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Abstract 

The simplest strategy in Java just-in-time (JIT) com- 
pilers is to compile each Java method the first time it 
is called. However, better performance can often be ob- 
tained by selectively compiling methods based on heuris- 
tics of how often they are likely to be called during 
the rest of the program's execution. Various heuristics 
are examined when used as part of the Caldera UNIX 
Java JIT compiler. The simplest heuristics involving the 
number of times the method has executed so far and the 
size of the method prove to be the most effective, with 
more complicated heuristics not providing much or any 
additional benefit. 
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1 I n t r o d u c t i o n  

volved, the compilation of a given piece of bytecode may 
or may not prove to be a net benefit over the course of 
any given application's run. 

Decisions about whether to compile bytecodes are usu- 
ally made on a per-method basis. The simplest JIT 
compilation strategy is to compile every method the :first 
time it is called. More ambitious JIT strategies involve 
selective compilation: some methods get compiled the 
first time they are called, some methods get compiled 
later, and some methods never get compiled at all. 

Given the dynamic nature of the Java language and its 
applications, it is usually not feasible to know ahead 
of time how long methods will take to compile, exe- 
cute interpretively, or execute as generated code. Thus 
selective compilation decisions rely on heuristics about 
whether compiling a method will likely result in a time 
savings for that method. 

The goal of the work described here is to see how the 
addition of selective compilation heuristics can improve 
the performance of a particular existing virtual machine 
and JIT compiler. 

A Java just-in-time (JIT) compiler is an optimization 
component within Java virtual machines. Instead of 
Java bytecodes being interpreted each time they are ex- 
ecuted, the bytecodes are compiled to the underlying 
machine code and from that point on the generated ma- 
chine code is executed. 

It follows from this scheme that there is a fundamental 
tradeoff in JIT compilers. Compiling the bytecodes will 
cost some appreciable amount of time, while executing 
generated code instead of interpreting bytecode will pre- 
sumably save some amount of time each subsequent time 
the code executes. Depending upon the actual times in- 

2 A r c h i t e c t u r e  o f  t h e  J V M  a n d  J I T  

This paper describes work done to the Java virtual ma- 
chine in various versions of the Java Development Kit 
and Java 2 Platform, Standard Edition for SCO and 
Caldera UNIX Operating Systems. 1 

1Caldera acquired the UNIX business of SCO, Inc. in May 
2001. Much of the work this paper describes was done whi:[e the 
author was employed by SCO; for the purposes of this paper the 
two companies may be considered as the same. On the Caldera 
OpenLinux® operating system, a different Java implementation 
is used that is not discussed in this paper. 
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This Java implementation is based on the original, "clas- 
sic VM" from Sun Microsystems, Inc., of which SCO 
and Caldera have been source licensees. Except for the 
JIT compiler, most of the rest of the Java virtual ma- 
chine is a straight port of the classic VM, from the Sun 
Solaris operating system for the Intel IA-32 architec- 
ture, to the Open UNIX® 8, UnixWare® 7, and SCO 
OpenServer T M  5 operating systems for IA-32. 

The JIT compiler described here is based upon sunwjit, 
a JIT compiler for Solaris/IA-32 developed by a sepa- 
rate product group within Sun and licensed by SCO and 
Caldera. 2 

The sunwjit compiler is loaded and invoked per the JIT 
Interface Specification [19]. When each Java class is 
first loaded, initialization processing is done to get ready 
for JIT usage. This includes setting up bits of "shim" 
code to handle flow of control transitions among inter- 
preted code, compiled code, and machine code. An in- 
ternal JVM structure known as the "method block" has 
its "invoker" field [5] set to point to the JIT compiler. 
When a method in the class is to be compiled, the JIT 
compiler gets control, translates the method's bytecode 
down to native IA-32 machine code, and then changes 
the method block invoker field to point to the gener- 
ated machine code. The call is then re-invoked, and on 
this and subsequent invocations the generated machine 
code executes instead of the bytecode interpreter. In a 
multithreaded program, compilation may proceed con- 
currently with execution (interpreted or compiled code) 
in other parts of the program; only certain operations 
pertaining to the class of the method being compiled are 
locked out. This avoids some of the compilation ineffi- 
ciencies described in [13]. 

Compiling of methods the first time they are called is 
done unconditionally in the original Sun version of sun- 
wjit. The only times methods are interpreted are if the 
J IT is suppressed by a JVM command-line option, or if 
the JIT has an internal error while compiling, or if the 
method belongs to one of the primordial classes that 
execute before the Java j a v a . l a n g .  Comp±ler class is 
loaded. In the latter case, primordial methods will get 
compiled the first time they are subsequently executed 
after the JIT compiler is loaded. Class initializers, which 
are known to execute at most once, are never compiled. 
Methods that are never called are never compiled. 

2The sunwjit J IT compiler also has a code generator for So- 
laris/SPARC and was used by Sun with the classic VM on that 
platform as well. Sun does not do further development work on 
any version of sunwjit, concentrating instead on their successor 
HotSpot JVM technology. 

The code generator in sunwjit has two passes. The first 
is architecture-independent and scans the bytecode for 
basic block and stack state information. The second is 
architecture-specific and generates the actual machine 
code. There is no global optimization attempted, al- 
though "lazy code generation" modeling of the bytecode 
stack at compile time is performed in the manner of [5], 
and various other local optimizations are done as well. 
In general, sunwjit tries to do a decent but not great 
code generation job, quickly. There is no ability to have 
different levels of optimization performed. 

Caldera has made a number of changes to sunwjit. Some 
have been due to porting differences between Solaris 
and the SCO/Caldera UNIX operating systems: signal 
handling for trapping null reference checks, disassembly 
logic for tracing through pre-JNI native method stubs, 
probe techniques for detecting stack overflow, and so 
on. Others have been due to bug fixes, especially for 
race conditions in the dynamic code patching logic. 

In addition, the infrastructure of the JIT has been mod- 
ified to permit selective compilation, as described in the 
remainder of this paper. This includes having the JIT be 
able to read in and compile all of the "quick"-form byte- 
codes [9] that  are generated after methods have been 
interpreted for the first time. This also includes hav- 
ing the J IT 's  exception handling and stack frame walk- 
back logic handle the case where a recursively called 
method has both interpreted and compiled instances on 
the JVM's internal stack frame structures at the same 
time. These and other modifications become necessary 
once any method may be interpreted an arbitrary num- 
ber of times before it is compiled. 

Finally, the J IT compiler sometimes detects unusual 
bytecode situations that  it cannot handle correctly, such 
as empty loops and overflows of the IA-32 floating point 
stack. In these cases, J IT  compilation is abandoned, 
and the JVM will continue to interpret the method each 
time it is called. This approach avoids adding excessive 
complexity to the J IT to handle rarely-encountered sit- 
uations. It is also in accordance with the principle of 
fall-safe optimization during compilation [15]. 

There are only two possible execution states within the 
JVM for any particular execution of a method: it is ei- 
ther fully interpreted or fully compiled (and for debug- 
ging purposes either state can be forced on for a partic- 
ular method by JVM invocation options). There are no 
cases where compilation is started while the method is 
being interpreted or where code has been compiled for 
use but is then backed out and interpretation is resumed. 
This "one or the other" nature simplifies the JVM and 
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actual javac 
no J IT  

7.19 

times 
always J IT  ! heur i s t ic  

8.38 i 6.77 

Table 1: Early results with J IT  

makes for easier reproducibility and debugging of prob- 
lems; more aggressive JVM compilation strategies often 
run into difficulties in this area [4, 14]. 

3 T h e  S i m p l e  H e u r i s t i c s  

In early SCO Java Development Kit releases, the J IT  
was used in the unmodified Sun mode of compiling every 
method the first time it is called. This resulted in a per- 
formance improvement for most applications, but there 
were exceptions. Among the most notable and visible of 
these was the j a v a c  compiler (written in Java and used 
to compile Java source code to bytecode), which became 
slower when run with the J IT  on. A typical result (on a 
Pentium II 266 MHz machine, 64M RAM, UnixWare 7) 
in translating a modest source program that  computes 
the palindrome conjecture [22] would be 7.19 seconds 
without the J IT  3 and 8.38 seconds with the JIT,  for a 
16% slowdown. (Times are the sum of the UNIX 'timex 
command user and system time.) 

Since j a v a c  is most developers' first exposure to Java 
performance concerns, this was not the right direction 
to be moving in! Also notably slow was the startup 
time of many graphical applications. Not only does 
such poor response annoy users, but  it can also lead 
to users changing their behavior regarding using the ap- 
plication [11, 21]. Moreover, non-graphical server ap- 
plication startup time can also be important,  especially 
when user-visible application interfaces are down await- 
ing a re-start of their server component. 

Thus a simple selective compilation heuristic was added 
in the SCO JDK 1.1.TB release. If the user set a partic- 
ular environment variable to some positive integer, no 
method would be compiled until it had executed that  
many times. 

This is based on the idea that  you only want to compile 
methods that  are likely to execute a good number of 
times during the execution of the application (so as to 
amortize the cost of compilation), and that  the methods 

3The interpreter used when the J IT  is not  on is implemented 
in t ightly-written assembly language. 

that  are most likely to execute a lot during the whole 
application are those that  have already been executing a 
lot up until "now" in the application. This is a simplified 
view of the heuristic described in [1]. 

As shown in Table 1, by running j a v a c  with the en- 
vironment variable set to 40, the same translation ran 
6.77 seconds, a speedup of 6% over no J IT  and 19% over 
always running the JIT.  

This improvement scheme was limited, however, by not 
being on by default. I t  required users to have to know 
about the feature to make use of it and to have to ex- 
periment by trial-and-error to get a somewhat optimal 
value for the environment variable. So the next step was 
to make selection compilation on by default and more 
adaptable to the characteristics of individual methods. 

Intuitively, one would think that  besides the number of 
times a method has executed so far in the application, 
the other simple heuristic should be the size of a method 
(as measured by the number of bytes of bytecode for 
the method). On average, larger methods should take 
longer to compile than smaller methods, and as a rule 
larger methods should take longer to execute (whether 
compiled or interpreted) than smaller methods. (We will 
show later that  this is not really the case, but still an 
important  factor.) 

As a consequence, for example, you almost certainly do 
not want to compile a small method that  is only go- 
ing to execute once, since the cost of compiling it will 
well exceed the small amount of execution time gained, 
whereas you almost certainly do want to compile a large 
method that  is going to execute many times, since the 
cost of compilation will be more than made up for by the 
larger amount of execution time gained over and over. 
Whether you want to compile a large method that  is 
only going to execute a few times, or whether you want 
to compile a small method that  is going to execute many 
times, is less clear. 

Looking at the boundaries of this decision, there should 
be some point where a method's  size is big enough that  
you want to compile it, even if it will only execute once. 
Similarly, there should be some point where if a method 
executes that  many times you want to compile it, even if 
it is very small. These boundary points are shown in Fig- 
ure I, and are labeled JIT_MIN_SIZE and JIT_MIN_TIMES 
respectively. The slope between these points is the "di- 
viding line" of this decision guidance: to the left, the 
cost of compilation outweighs the benefit and you do 
not want to compile; to the right, the henef t  outweighs 
the cost, and you do want to compile. 
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: JIT MIN SIZE 

compile 

don't comp~ 

i i i \ "  JIT MIN_TIMES i 

number of limes executed 

Figure 1: Selective compilation based on both method 
size and times executed. 

This heuristic is computed when the class is first loaded. 
The J IT  gets control to initialize itself for the whole 
class (but not yet compile any methods). A counter 
field in the method block is set to the number of times 
the method should execute before it is compiled. Each 
time the method executes, the modified JVM interpreter 
decrements this counter; once it reaches zero, the J IT is 
invoked to compile the method. This is similar to one of 
the techniques used by the IBM J IT  compiler [17, 18]. 

Experimentation with a variety of benchmarks and real 
applications has been done to establish what these 
boundary points are. The values of JIT~IN_TIMES=40 
and JIT_NIN._SIZE=150 seem to be best. 4 

4 R e s u l t s  o f  S i m p l e  H e u r i s t i c s  

The performance results in this section show test pro- 
grams being run five ways: with no J IT  at all; with un- 
conditional compilation the first time a method is called; 
with the default scheme combining the number of times 
executed and size of a method as described in the previ- 

4These values can be overridden by environment variables of 
the same name, and sophisticated users can do so if they desire for 
their  specific application. Setting either to zero means compiling 
methods unconditionally, and set t ing either to a huge value means 
only using the other set t ing in deciding when to compile. 

ous section and shown by Figure 1 (JIT~IN_TIHES=40 
and JIT~IN_SIZE=150);  with a heuristic that  only uses 
the number of times executed (JIT~IN_TINES=40) and 
ignores the size of a method; and with a heuristic that  
only uses the size of a method (JIT~IN_SIZE=150) and 
ignores the number of times executed. 

Table 2 shows the results of the SPEC JVM98 bench- 
marks [16]. 5 They are run using Java 2 Standard Edi- 
tion version 1.3.0 on a dual processor Xeon 400 MHz 
system, 512 MB RAM, UnixWare 7.1.1. The bench- 
marks are run with the - s l 0  (medium) size, which is 
sometimes used by researchers to represent short-lived 
applications or the start-up time for longer-lived ones 
[3]. Lower numbers are better. 

The JVM98 results show that  overall, unconditional 
compilation is slightly better than the default heuristic, 
which stands to reason for a benchmark that  repeatedly 
executes the same code. ("Repeated execution of code" 
is not purely a benchmark artifice; it can occur in real, 
long-running applications that  achieve a steady state of 
execution behavior.) The other three options fare poorly 
on one or more of the tests; in the case of the heuristic 
that  ignores the size of a method, it is in methods that  
do no t  repeat a lot tha t  performance is lost. 

To contrast with the effect of repeated execution, Table 
3 shows a reprise of the times for a stand-alone invoca- 
tion of the j avac command (on the same source file as 
used in Table 1 but on a different machine), this time as 
part  of Java 1.3.0 and with all five ways of running it. 6 

The j avac results show that  it is still the case that  un- 
conditional compilation can not only be worse than se- 
lective compilation, but can also be worse than not com- 
piling at all. 7 The heuristic that  doesn't  include size of 
methods and the default heuristic are close together as 
the best options. 

Finally, Table 4 shows the start-up times of two longer- 

5These results are run in batch mode aa par t  of "Research Use". 
They do not follow the official SPEC run or report ing rules and 
should not be t rea ted as official SPEC results. 

6Although javac is one of the benchmarks in SPEC JVM98, 
this  stand-alone use differs because it is a different Sun imple- 
mentat ion,  running on a different source program, and without  
repeated execution. Also, javac is the JVM98 benchmark tha t  for 
some reason shows the most  variat ion in t imings from one run to 
another, while stand-alone j avac  t imings  are much more stable. 

7Actually, for very short-lived programs (e.g. execution of a 
h e l l o  program, or even execution of the pal indrome program for a 
te rminat ing integer such as 187), not compiling at all will produce 
the best t ime of all these options. But optimizing programs tha t  
take less than  a second to execute is not usually a concern on this 
platform. 
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compress 
jess 
db 
javac 
mpegaudio 
mtr t  
jack 

actual javac 

no J IT  
41.66 

7.55 
5.71 
7.34 

39.54 
11.93 
14.51 

(default) [ 
times & size times-only size-only 

always J IT  heuristic heuristic heuristic 
5.69 6.08 33.46 6.87 
2.92 2.97 2.85 5.62 
3.35 3.40 4.78 4.15 
4.37 5.00 4.56 8.65 
5.80 5.83 6.42 12.46 

5.47 
10.14 

5.62 5.48 
9.84 10.07 

11.48 
16.38 

Table 2: SPEC JVM98 results. 

no J IT  
3.07 

always J IT  
3.47 

(default) 
times & size 

heuristic 
2.90 

times-only 
heuristic 

2.88 

size-only 
heuristic 

3.14 

Table 3: Later javac results. 

lived applications. SwingSet2 is a Sun demonstration 
program that  brings up a graphical user interface il- 
lustrating a large number of different Java Swing GUI 
elements. Tarantella ObjectManager is a GUI for the 
administration of the Tarantella application database, s 
In both cases, the time is measured in wall clock seconds 
from program start until the GUI is fully presented. 

This attention to startup time is important  for the psy- 
chological reasons referred to earlier. It is also an area 
ripe for optimization: one investigation found that  on 
average 77% of execution-time Java compilation over- 
head occurs in the initial 10% of program execution [7]. 

These start-up time results again show that  uncondi- 
tional compilation can be a losing strategy, and that  the 
default heuristic and the heuristic that  only uses times 
executed are close together as the best choices. 

So in sum, what do all of these results show? 

• Not using the J IT  at all gives bad performance for 
all repeatedly executed code. 

• Unconditional compilation gives inferior perfor- 
mance for some short-lived applications and for the 
start-up times of longer-lived applications. 

• Picking methods to compile based purely on the 
number of times executed gives bad performance 
for some short-lived applications. 

STarantella is a~ Internet infrastructure product that enables 
web-based access to enterprise applications [20]. Tarantella, Inc. 
used to be part of SCO, Inc. 

Picking methods to compile based purely oll size 
does not work well in any situation. 

The default scheme of combining number of times 
executed with size of method works the best over- 
all; it does not do badly in any of these different 
situations. 

Selective compiling during application start-up does 
mean that  some methods will get compiled later:, dur- 
ing normal application processing. Does this increase 
response time or overall execution time? Experience 
with interactive graphical applications has shown that  
it does not: later compilations are interleaved with user 
pauses. Running the long-lived SPEC JBB2000 bench- 
mark [16] shows no significant difference between uncon- 
ditional compilation and the default heuristic (the latter 
is better by less than 1%; the other two J IT  options are 
worse, and no J IT  at all is much worse). 

Interestingly, some results of the selective compilation 
heuristics were better in early-stage implementations 
that  were part  of Java 1.2.2. This is probably because 
there was more execution-intensive Java code in that  
version of the Java tools and libraries (Sun made many 
performance improvements in the tools and librm:ies in 
Java 1.3.0), which gave more of an opportunity to im- 
prove time with generated code where it was warranted 
and also to save time from not compiling where it was 
not warranted. Nevertheless, the ability to improve per- 
formance of loose Java code is still important  for user- 
written applications, where there will typically be less 
knowledge of how to write tight Java code. 
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SwingSet2 
Tarantella ObjectManager 

no JIT always JIT 
23.6 24.2 
22.7 20.6 

(default) 
times & size 

heuristic 
21.6 
16.7 

times-only 
heuristic 

21.8 
16.3 

size-only 
heuristic 

27.2 
24.8 

Table 4: Start-up time results. 

As a final note, it is not fruitful to compare these results 
with those from other Java JIT compilers or Java virtual 
machines, because overall performance differences often 
derive from completely unrelated characteristics of the 
underlying virtual machine or operating system (such 
as threads and synchronization model, memory model, 
and so forth), and the goal of this work was simply to 
see the effects of selective compilation. 

5 P r o f i l i n g  o f  J I T  B e h a v i o r  

In order to better understand some of the factors that go 
into deciding when to compile methods, and how possi- 
bly the selective compilation heuristics could be further 
refined, the SCO/Caldera JVM and JIT were instru- 
mented to report relevant profiling information. The in- 
tent was to study and process the collected information 
off-line, and not to make use of it as part of execution- 
time decisions about when to compile (which, due to the 
limitations described in this section, was not deemed fea- 
sible). Therefore, the profiling mechanism did not have 
to run fast itself, although it did have to perturb the 
application to the least extent possible. 

First an issue of timing accuracy had to be resolved. 
The Sun JVM uses the Solaris ge thrvt ime()  call to 
get accurate timing information on a per-thread basis. 
There is no equivalent to this call in SCO/Caldera op- 
erating systems. Therefore the JVM timing primitives 
were modified to access the IA-32 (Pentium processors 
and later) RDTSC instruction to get the current clock cy- 
cle count; relative times could be constructed from that, 
once scaled for the machine's processor speed. This pro- 
vides timings with more than sufficient granularity, but 
it counts everything that happens from point A to point 
B, including context switches and time spent in other 
threads, time spent in the operating system, etc. To 
help reduce the effect of this, the measurements made 
in this section were made while running under the classic 
VM's user-space, single-process, non-preemptive "green 
threads" threads implementation mode, rather than un- 
der the usual "native threads" mode. This prevents 

any real concurrency from taking place, and allows most 
method calls to complete without any context switching 
taking place. 

The next step was to record statistics of method calls 
during the lifetime of a program. This was done both for 
the case where every method is being interpreted (JIT 
suppressed) and for the case where every method is be- 
ing compiled. Recorded for every method call during the 
lifetime of the program were: the size of the method, the 
number of times the method is executed, the amount of 
time it took to interpret the method, the amount of 
time it took to compile the method (if and when that 
happened), and the amount of time it took to execute 
the generated code for the method once compiled. This 
profiling was done by starting with the Sun HPROF 
profiler agent, which follows the Java Virtual Machine 
Profiler Interface (JVMPI). It has an ability to do CPU 
time profiling by code instrumentation (rather than sta- 
tistical sampling) [8]. 9 HPROF was then modified to 
implement the JVMPI_EVENT_COMPILED_METHOD_LOAD ac- 
tion, to record how long it takes to compile a method, 
and by modifying the JVMPI_EVENT_METHOD_ENTRY and 
JVMPI_EVENT_METHOD_EXIT actions, to record each 
method's time of execution. (These actions already 
know how to adjust method timings for the time spent 
in called methods and the time spent in garbage collec- 
tion. I°) Since the JVM interpreter and the JIT honor 
the JVMPI, this captures method timings whether the 
JIT is used or not. 

At the end of JVM execution, these times are recorded 
to an external file, which is processed by off-line UNIX 
commands and scripts to produce, for each method used 
in the program, the desired summary data. 

So the first question to ask is, what is the relation- 
ship between the size of a method's bytecodes and the 

9Sta t i s t i ca l  s a m p l i n g  is c l a imed  more  effective in s o m e w h a t  dif- 
ferent contex ts  in [3] and  [18], bu t  for the  purposes  of th is  inves- 
t i ga t ion  was too  coarse. 

l ° I n  pract ice ,  there  were rare  occas ions  where  for unknown  rea- 
sons these  a d j u s t m e n t s  p roduced  nega t ive  t imes ;  these  ins tances  
were ignored.  Also, s o m e t i m e s  the  executed  code t im ings  pro- 
duced  an obvious  ou t l i e r  value for a p a r t i c u l a r  invoca t ion  off a 
me thod ;  these  were ad jus t ed  to  a reasonable  t i m e  based on o ther  
invocat ions .  
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Figure 2: JIT compile t ime as a function of method size. 

amount of t ime it takes the JIT to compile that method? 
Figure 2 plots this, for a run of the j a v a c  application. 
The two axes are in logarithmic scale, to collapse the 
wide range of values recorded. 

This data shows a reasonably linear relationship be- 
tween the size of a method and the amount of t ime 
it takes to compile it. The same graph for other test 
programs, such as SPEC JVM98 or some graphical pro- 
grams, shows a very similar pattern. This is what one 
would expect for a compiler that does not do global op- 
timization, and verifies an assumption made in [10]) ~ 

Next, we look at the relationship between the size of 
a method and the amount of t ime it takes to execute 
it. Again using a run of j avac ,  Figure 3 plots this for 
interpreted execution, and Figure 4 plots it for compiled 
code execution. 

In both cases there does not seem to be much of a rela- 
tionship at all! (As before, a similar pattern shows for 
other applications.) 

Yet the results of the previous section show that over- 
all, a heuristic based on both size and number of t imes 
executed produces better results than a heuristic based 
only on number of times executed. Why would this be? 

lzIt  does not look to be quadratic, as was found in a study of 
preprocessed C compilation t imes  that  was being used as a proxy 
for Java just- in-t ime compilation t imes  in an early paper [13]. 
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The most likely answer is that while large-sized meth- 
ods do not always take a correspondingly large amount 
of time to execute, sometimes they do. If you compile 
a method unnecessarily, the negative benefit is limited 
to the time it takes to compile, which is a fixed amount. 
But if you do not compile a large method that does not 
execute frequently, but does take a long time to execute 
(perhaps because there is a loop inside it that is exe- 
cuted many times), then the negative benefit becomes 
huge and is almost unlimited. In other words, the op- 
portunity cost of the compilation decision is bounded 
in one direction but effectively unbounded in the other 
direction. Thus a selective compilation heuristic that 
takes method size into account will be more effective 
than one that does not. 

6 M o r e  C o m p l i c a t e d  H e u r i s t i c s  

It is shown in [3] that predicting which methods to opti- 
mize is much harder for short-running applications than 
for longer-running applications. Accordingly, a variety 
of more complicated heuristics were tried in an attempt 
to make better predications. 

6.1 T h e  " j i t  w h e n  called by jitted" heuris- 
tic 

One idea is that once we have decided to compile 
a method X, to then also immediately compile every 
method that X calls. The theory is that this will take 
advantage of locality of reference, in the sense that if 
method X is getting used a lot, it is likely that the meth- 
ods Y, Z, etc. that X calls will get used a lot too. Thus 
we compile Y and Z right away and do not wait for 
them to reach the point at which they would normally 
be compiled (thereby saving the excess time that they 
would be interpreted). 

However, measurements of this scheme show that it 
makes things worse, not better. The Tarantella Object- 
Manager is 20% slower to start up, the SwingSet2 demo 
is 21% slower to start up, and javac is 3% slower to run. 
No tests run faster with it. This suggests that this kind 
of "locality of reference" does not really exist. 

6.2 The  "Square decision" heuristic 

Another idea is to change the shape of the when-to- 
compile decision. Instead of interpolating a sloped line 

Figure 5: An alternative selective compilation heuristic 
(not used). 

between the JIT.YIIN_TIMES and JIT_/tlN._SIZE points, 
as was shown in Figure 1, the decision could be either- 
or: if a method exceeds the minimum size or (eventu- 
ally) the minimum number of times to be executed, it is 
compiled, otherwise it stays interpreted. The shape of 
the graph would be a right angle, not a sloping line; see 
Figure 5. 

Measurements of this scheme against the default scheme 
generally showed only slight variations on the SPEC 
JVM98 benchmarks (=t: 1% or less, within the margin of 
error), and it was 3% worse on Tarantella ObjectMan- 
ager startup. Since intuitively this scheme is less flexible 
than the default scheme, it was not further explored. 

6.3 The "Backward branches" heuristic 

Another idea is to try to identify backward branches 
in methods, assuming that they are representative of 
loops and likely hot spots in the code. Once identified, 
the method would be compiled immediately, or at least 
sooner than it would be otherwise. This heuristic is used 
in the IBM JIT compiler [17]. 

However, implementing the heuristic in the 
SCO/Caldera JIT proved difficult. The bytecode 
could be scanned during the class loading and verifi- 
cation phase, but given the internal structure of the 
classic VM there was no good way to pass the result 
to the JIT. Also, such a scan would potentially flag 
backward branches in sections of code that rarely or 
never execute. 

So instead, backward branches were looked for during 
actual interpretation of the method. As it happens, this 
check is difficult and expensive to do in the optimized, 
assembly language version of the classic VM interpreter. 
Therefore, it was first prototyped in the C language ver- 
sion of the interpreter, which is used when the j ava_g 
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debugging version of the JVM command is run. Once a 
backward branch is detected in a method, the method 
is compiled the next time it is called. 

Measurements of this scheme against the default scheme 
for the SPEC JVM98 benchmarks showed that  the best 
times of each were very close. However, there was more 
variability from run to run in these times, possibly be- 
cause the larger code of the C interpreter was subject 
to more cache effects, and the slower default times were 
worse than the slower backward-branch times. Never- 
theless, given that  compiled code had more than the 
usual advantage over interpreted code in this case, the 
lack of consistently superior results for the backward 
branch scheme was not encouraging, and the scheme was 
not further pursued. (The scheme might have proven 
beneficial with some more effort put  into it.) 

6.4 T h e  "Core classes k n o w n  to  compile" 
heurist ic  

The final idea, and the one of these that  was most 
explored, is to take advantage of the off-line profiling 
data captured by the procedures described in the pre- 
vious section. Then, decisions on whether to compile a 
method immediately can be made at the beginning of 
application execution, based on whether it is "known" 
that  the method will reach its "crossover point" [13] 
where compilation is sure to be beneficial. For exam- 
ple, assume that  our profiling data  indicates that  for 
a given application or application mix, method X will 
execute on average 100 times, and on average it takes 
that  method 40 microseconds to execute interpretively 
and 15 microseconds to execute as generated code (thus 
2500 microseconds less overall for generated code), and 
that  it takes on average 600 microseconds to compile the 
method. Compilation is clearly advantageous, and can 
be done the first time the method is called, without hav- 
ing to wait for it to execute a certain minimum number 
of times. 

This approach could be taken for all methods in an ap- 
plication, but doing so would require a somewhat in- 
trusive, user-visible feedback loop between execution, 
off-line processing, and subsequent execution. One of 
the best things about Java optimization is that  it usu- 
ally takes place in a completely transparent way to the 
user. Thus, this approach was restricted to just pro- 
filing Java 2 Standard Edition core library classes that  
are used heavily across all applications, meaning those 
in the j a v a . * ,  j a v a x . * ,  sun.* ,  and cora.sun.* pack- 
ages. Since Java applications spend a lot of time in the 
core libraries, this seems a good target for optimization. 

Off-line UNIX scripts processed the profiling intorma- 
tion for a given application run and selected those meth- 
ods that  were "wins." This information was reformatted 
into a file that  was opened and read at J IT  initialization. 
Method names fully qualified by package and class are 
often the same for many initial characters, so a length- 
segmented list [23] was used as the internal representa- 
tion, allowing quick look-up. Methods in the list were 
compiled the first time they were executed. Methods not 
in the list were treated per the normal default heuristic 
(deciding n e v e r  to compile methods not in the list would 
be unwise, as they might execute more frequently than 
expected within any particular application). 

Results with this approach were mixed. In the case of 
the Java 1.3.0 j avac command, compilation of the usual 
source was 9% faster using this approach. (With j avac, 
all of the application was subject to this treatment, since 
the compiler implementation is within the com. sun. * 
namespace.) 

In the case of the SPEC JVM98 benchmarks, results 
with this approach were generally slightly better, but 
by less than 2%, which is within the margin for error for 
these measurements. 

For the SwingSet2 demo and Tarantella ObjectManager 
start-up times, there was no real measurable improve- 
ment32 (As an additional experiment, profiling and 
selecting all application methods, not just core library 
methods, produced a 3% improvement for the Taran- 
tella ObjectManager. This was at the outside margin of 
error for the measurement.) 

Why was this approach not more successful? One rea- 
son is the collected difficulties in producing fine-grained 
profiling and timing information for the classic VM. 
While the generalized J IT  performance characteristics 
as shown in Figures 2 through 4 are accurate, for any 
individual method the data  may be a bit unreliable, thus 
undermining the calculation of methods that  are known 
to be wins to compile. One lesson of this work is that  
an accurate profiling has to be designed into a Java VM, 
not tacked on afterwards! 

But the major reason may just be that  there is only 
so much improvement that  can be gained by selective 
compilation heuristics in the classic VM model. After 
all, selective compilation by itself does not improve the 

1 2 j a v a c  was  r u n  w i t h  a " w i n s "  list f r o m  i ts  own  prof i l ing .  T h e  
o t h e r  p r o g r a m s  were  r u n  u s i n g  t h e  " w i n s "  l ist  f r o m  T a r a n t e l l a  
O b j e c t m a n a g e r  prof i l ing ,  w h i c h  w a s  d e e m e d  the  m o s t  t yp i ca l  o f  
these p r o g r a m s .  T h i s  w o r k  d id  n o t  get  t o  t h e  q u e s t i o n  of  h o w  bes t  
to  m e r g e  these  l is ts  to  p r o d u c e  one  t o  use  for  all  a p p l i c a t i o n s .  
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quality of the generated code, nor does it affect any of 
the other performance-sensitive areas of the VM. After 
the initial gains brought about by the simple heuristic 
combining method times and size is realized, trying to 
get additional gains becomes something like trying to 
draw water from a stone. 

7 R e l a t e d  W o r k  

Selective compilation heuristics have been used in a va- 
riety of JIT compiler contexts. 

The IBM JIT compiler [17, 18] uses a system based on 
the number of times a method executes, modified by de- 
tection of loops. An HP ,lIT for embedded systems [10] 
uses an arbitrary (but configurable) "minimum times" 
of 2 before compiling. Krintz and Calder use the met- 
ric, found by experiment, that the 25% most frequently 
executed methods must be compiled to produce opti- 
mum performance, and then use profiling data to iden- 
tify those 25% with off-line annotations [7]. The LaTTe 
JIT did not initially do any selective compilation, but 
in later work added one based on the number of times 
a method executes [24]. 

In recent times, JVM optimization has tended towards 
more ambitious, dynamic, mixed-mode and adaptive 
schemes, such as Sun's HotSpot [12], IBM's Jalapefio 
[1], and Intel's Open Runtime Platform [6, 7]. Selective 
compilation still plays a role in these JVMs [2], but of- 
ten based on live profiling, and with a wider choice of 
compilers and optimization levels to be invoked. 

ther one individually, to compiling unconditionally, and 
to not using the JIT at all. 

Profiling investigations produced some counter-intuitive 
results (correlation between method size and execution 
time is very weak but still necessary to account for). 
More complicated selection strategies prototyped either 
failed to produce useful performance improvements or 
produced only modest and inconsistent gains. 

Although more sophisticated performance schemes are 
now used by leading-edge Java virtual machines, these 
results still have relevance. There are platforms where 
adoption of one of the newer virtual machine technolo- 
gies is impractical, either for business reasons or due to 
a variety of technical obstacles. For example, the clas- 
sic VM's "green threads" implementation option can be 
used on platforms which do not provide any threads sup- 
port, such as the SCO OpenServer 5 operating system, 
whereas most newer VM implementations reply upon 
the underlying platform providing support for a "native 
threads" implementation. 

In such cases, the selective compilation scheme described 
here has some distinct advantages. While not com- 
pletely straightforward to implement, it is not large is 
size (only about 1% of the sunwjit source was modified 
or added to, and less than 100 source lines were modified 
in the classic VM proper). It treats the rest of the JIT 
as a black box, and thus embodies lower risk than, say, 
trying to modify the JIT's code generator to produce 
more optimized code. For a system vendor such as SCO 
or Caldera, this kind of performance enhancement work 
provides a good return for the amount of engineering 
time invested. 

8 C o n c l u s i o n s  9 A c k n o w l e d g m e n t s  

The work described here shows how adding simple, 
transparent selective compilation heuristics to an exist- 
ing classical Java JIT compiler can significantly improve 
its performance for short- and medium-lived applica- 
tions and for start-up time in longer-lived applications. 

The strategy used based the decision to compile a 
method on how many times the method has executed 
so far (a heuristic for how many times the method will 
execute for the rest of the application), and on the size 
of the method (a heuristic for how long it will take to 
both compile and execute the method). Results show 
this combined decision strategy is superior to using ei- 

Dries Buytaert, Elaine Siegel, and Mike Davidson con- 
tributed useful comments on this paper. 
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