPS, GROMACS, and NPB codes. Other
directives can be supported similarly, left for future work.

In comparison, the source code instrumentation approach is more
general and flexible at the cost of manual code modification. The
instrumented OpenMP runtime library approach is transparent to
simulation codes, but requires modifying internals of the OpenMP
library. In practice, we have instrumented the sources of
simulation codes requiring Intel or PGI compilers, as those
compilers’ OpenMP runtime libraries are not available to us for
modification. Besides, source instrumentation may be automated
with source transformation [23] or binary re-writing tools [22].

Analytics codes only need to add gr_init() and gr_finalize()
functions, permitting an instance of the GoldRush scheduler to be
activated in each analytics process at runtime.

3.3 Online Monitoring and Prediction
3.3.1 Predicting Idle Period Durations
At the beginning of an idle period (i.e., in a gr_start() call), the
simulation’s OpenMP worker threads have yielded their cores,
and the main thread is about to enter a sequential code region. An
important decision to make at this point is: should the analytics
processes be allowed to run on idle cores during this upcoming
idle period? As discussed in Section 2.2, idle periods are
appropriate only if they are sufficiently long. To predict their
expected durations, the GoldRush runtime records the timings and
number of occurrence of each executed idle period. Each idle
period is uniquely identified by its start and end locations (the file
name and line number arguments passed to marker API calls).
When a gr_end() marker is executed, the idle period that just
completed is identified. The duration of that idle period is
measured as the elapsed time between the two successive
gr_start() and gr_end() calls made by the main thread. The online
history maintains a running average duration and occurrence
counts for each unique idle period seen so far.

We currently use a simple heuristic to predict idle period duration,
using the above online history information. The method has high
accuracy and low overheads for simulations with strong locality
and regularity in their execution flows (a typical behavior for

many scientific codes), as those codes usually have a small
number of unique idle periods with small variations in idle period
duration. The heuristic works as follows. During the execution of
gr_start(), a prediction function is called. It first finds all idle
periods in the history that match the start location (file name and
line number) of the upcoming idle period, selects the one with the
highest occurrence count, and uses its running average duration as
an estimate of the upcoming period’s duration. If the estimated
duration is greater than a pre-defined, tunable threshold value or
no matching history record is found, the upcoming idle period is
considered as “usable” for analytics.

Costs: The time and space costs of idle period prediction are
proportional to the number of unique idle periods in a
simulation’s execution flow. As shown in Figure 8, the numbers
of unique idle periods in the six simulation codes range from 2 to
at most 48, resulting in low runtime overheads.

Prediction Accuracy: The purpose of prediction is to decide
whether an idle period is usable (long) or not (short) with respect
to a threshold value. Therefore, instead of using the absolute error
in predicted duration values, we define a prediction of an idle
period to be “accurate” if the predicted usability (short or long) of
the idle period matches the indication of the actual duration.
Specifically, we divide prediction results into four categories: (i)
“Predict Short”: correctly predict a short period to be short (not
usable for analytics); (ii) “Predict Long”: correctly indicate a long
period to be long (usable); (iii) “Mispredict Short”: wrongly
predict a short period to be long; and (iv) “Mispredict Long”:
wrongly predict a long period to be short.

To quantify prediction accuracy, we record the predicted duration
at the beginning of each idle period, and measure the actual
duration at the end of the period, based on which we then count
the number of predictions falling into each of the four categories
described above. Table 3 presents the percentages of the four
categories among all predicted periods, using a threshold value of
1ms. Accurate predictions range from 88.7%~100% of all
predictions for the six simulations, showing that our prediction
method is highly accurate for codes with regular execution flows.

Table 2. GoldRush Public API
Function Description
int gr_init (MPI_Comm comm); Initialize the GoldRush runtime

int gr_start (char *file, int line); Mark the start of an idle period

int gr_end (char *file, int line); Mark the end of an idle period

int gr_finalize (); Finalize the GoldRush runtime

48
42

8

36

2 2

16

8
2

22

0 0
0

10

20

30

40

50

60

GTC GTS LAMMPS GROMACS BT (Class E) SP (Class E)

C
ou

nt
s

Total Number of Unique Idle Periods

Number of Periods Sharing the Same Start Location

Figure 8. Number of unique idle periods and idle periods with
the same start location (due to branching in execution flow).

Table 3. Prediction Accuracy with 1ms Threshold (1536
Cores on Hopper).

Simulation Predict
Short

Predict
Long

Mispredict
Short

Mispredict
Long

GTC 31.6% 57.1% 6.4% 4.9%

GTS 58.5% 36.8% 3.6% 1.1%

LAMMPS 49.7% 49.7% 0.3% 0.3%

GROMACS 99.6% 0.1% 0.1% 0.2%

BT-MZ.E 66.6% 33.4% 0.0% 0.0%

SP-MZ.E 50.1% 49.9% 0.0% 0.0%

Figure 9 shows how sensitive prediction accuracy is to the
threshold value. When varying the threshold value from 0.1 to 2
milliseconds, prediction accuracy for all six simulations never
falls below 84.5%, and remains 100% for BT-MZ and SP-MZ
cases. Figure 9 also shows that 1ms is an appropriate threshold
value since it leads to high accuracy and in addition, ensures that
the selected usable periods are sufficiently large to amortize
context switch overheads.

Despite good results with the six simulation codes used in our
work, there remain substantial opportunities for future
improvements and optimizations of methods for idle period
prediction. For instance, for codes with dramatically varying idle
periods and runtimes (e.g., Adaptive Mesh Refinement codes),
more sophisticated methods like dynamic call stack tracking plus
statistical forecasting are likely preferable, which we will
investigate as future work.

3.3.2 Monitoring Interference during Idle Periods
To manage potential interference between a simulation’s main
threads and concurrent analytics processes, GoldRush installs a
timer and signal handler on each main thread to inspect relevant
hardware performance counter values through the PAPI
performance counter library [26], done every millisecond during
idle periods. Measured are the number of CPU cycles and retired
instructions, and IPC (Instructions per Cycle) is calculated to
quantify the performance of the simulation’s main thread. The
IPC value is written to a per-simulation-process buffer in shared
memory, and is periodically read by the analytics-side GoldRush
schedulers. The timer is disabled at the end of each idle period.

3.4 Controlling Execution of Analytics
Analytics are run when an idle period is predicted as usable. This
involves the simulation main thread sending a SIGCONT signal
to resume the execution of analysis processes. Conversely, when
the simulation main thread calls gr_end() at the end of the idle
period, it sends a SIGSTOP signal to suspend analytics. Analytics
threads, therefore, are run only during selected idle periods; they
are quiescent when the simulation is in its OpenMP regions. The
signaling costs incurred are small (see Section 4).

An alternative to using signals to suspend and resume analytics
processes is to set the simulation processes to use a real-time
scheduling policy via the sched_setscheduler() system call.
However, this privileged feature is not generally available in HPC
environments (e.g., Hopper and ORNL’s Titan Cray XK7).

3.5 Scheduling Analytics
At the analytics side, the GoldRush scheduler regulates the
execution of analytics processes to mitigate potential interference
effects experienced by the simulation’s main threads. The
scheduler is implemented as a signal handler in each analytics
process and is periodically triggered by a timer. Two scheduling
policies are presented below.

3.5.1 Interference-Aware Policy
The Interference-Aware scheduler works in three steps.

1) Assessing the Severity of Interference: once triggered, the
scheduler reads the IPC value of the simulation’s main thread
from the shared memory monitoring buffer. Interference is
determined as IPC being lower than some threshold value,

whereupon the scheduler enters the next step; otherwise, the
signal handler returns and analytics process runs at full speed
until the next scheduling point.

2) Identifying Contentious Analytics Processes: each GoldRush
scheduler instance determines whether the local analytics process
to which it belongs is contributing to interference. Toward that
end, it uses the L2 Cache Miss Rate (L2 Cache Misses per
Thousand Cycles) as the indicator for the analytics process’
contentiousness. If this miss rate is greater than some threshold
value, then the analytics process is subject to execution rate
throttling. This is because an analytics process with high L2
Cache Miss Rate is likely to impose pressure on the shared L3
cache and on other shared resources, such as memory controllers
and memory bus bandwidth.

3) Throttling the Execution Rate of Analytics: the scheduler
throttles an offending analytics process’ execution rate by putting
it to sleep for some short period of time, by calling the usleep()
function. When the sleep duration is exceeded, the scheduler’s
signal handler returns. The analytics then runs at full speed until
the signal handler is triggered again, repeating the three
scheduling steps. Since sleep duration controls the amount of idle
cycles not used by analytics, the duration’s value along with the
scheduling interval used jointly provide useful knobs for
controlling the percentages of idle cycles being harvested.

3.5.2 Greedy Policy
Under the Greedy policy, the analytics-side scheduler is disabled
so that analytics processes run at full speed for all idle periods
selected by the simulation-side prediction module. This policy
differs from the OS baseline solution in that it relies on
simulation-side prediction to filter out short idle periods.
Comparing this Greedy policy with the Interference Aware policy
and the baseline solution helps isolate the effects of simulation-
side prediction and analytics-side scheduling.

3.6 Usage of GoldRush
GoldRush makes it feasible to deploy in situ analytics onto
compute nodes so that useful analytics can run on otherwise-
wasted idle resources, close to the data source (simulation), and in
parallel with the simulation. It can improve the performance
and/or resource usage of scientific applications’ online analytics
and I/O pipelines. A sample usage of GoldRush is to run as much
analytics work on idle resources as the idle capacity permits, so
that the amount of dedicated resources (e.g., dedicated cores [6]
or staging nodes [46]) for online analytics can be reduced or even
avoided. Another usage is to perform data-reduction analytics
operations with idle resources in compute nodes to reduce
downstream data movements along the I/O pipeline.

50

60

70

80

90

100

110

0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0

Pr
ed

ic
tio

n
A

cc
ur

ac
y

(%
)

Threshold (Milliseconds)

GTC GTS
LAMMPS GROMACS
BT-MZ.E SP-MZ.E

Figure 9. Sensitivity of prediction accuracy to the threshold

value (Measured with 1536 cores on Hopper).

4. PERFORMANCE EVALUATION
This section’s experimental evaluations have three purposes: (i)
analyze the cost and benefit of GoldRush runtime and its
advantages over the OS baseline solution; (ii) measure the
improvement of application performance and resource efficiency
achieved by GoldRush for real-world applications; and (iii) assess
the scalability of GoldRush with increasing machine size and
node core count. The experiments are conducted on NERSC’s
Hopper Cray XE6 [10] and ORNL’s Smoky cluster [34].

4.1 Benefits of Synergistic Scheduling
Our first set of experiments co-runs simulation with “unrelated”
analytics (the analytics does not operate on simulation output but
on its private data set) under different scheduling policies. Here
we evaluate scenarios where there is interference between the
simulation and analytics. Note those are less likely to occur with
“related” analytics in which there is cache-friendly, constructive
data sharing between simulation and analytics -- due to producer-
consumer data reuse relationships. The purpose of these
experiments is to assess GoldRush’s ability to mitigate destructive
interference between simulation and analytics. We co-run the four
simulation codes (GTC, GTS, GROMACS and LAMMPS) with
the five synthetic analytics benchmarks in Table 2. The
simulation and analytics are set to run in four different
configurations:

Case 1 (Simulation in Solo): Simulation is run without analytics;
OpenMP worker threads do busy waiting in idle periods.

Case 2 (OS Baseline Solution): Simulation and analytics are co-
located; OS schedules analytics processes to run whenever
simulation’s OpenMP worker threads yield CPUs.

Case 3 (Greedy Scheduling): Simulation-side GoldRush runtime
selects idle periods, resumes and suspends analytics with signals;
Analytics-side GoldRush scheduler is disabled.

Case 4 (Interference Aware Scheduling): Simulation-side
GoldRush selects idle periods to run analytics, resumes and
suspends analytics, and also records simulation main threads’ IPC
values in shared memory buffer during idle periods. Analytics-
side GoldRush scheduler does interference detection and control.

Simulations and analytics are run with 1024 cores on the Smoky
cluster. They are placed in compute nodes as shown in Figure 4.

4.1.1 Benefits of GoldRush
Figure 10 shows the simulation’s main loop time in the four cases.
GoldRush with its greedy policy can improve the performance of
the four simulations over the OS baseline solution. This
demonstrates the importance of selecting proper idle periods at
the simulation side. GoldRush with its interference aware policy
can further improve simulation performance over the greedy
policy, resulting in 9.9% on average and up to 42% performance
improvement over the OS baseline solution. Figure 10 shows that
such improvements are due to the reduction of the “Main-Thread-
Only” portion of the main loop time. The difference of simulation
run time in solo vs. under interference aware scheduling is at most
9.1% (GROMACS running with PCHASE) and 1.7% on average
among all test cases, meaning that the simulations’ performance is
close to the optimal. These results demonstrate that GoldRush’s
interference aware scheduling can mitigate potential interference
effects between the simulation’s main threads and analytics
processes during idle periods. Such advantage is the most evident
for memory intensive benchmarks like STREAM and PCHASE,
as they cause severe contention on shared resources in memory
hierarchy.

There is a trade-off between the amounts of idle cycles to harvest
vs. the impact on simulation. Such tradeoff can be managed by
tuning the parameters of scheduling policy (Section 3.5). In our
tests, we conservatively set the idle period duration selection
threshold to 1ms, scheduling interval to 1ms, IPC threshold to 1,
L2 Miss Rate to 5, and sleep duration to 200µs. Such setup results

0
20
40
60
80

100
120
140

SO
LO

B
as

el
in

e

G
re

ed
y

In
t.

A
w

ar
e

SO
LO

B
as

el
in

e

G
re

ed
y

In
t.

A
w

ar
e

SO
LO

B
as

el
in

e

G
re

ed
y

In
t.

A
w

ar
e

SO
LO

B
as

el
in

e

G
re

ed
y

In
t.

A
w

ar
e

SO
LO

B
as

el
in

e

G
re

ed
y

In
t.

A
w

ar
e

PI PCHASE STREAM MPI IO

M
ai

n
L

oo
p

T
im

e
(%

)

GoldRush Other Sequential MPI OpenMP

0
20
40
60
80

100
120
140
160

SO
LO

B
as

el
in

e

G
re

ed
y

In
t.

A
w

ar
e

SO
LO

B
as

el
in

e

G
re

ed
y

In
t.

A
w

ar
e

SO
LO

B
as

el
in

e

G
re

ed
y

In
t.

A
w

ar
e

SO
LO

B
as

el
in

e

G
re

ed
y

In
t.

A
w

ar
e

SO
LO

B
as

el
in

e

G
re

ed
y

In
t.

A
w

ar
e

PI PCHASE STREAM MPI IO

M
ai

n
L

oo
p

T
im

e
(%

)

GoldRush Other Sequential MPI OpenMP

 (a) GTC (b) GTS

0
20
40
60
80

100
120
140
160

SO
LO

B
as

el
in

e

G
re

ed
y

In
t.

A
w

ar
e

SO
LO

B
as

el
in

e

G
re

ed
y

In
t.

A
w

ar
e

SO
LO

B
as

el
in

e

G
re

ed
y

In
t.

A
w

ar
e

SO
LO

B
as

el
in

e

G
re

ed
y

In
t.

A
w

ar
e

SO
LO

B
as

el
in

e

G
re

ed
y

In
t.

A
w

ar
e

PI PCHASE STREAM MPI IO

M
ai

n
L

oo
p

T
im

e
(%

)

GoldRush Other Sequential MPI OpenMP

0
20
40
60
80

100
120
140

SO
LO

B
as

el
in

e

G
re

ed
y

In
t.

A
w

ar
e

SO
LO

B
as

el
in

e

G
re

ed
y

In
t.

A
w

ar
e

SO
LO

B
as

el
in

e

G
re

ed
y

In
t.

A
w

ar
e

SO
LO

B
as

el
in

e

G
re

ed
y

In
t.

A
w

ar
e

SO
LO

B
as

el
in

e

G
re

ed
y

In
t.

A
w

ar
e

PI PCHASE STREAM MPI IO

M
ai

n
L

oo
p

T
im

e
(%

)

GoldRush Other Sequential MPI OpenMP

 (c) GROMACS (d) LAMMPS

Figure 10. Simulation performance with 1024 cores on Smoky cluster. The legend “GoldRush” refers to the time which the
simulation spends in GoldRush operations (monitoring, prediction and signaling). Such overheads are very low (<0.3%).

in significant performance improvements at simulation side as
shown in Figure 10, and meanwhile the aggregated amount of
harvested idle periods is at least 34%, and 64% on average, of
total available idle time. A thorough study of parameter tuning is
left for future work.

4.1.2 Costs of GoldRush
The runtime cost of GoldRush at the simulation side can be
quantified by the performance difference between GTS running in
solo vs. co-running with analytics under the control of GoldRush.
As mentioned earlier, this difference is 1.7% on average.

The simulation side cost of GoldRush can be further divided into
two parts: the first part is the time spent in the GoldRush runtime
itself (i.e., the time to execute the GoldRush marker APIs and
monitoring signal handler), and the second part is simulation
slowdown due to context switches and remaining interference
from analytics. We internally instrument GoldRush and find that
the aggregated time of the GoldRush runtime itself is small,
constituting no more than 0.3% of the simulation’s main loop
time. Concerning runtime monitoring, the measured memory
usage of storing GoldRush monitoring data in main memory is no
more than 5KB per simulation process in all test cases.

4.2 GTS Application with In Situ Analytics
GTS (Gyrokinetic Tokamak Simulation) is a global three-
dimensional Particle-In-Cell (PIC) code used to study the micro-
turbulence and associated transport in magnetically confined
fusion plasma of tokamak toroidal devices [41]. GTS outputs
particle data during simulation. We apply GoldRush to manage
GTS to co-run with two representative particle data analytics.

4.2.1 Parallel Coordinate Visual Analytics
Parallel coordinates is a visualization method commonly used to
depict and analyze multivariate data [12][31]. We implement this
method for GTS particle data. Each GTS particle has seven
attribute, including coordinates, velocities, weight and particle ID.
Each processor first generates its local plot of parallel coordinates
from the selected particles. Then, all processors collectively

generate the final plot through parallel image compositing [44].
Multiple plots of parallel coordinates can be generated and
composited to show the relationship between different groups of
particles. Figure 11 shows the parallel coordinates for two time
steps, where the green areas correspond to all particles, and the
red areas corresponds to the particles with the absolute 20%
largest weights. Our parallel coordinate analytics can clearly
show the evolution of particle data distribution at large scale.

GTS is run with a typical setup, which results in particle data
output size of 230MB per process. GTS outputs particle data
every 20 iterations. Each GTS MPI process with 6 OpenMP
threads is placed onto a separate socket on Hopper’s 4-socket
compute node. Weak scaling is applied to GTS from 768 to 12288
cores. Within each node, 20 visual analytics processes are placed
onto the cores where the simulation’s OpenMP threads are
running. The 20 analytics processes are divided into 5 groups.
Each group has 4 processes with one process running on a
separate socket. GTS particles output data of successive timesteps
are distributed among the 5 analytics process groups in a round-
robin manner via the ADIOS shared memory transport [47]. Both
the original particle data and the generated images are written to
the file system.

For comparison, we also run GTS and visual analytics “Inline”:
the simulation directly calls the visual analytics routine. In this
way, simulation and analytics are performed synchronously. We
use a multi-threaded OpenMP version of the parallel coordinates
processing routine to get the best possible inline performance.

Performance: Figure 12 (a) shows the main loop time of GTS
simulation with 12288 cores on Hopper. Similar to previous
experiments, the performance of GTS is best with GoldRush
interference-aware scheduling. “Inline” has worst performance,
due to synchronously performing analytics and file I/O. Figure 13
(a) shows the scaling of simulation-side slowdown. The GoldRush
interference aware policy has better scalability than the OS
baseline solution, which promises its utility at even larger scales.

800

900

1000

1100

1200

1300

1400

1500

1600

1700

Solo Inline OS Base Greedy Int-Aware

M
ai

n
L

oo
p

T
im

e
(S

ec
on

ds
)

GoldRush
I/O
Analytics
Sequential
OpenMP

800

900

1000

1100

1200

1300

1400

Solo Inline OS Base Greedy Int-Aware

M
ai

n
L

oo
p

T
im

e
(S

ec
on

ds
)

 (a) w/ Parallel Coordinates (b) w/ Time Series

Figure 12. GTS performance with 12288 cores on Hopper.

0

2

4

768 3072 12288

Pe
rc

en
ta

ge
 (%

)

w/ Parallel Coordinates
OS Base Greedy Int-Aware

0
2
4
6
8

10

768 3072 12288

Pe
rc

en
ta

ge
 (%

)

Core Counts

w/ Time Series Analysis

0

200

400

600

800

1000

1200

3072 12288 3072 12288

GoldRush In-Transit

G
B

yt
es

Communication Within Analytics
Staging
File I/O

 (a) Scaling of GTS Slowdown (b) Data Movement Costs

Figure 13. Scaling results on Hopper. Figure 13 (a) shows the
slowdown of GTS (comparing to Solo case) with different

scheduling policies. Figure 13 (b) compares the data movement
costs of running parallel coordinates in situ vs. in transit.

Figure 11. Parallel coordinates for GTS particle data. The

two images are drawn from 2 timesteps of particle data each
with 120GB in size. The red lines highlight particles with the

absolute 20% largest weights.

Cost I (CPU Hours): with the same number of compute nodes
used, using GoldRush leads to the least usage of CPU Hours.

Cost II (Data Movement Volumes): an alternative to co-locating
simulation and analytics is to perform analytics “In-Transit”:
additional compute nodes are allocated to host analytics; data is
moved from the simulation to analytics through the RDMA-based
data staging transport in ADIOS I/O library [1]. This makes it
possible to avoid contention on compute nodes, but results in
additional data movement across the interconnect (which can also
introduce perturbation to simulation [1]). Figure 13 (b) compares
the data movement volumes under the GoldRush vs. In-Transit
setups, where a 1:128 ratio of compute to staging nodes is used.
We note that placing analytics onto a smaller number of staging
nodes reduces MPI communication cost within the parallel
coordinates analytics (for the image composition), but doing so
adds data movements between the simulation and analytics (i.e.,
the staging traffic). Since placing analytics within the compute
node and using GoldRush to schedule its execution can already
achieve close-to-optimal performance, it is more efficient to use
GoldRush rather than In-Transit for this GTS analytics use case.
More generally, of course, In-Transit solutions remain important,
because one must “size” on-compute-node analytics to match
available idle resources. We leave the creation of general methods
for such sizing to future work.

4.2.2 Time Series Analytics
Time series analysis [27] is essential for understanding particle
temporal behavior. A basic operation of time series analysis is to
iteratively access the data of each particle in the arrays of
different time steps. A common data access pattern can be simply
represented as A[ti][p] = f(B[ti][p], B[ti+1][p]) for two time steps,
where, for a particle p, A is a derived variable whose value at the
time step ti depends on the original variable B at ti ad ti+1. For
example, the displacement of a particle is computed from its
positions at two time steps. However, we note that it is non-trivial
to generate the particle trajectories in parallel [27][29], which is
out of the scope of this paper. In our study, we assume that we
already have the time-series data of each particle and emulate the
data access pattern with a synthetic code.

We co-run the code that exercises the data access pattern on GTS
particle output data. Due to its streaming access pattern, the time
series analytics causes 15.2 L2 cache misses per thousand
instructions on Hopper. As shown in Figure 12 (b) and 13 (a), this
results in up to 9.4% slowdown of the GTS simulation with 12288
cores under the OS scheduler. The GoldRush interference aware
scheduler reduces such interference to at most 1.9% and manages
to complete all analytics processing with available idle resources.

4.3 Varying Architecture - Intel Westmere
In order to evaluate the effectiveness of GoldRush across different
architectures and its scalability within a node, we conduct
experiments on a 32-core Intel Westmere machine. The machine
has 4 sockets each with 8 cores at 2.13GHz, with a 32KB D-
Cache, 32KB I-Cache, and a 256KB inclusive unified L2 Cache.
All 8 cores within a socket share a 24MB inclusive unified L3
Cache. Each of the 4 sockets belongs to one NUMA memory
domain with 32GB DDR3 memory in each domain. We run GTS
with 4 MPI processes and 8 threads per process on this machine.

Figure 14 (a) shows the main loop time of the GTS simulation co-
running with parallel coordinate analytics. The simulation’s

OpenMP time increases by up to 5% under OS scheduler. This is
because the OS scheduler does not entirely suspend analytics and
thus, incurs unnecessary scheduling overhead. GoldRush with its
greedy policy, however, results in GTS performance within 99%
of the optimal. The less than 1% performance loss is due to time
spent in the shared memory transport and the GoldRush runtime.

When co-running GTS with the contentious time series analytics
under OS baseline scheduling, GTS can be significantly slowed
down (up to 11%), as shown in Figure 14 (b). On the other hand,
with the interference aware GoldRush scheduling, interference is
again greatly reduced. This, together with previous results,
demonstrates GoldRush’s ability to mitigate interference between
co-running simulation and analytics across different architectures.

5. RELATED WORK
In Situ Scientific Data Analytics. In situ data analytics and
visualization has gained much recent attention from the HPC
community. Current work falls into two categories: (i) data
analytics and visualization algorithms, such as in situ indexing
[43], compression [14], feature extraction [39], and visualization
techniques [2][42], and (ii) supporting platforms. Regarding the
first category, the GoldRush system can be readily used to run
various data analytics with idle resources in compute nodes for
resource-efficient, near-source data processing. As to the second
category, systems like PreDatA [46], GLEAN [39], NESSIE [25]
and DataSpaces [5], all support In-Transit data processing (i.e.,
deploy data analytics on auxiliary nodes and move data from
simulation to analytics across interconnect), which is orthogonal
to our work. One attractive usage of GoldRush is to run data-
reducing operations on compute nodes to filter or pre-process
simulation output data before sending data to In-Transit
processing nodes. Finally, Damaris [6] and Functional
Partitioning [15] use dedicated cores on compute nodes for file
I/O and other data operations; such solutions are easily realized
with GoldRush.

Cycle Stealing. Idle CPU cycles pervasively exist on PCs and
servers. There has been extensive work on leveraging unused idle
cycles for useful computation. Examples include Condor [17],
BOINC [3], and other volunteer computing systems. To the best
of our knowledge, GoldRush is the first system to harvest fine-
grained idle cycles from large-scale scientific simulations on HEC
platforms for online data analytics. Linger Longer [32] shares
similarity with our work since it enables aggressive resource
sharing between host applications and background jobs.
GoldRush differs in its demonstrated scalability and in its ability
to control interference for tightly synchronized host applications
(parallel simulations).

Contention Mitigation on Multi-Core Platforms. Resource
contention has been recognized as a severe performance issue for

600

700

800

900

1000

1100

1200

GTS Only Inline OS Base GoldRush

M
ai

n
L

oo
p

T
im

e (
Se

co
nd

s)

GoldRush
I/O
Analysis
Sequential
OpenMP

600

650

700

750

800

850

900

950

1000

1050

1100

GTS Only Inline OS Base GoldRush

M
ai

n
L

oo
p

T
im

e (
Se

co
nd

s)

 (a) (b)

Figure 14. Simulation and analytics execution timeline.

consolidated workloads on multi-core platforms. Software
solutions to this problem include thread mapping [48] and
scheduling [15], cache partitioning [18], and compiler-time code
transformation for cache behavior optimization [33][36]. We
borrow from such work to implement a special case for contention
aware scheduling in which analytics processes detect contention
with high-priority simulation and dynamically back off to
mitigate interference. Most similar to our work are CAER [21]
and ReQoS [37], both of which target data center applications.

Optimizing MPI/OpenMP Hybrid Programs. There has been
previous work on tuning performance and/or power efficiency for
MPI/OpenMP hybrid codes. One approach is to overlap
sequential code regions with parallel OpenMP regions [30], but its
applicability is application-specific, constrained by data and
control dependencies as well as by thread safety in MPI libraries.
Another approach by Li et al. [18] applies Dynamic Concurrency
Throttling and Dynamic Voltage and Frequency Scaling to
OpenMP parallel phases, for power savings. The slack prediction
used in that approach is akin to GoldRush’s idle period
prediction: it estimates the difference in the duration of OpenMP
parallel phases between the non-critical vs. critical (the slowest)
MPI processes (i.e., the slack time), so that the non-critical
processes can be run with reduced CPU frequencies during slack
time. The duration of a sequential period between two successive
OpenMP parallel phases is measured directly and used as input
parameters to slack prediction. GoldRush, instead, dynamically
predicts the duration of those sequential periods within each MPI
process; and its purpose is not to reduce the power consumption
of a simulation code running in solo, but to orchestrate the
execution of coupled simulation and analytics to improve their
overall performance and resource efficiency. It would be
interesting, however, for a MPI/OpenMP hybrid simulation code,
to use both methods: to optimize power efficiency of the OpenMP
parallel phases and to apply GoldRush to schedule in situ
analytics during idle periods outside the OpenMP phases. Also
interesting to GoldRush is to leverage Li’s work on dynamically
varying OpenMP thread count for simulation’s OpenMP phases:
this may help yield even more idle resources for in situ analytics.

6. CONCLUSIONS AND FUTURE WORK
In situ scientific data analytics has been gaining wide adoption by
scientific applications to cope with the severe I/O bottleneck on
HEC platforms. This paper makes several key contributions to
improving the online execution of data analytics. We first show
that even leadership simulations leave considerable compute node
resources unused. This is not because such codes are ill-tuned or
configured, but because many such unused resources often occur
as modestly sized idle periods not easily utilized by the dense
core methods constituting the bulk of a typical simulation’s
computation. Unfortunately, this fact also makes such idle periods
difficult to use for analytics. This is the key challenge addressed
by the GoldRush system developed in our work. GoldRush
applies fine-grained scheduling to “steal” idle resources from
simulation in ways that incur negligible runtime overheads and
minimize interference between the simulation and analytics. Key
to its effectiveness are (i) judiciously selecting appropriate idle
periods based on online performance monitoring and prediction,
and (ii) dynamically detecting interference and mitigating it by
throttling analytics’ execution. Experiments with representative
applications at large scales (up to 12288 cores) and on different
architectures show that resources harvested on compute nodes can

be used to perform useful analytics, significantly improving
resource efficiency, reducing data movement costs incurred by
alternate solutions, and posing negligible impact on simulations.

There are several directions for future work. First, we plan to
develop automated resource provisioning methods, on top of
GoldRush, to properly “size” the amount of analytics co-located
with the simulation. Second, we will consider the challenges
posed by graph-based analytics, which will likely be more
disruptive to co-running simulations than the analytics used in this
paper. Third, the prediction of idle period duration will benefit
from the use of rigorous forecasting methods, particularly for
simulations with more irregular and dynamic performance
characteristics (e.g., AMR codes).

7. ACKNOWLEGEMENTS
We thank Stéphane Ethier for his help with the GTS application
and visual analytics. We also thank the anonymous reviewers and
our shepherd, Frank Mueller, for their insightful feedback. This
work was funded by Scientific Data Management Center, U.S.
Department of Energy, and Center for Exascale Simulation of
Combustion in Turbulence, U.S. Department of Energy.

8. REFERENCES
[1] H. Abbasi, G. Eisenhauer, M. Wolf, K. Schwan, and S.

Klasky, Just in time: adding value to the i/o pipelines of high
performance applications with jitstaging, In HPDC, 2011.

[2] J. C. Bennett, H. Abbasi, P. Bremer, R. Grout, A. Gyulassy,
T. Jin, et al. Combining in-situ and in-transit processing to
enable extreme-scale scientific analysis. In SC, 2012.

[3] BOINC. Open-source software for volunteer computing and
grid computing. http://boinc.berkeley.edu/. 2013.

[4] Cray Inc. CrayPat Performance Analysis Tool.
http://docs.cray.com/. 2013.

[5] C. Docan, M. Parashar, S. Klasky. DataSpaces: an
interaction and coordination framework for coupled
simulation workflows. In HPDC, 2010.

[6] M. Dorier, Using dedicated i/o cores for scalable post-
petascale hpc simulations. In ICS, 2011.

[7] N. Fabian, K. Moreland, D. Thompson, A. C. Bauer, P.
Marion, B. Geveci, M. Rasquin, K. E. Jansen, The paraview
coprocessing library: a scalable, general purpose in situ
visualization library. In LDAV, 2011.

[8] GROMACS. http://www.gromacs.org/. 2013.
[9] E. R. Hawkes, R. Sankaran, and J. H. Chen, Direct numerical

simulation of turbulent combustion: fundamental insights
towards predictive models. In Journal of Physics:
Conference Series, 2005, pp. 65-79.

[10] Hopper Cray XE6 at NERSC.
http://www.nersc.gov/systems/hopper-cray-xe6/, 2013.

[11] T. Hoefler, T. Schneider and A. Lumsdaine. Characterizing
the influence of system noise on large-scale applications by
simulation. In SC, 2010.

[12] C. Jones, K.-L. Ma, S. Ethier, W.-L. Lee. An ontegrated
exploration approach to visualizing multivariate particle
data. In Computing in Science & Engineering. Volume 10,
Number 4, July/August, 2008, pp. 20-29.

[13] S. Klasky, S. Ethier, Z. Lin, K. Martins, D. McCune, and R.

 Samtaney, Grid-based parallel data streaming implemented
for the gyrokinetic toroidal code. In SC, 2003.

[14] S. Lakshminarasimhan, N. Shah, S. Ethier, S. Klasky, R.
Latham, R. Ross, N. F. Samatova. Compressing the
incompressible with ISABELA: in-situ reduction of spatio-
temporal data. In Euro-Par, 2011.

[15] M. Lee, K. Schwan. Region scheduling: efficiently using the
cache architectures via page-level affinity. In ASPLOS, 2012.

[16] M. Li, S. S. Vazhkudai, A. R. Butt, F. Meng, X. Ma, Y. Kim,
C. Engelmann, G. Shipman. Functional partitioning to
optimize end-to-end performance on many-core
architectures. In SC, 2010.

[17] M. J. Litzkow, M. Livny, M. W. Mutka. Condor-a hunter of
idle workstations. In ICDCS, 1988.

[18] D. Li, B. Supinski, M. Schulz, D. Nikolopoulos, K.
Cameron. Hybrid mpi/openmp power-aware computing. In
IPDPS, 2010.

[19] J. F. Lofstead, F. Zheng, S. Klasky, and K. Schwan.
Adaptable, metadata rick i/o methods for portable high
performance i/o. In IPDPS, 2009.

[20] Q. Lu, J. Lin, X. Ding, Z. Zhang, X. Zhang, P. Sadayappan.
Soft-OLP: improving hardware cache performance through
software-controlled object-level partitioning. In PACT, 2009.

[21] J. Mars, N. Vachharajani, R. Hundt, M. L. Soffa: Contention
aware execution: online contention detection and response.
In CGO, 2010.

[22] B. Miller, A. Bernat. Anywhere, any time binary
instrumentation, In PASTE, 2011.

[23] B. Mohr, A. D. Malony, S. Shende, F. Wolf. Design and
prototype of a performance tool interface for openmp. In
LACSI, 2001.

[24] NAS Parallel Benchmarks.
http://www.nas.nasa.gov/publications/npb.html. 2013.

[25] R. Oldfield, G. Sjaardema, J. F. Lofstead, T. Kordenborck.
Trilinos i/o support (trios). In Scientific Programming,
August 2012.

[26] PAPI: Performance Application Programming Interface,
http://icl.cs.utk.edu/papi/, 2013.

[27] T. Peterka, R. Ross, B. Nouanesengsey, T.-Y. Le, H.-W.
Shen, W. Kendall, J. Huang. A study of parallel particle
tracing for steady-state and time-varying flow fields. In
IPDPS, 2011.

[28] S. Plimpton. Fast parallel algorithms for short-range
molecular dynamics, In J Comp Phys, 117, 1-19 (1995).

[29] D. Pugmire, H. Childs, C. Garth, S. Ahern, G. Weber.
Scalable computation of streamlines on very large datasets.
In SC, 2009.

[30] R. Rolf, G. Hager, G. Jost. Hybrid mpi/openmp parallel
programming on clusters of multi-core smp nodes. In PDP,
2009.

[31] O. Rubel, Prabhat, K. Wu, H. Childs, J. Meredith, C.G.R.
Geddes, E. Cormier-Michel, S. Ahern, G.H. Weber, P.
Messmer, H. Hagen, B. Hamann, E.W. Bethel. High
performance multivariate visual data exploration for

extremely large data. In SC, 2008.
[32] K. D. Ryu, J. K. Hollingsworth. Linger longer: fine-grain

cycle stealing for networks of workstations. In SC, 1998.
[33] A. Sandberg, D. Eklov, E. Hagersten. Reducing cache

pollution through detection and elimination of non-temporal
memory accesses. In SC, 2010.

[34] Smoky Cluster. http://www.olcf.ornl.gov/computing-
resources/smoky/, 2013.

[35] R. Stevens, A. White, et al. Architectures and technology for
extreme scale computing. Technical report, ASCR Scientific
Grand Challenges Workshop Series, December 2009.

[36] L. Tang, J. Mars, and M. L. Soffa. Compiling for niceness:
mitigating contention for qos in warehouse scale computers.
In CGO, 2012.

[37] L. Tang, J. Mars, W. Wang, T. Dey, M. L. Soffa: ReQoS:
reactive static/dynamic compilation for qos in warehouse
scale computers. In ASPLOS, 2013.

[38] Vampir Performance Tool. http://www.vampir.eu/. 2013.
[39] V. Vishwanath, M. Hereld, M. E. Papka, Toward simulation-

time data analysis and i/o acceleration on leadership-class
systems. In LDAV, 2011.

[40] V. Vishwanath, M. Hereld, V. Morozov, M. E. Papka.
Topology-aware data movement and staging for i/o
acceleration on blue gene/p supercomputing systems. In SC,
2011.

[41] W. X. Wang, Z. Lin, W. M. Tang, W. W. Lee, S. Ethier, J. L.
V. Lewandowski, G. Rewoldt, T. S. Hahm, J. Manickam,
Gyro-kinetic simulation of global trubulent tranport
properties in tokamak experiments. In Physics of Plasmas,
2006, pp 59-64.

[42] H. Yu, C. Wang, R. W. Grout, J. H. Chen, K. Ma, In-situ
visualizaiton for large-scale combustion simulations. In
CGA, 2010.

[43] K. Wu, S. Ahern, E.W. Bethel, J. Chen, H. Childs, E.
Cormier-Michel, et al. FastBit: interactively searching
massive data. In SciDAC, Journal of Physics: Conference
Series, 2009.

[44] H. Yu, C. Wang, K.-L. Ma. Parallel volume rendering using
2-3 swap image compositing for an arbitrary number of
processors. In SC, 2008.

[45] F. Zhang, C. Docan, M. Parashar, S. Klasky, N. Podhorszki
and H. Abbasi. Enabling in-situ execution of coupled
scientific workflow on multi-core platform. In IPDPS, 2012.

[46] F. Zheng, H. Abbasi, C. Docan, J. F. Lofstead, Q. Liu, S.
Klasky, M. Parashar, N. Podhorszki, K. Schwan, M. Wolf,
Predata-preparatory data analytics on peta-scale machines. In
IPDPS, 2010.

[47] F. Zheng, H. Zou, G. Eisenhauer, K. Schwan, M. Wolf, J.
Dayal, T.-A. Nguyen, J. Cao, H. Abbasi, S. Klasky, N.
Podhorszki, H. Yu. FlexIO: i/o middleware for location-
flexible scientific data analytics. In IPDPS, 2013.

[48] S. Zhuravlev, S. Blagodurov, A. Fedorova. Addressing
shared resource contention in multicore processors via
scheduling. In ASPLOS, 2010.

	1. INTRODUCTION
	2. MOTIVATION
	2.1 Characterizing Idle Resources
	2.2 Challenges of Using Idle Resources
	2.2.1 Magnitude of Idle Resources
	2.2.2 Contention on Shared Resources
	2.2.3 Limitations of Operating System Scheduling

	3. GOLDRUSH RUNTIME SYSTEM
	3.1 Overview
	3.2 Inter-Posing GoldRush
	3.3 Online Monitoring and Prediction
	3.3.1 Predicting Idle Period Durations
	3.3.2 Monitoring Interference during Idle Periods

	3.4 Controlling Execution of Analytics
	3.5 Scheduling Analytics
	3.5.1 Interference-Aware Policy
	3.5.2 Greedy Policy

	3.6 Usage of GoldRush

	PERFORMANCE EVALUATION
	4.1 Benefits of Synergistic Scheduling
	4.1.1 Benefits of GoldRush
	Costs of GoldRush

	4.2 GTS Application with In Situ Analytics
	4.2.1 Parallel Coordinate Visual Analytics
	4.2.2 Time Series Analytics

	4.3 Varying Architecture - Intel Westmere

	5. RELATED WORK
	6. CONCLUSIONS AND FUTURE WORK
	7. ACKNOWLEGEMENTS
	8. REFERENCES

