
ACT Manual

Wei Sun
sunweiflyus@gmail.com

Di Zhao
dzhao@cse.unl.edu

August 2, 2019

Overview

Figure 1: Architecture of a testing platform.

The implementation of ACT has four main modules: ns3, DCE, Linux kernel, and ase_brain.

For ns3-dce, system manipulate the packet delay in p2p channel according to given random
distribution. It takes as input an input parameter configuration (i.e., input.txt).

For Linux kernel, it is a inherently user-space library used by DCE for running a real kernel
stack. Some probing points are added here to print some target state variable in related ker-
nel functions. Do not forget to copy a new bin_dce (cp liblinux.so ../ns-3-dce/build/bin_dce/)

every after a new compilation of kernel source.

For ns3-dce, it has customized testing scripts. You could configure different typologies, algo-
rithms in the script. More scripts example could be referred in example folder.

For ase_brain, it automatically generates new test input parameter configuration for verb—ns3-
dce— simulation. It also processes and analyzes the log traces generate by the simulation to

1

update related state variables coverage info. This module is the core of ACT. Adding more
state variables, checking more conditions, changing new feedback algorithms, etc. are all in
this module.

There already has a checker module to check required conditions or rules for the log traces
generated by testing. Source files are under ase/src/main_offline. Take them as reference
for writing different rules or conditions. It is possible to upgrade it to an online checker when
processing the log traces during testing (i.e., it is easy by just do extra checking when insert-
ing new visited states).

The whole ASE system is currently only tested well in ubuntu 14.04 but it should be OK in
most ubuntu releases.

Installation

Following are all steps building the whole system, recall that the manual is build based on
ubuntu 14.04. We need to install customized ns3, Linux kernel stack, DCE, three modules.
Customized modules needed to be patched before installation.

Step 1. Get and install all updates and essentials
sudo apt-get update

sudo apt-get -y install build-essential

Step 2. Install required dependences for DCE-ASE
sudo apt-get install -y gcc g++ python python-dev mercurial bzr cmake ...

unzip p7zip-full autoconf git cvs unrar-free libssl-dev flex bison pkg-config ...

libdb-dev libgsl0ldbl gsl-bin libgsl0-dev

Step 3. Build a new directory for all system files, example uses ACT
cd ~/

mkdir ACT

cd ACT/

git clone https://github.com/ShadowDeven/act

Step 4. Install customized ns3 (NS3 module)
cd ~/ACT

hg clone http://code.nsnam.org/ns-3.25

cd ns-3.25/

patch -p1 < ../act/patch/ns_3.25.patch

sudo ./waf configure --enable-examples -d optimized --prefix=$HOME/ACT/build ...

--includedir=$HOME/ACT/include/ns-3.25

sudo ./waf

sudo ./waf install

cd ..

Step 5. Install customized kernel (kernel module)
cd ~/ACT

git clone https://github.com/thehajime/net-next-sim.git

cd net-next-sim

git checkout sim-ns3-3.10.0-branch

patch -p1 < ../act/patch/linux_kernel.patch

2

make defconfig OPT=no ARCH=sim

make library OPT=no ARCH=sim

cd ..

Step 6. Install ns3-dce (DCE modular)
cd ~/ACT

hg clone http://code.nsnam.org/ns-3-dce -r dce-1.8

cd ns-3-dce

patch -p1 < ../act/patch/dce.patch

./waf configure --with-ns3=$HOME/ACT/build --enable-opt ...

--enable-kernel-stack =$HOME/ACT/net-next-sim/arch --prefix=$HOME/ACT/build

sudo ./waf

sudo ./waf install

sudo cp ../act/src/ip build/bin_dce/

sudo cp ../net-next-sim/liblinux.so build/bin_dce/

cd ..

By now all components finish installed. Check out your main folder, there should
have four distinct folders: act, net-next-sim, ns-3.25, ns-3-dce.

Step 7. Run system for a test!
System generates binary allinone_main under ACT/ns-3-dce/build the output file log.txt

is under the same directory. Outputs from ns3 are under /tmp/output.
Attention: output files will be overwritten every time!

cd ~/ACT/act/src/auto_perf_allinone/

make main

cd ~/ACT/ns-3-dce/build

sudo ./allinone_main

Data Analysis

All important data prints in log.txt file. For an analysis, one code is needed for grabbing the
data you need from the log file, and another code is needed for analysis. Here gives a sample
of a one test evaluation.

Figure 2 is once from a test made for evaluating the performance of a 2D simulation. All
steps are listed here to make this visualization:

Step 1. Read log.txt file
For each execution of ns3 system prints the following information in the log file:
The number of executions 1

run the ns3 script: dce-linux

59996100

received 15Mb files

The number of the third line marks the time in simulation. When there is a new detected pair
a line like below prints.
Find uncovered pairs: cwnd: 0 ssth: 6 switching_time: 0

If this execution is during mutation or cross-over some extra info like below also prints.

3

Output_type:ssth

Mapping empty_set:cwnd: 736 ssth: 393 switching_time: 0

[CAN] Find low limit, candidate points: 2 and 0 at granularity:512

Lines like the following prints the current coverage condition:
Every 100 times:5609 ,prev_coverage_size:5600, growth num count: 9 , total files:5000

[Coverage] map_vec.size:10

I:0, Grans:1 ,covered size:5609 ,total:1048576, coverage:0.00534916

I:1, Grans:2 ,covered size:1811 ,total:262144, coverage:0.00690842

I:2, Grans:4 ,covered size:608 ,total:65536, coverage:0.00927734

I:3, Grans:8 ,covered size:204 ,total:16384, coverage:0.0124512

I:4, Grans:16 ,covered size:68 ,total:4096, coverage:0.0166016

I:5, Grans:32 ,covered size:23 ,total:1024, coverage:0.0224609

I:6, Grans:64 ,covered size:8 ,total:256, coverage:0.03125

I:7, Grans:128 ,covered size:4 ,total:64, coverage:0.0625

I:8, Grans:256 ,covered size:1 ,total:16, coverage:0.0625

I:9, Grans:512 ,covered size:1 ,total:4, coverage:0.25

Figure 2: Coverage map for ssth and cwnd.

Grab the data needed. The code for this example can be checked out here: https://github.
com/ShadowDeven/Grabber-Sample

Step 2. Do analysis
This example uses MATLAB.
The way of making a scatter: https://www.mathworks.com/help/matlab/ref/scatter.

4

https://github.com/ShadowDeven/Grabber-Sample
https://github.com/ShadowDeven/Grabber-Sample
https://www.mathworks.com/help/matlab/ref/scatter.html
https://www.mathworks.com/help/matlab/ref/scatter.html

html

The way of putting multi-plots together: https://www.mathworks.com/help/matlab/ref/
hold.html

After import all grabbed data into MATLAB, following codes are used:
scatter(random(:,2),random(:,1),0.5,’filled’,’g’)

hold on

scatter(mutation(:,2),mutation(:,1),0.5,’filled’,’b’)

hold on

scatter(crossover(:,2),crossover(:,1),0.5,’filled’,’r’)

hold off

Do not close pop-up during the hold.

Modify code

Changing viable for different tests: Currently, the whole system does not have a good GUI, in
most cases we need to change source file and re-compile for a configuration change.

1. State variable extension
Share.h file has core data structures and range definitions. Now system support follow-
ing state variables: cwnd, ssth, rtt, rttvar, ca_state, target, prev_ca_state.For
example, #define CWND_RANGE 1024, and loss rate #define LOSS_UP 10.
To extend state variables, change this header file firstly and related functions already in-
cluding the all state variables. The granularity.cc is used to process log traces generated
by simulation to update current coverage. Change this file to support new add variables.
You also could add assertions in function insert_state() when processing each new
visited output state. For example, if (cwnd > 100) print("cwnd condition volition!");

2. Coverage saturation
ASE terminates until coverage saturated. To terminate a test earlier, use command
sudo killall allinone_main.

3. State exchange
You could change the coverage saturation limit for random, feedback1, and feedback2.
For example, #define COVG_LIMIT_RANDOM 30, where 30 is about 1.5 percent of 2048
total size (given 128 size granularity).

4. Coverage print
Here is a sample of strategy, you could figure out your own modification.

if (TOTAL_EXECUTION > 1495 && TOTAL_EXECUTION < 1505) return 1 ;

if (TOTAL_EXECUTION > 19995 && TOTAL_EXECUTION < 20005) return 1 ;

if (inc_per < GROWTH_SSH && TOTAL_EXECUTION>20005) {

if(re_counter < TOLERANCE) re_counter++;

if(re_counter == TOLERANCE){

re_counter = 0;

return 1;

}

}else{

re_counter = 0;

}

}

5

https://www.mathworks.com/help/matlab/ref/scatter.html
https://www.mathworks.com/help/matlab/ref/scatter.html
https://www.mathworks.com/help/matlab/ref/hold.html
https://www.mathworks.com/help/matlab/ref/hold.html

5. NS3 Script
Script dce-linux.cc in ns-3-dce/example is used to run a simple p2p link TCP 15 MB
testing scenario. You could change the CA algorithm in this script. If you want to change
the file size, you also need to change something in NS3 module (refer to ns3 patch file).

6. Coverage map serialization
If you want to try some long-time experiments, you could leverage boost lib to do incre-
mentally testing (i.e. keep old results and then continue later).
Below is a tried attempt:
#include <boost/serialization/map.hpp>

#include <boost/archive/text_iarchive.hpp>

#include <boost/archive/text_oarchive.hpp>

#include <boost/serialization/vector.hpp>

std::ofstream ofs("/tmp/output_cubeMap_vec.txt");

boost::archive::text_oarchive oarch(ofs);

oarch << covg_map_vec;

fs.close();

ifs.open("/tmp/new_app_cubic1_correlation.txt");

boost::archive::text_iarchive iarch3(ifs);

iarch3 >> input_output_relation;

ifs.close();

Basically, you could dump current coverage map into txt file or restore a coverage map
from an txt file later.

6

