
A Survey of Distributed
Garbage Collection

Techniques

BROADCAST

David Plainfossé, Marc Shapiro

Distributed GC Survey -- p. 2© Marc Shapiro 1995

- 1 -
INTRODUCTION

Example: database query
References in distributed systems and GC

State of the art: extensions of centralized algorithms, hybrid
algorithms, distributed shared store algorithms

Definitions

Distributed GC Survey -- p. 3© Marc Shapiro 1995

Example : database query

Query returns reference to view
Use reference in future queries
Pass to other clients

• Keep how long?
• Pass to other clients?
• What happens when

clients finish?

Persistence By Reachability

view

client

Distributed GC Survey -- p. 4© Marc Shapiro 1995

References in distributed systems
Sound

• Referential integrity
Efficient, large scale

• Avoid layering
• Avoid extra messages,

synchronization, etc.
• At odds with complete GC

Usable
• Tolerate faults
• Sharing, caching,

replication, etc.
GC difficult, new

Distributed GC Survey -- p. 5© Marc Shapiro 1995

Definitions

References: directed graph between objects
Root: distinguished uncollectable object

Reachable object: ∃ reference path from root
Mutator: application code, modifies graph

• create objects
• assign references
• cause objects to become unreachable:

garbage
Collector: garbage collection system

• detects unreachable objects
• reclaims space

Distributed GC Survey -- p. 6© Marc Shapiro 1995

Garbage collection

Tracing algorithm:
Walk graph from root

Objects not visited are garbage
Global: doesn't scale

Garbage = unreachable from root
Global, stable property

Counting algorithm:

Count handles to object

Local: incomplete (cycles)

v w

uroot
x

z

t
y

Distributed GC Survey -- p. 7© Marc Shapiro 1995

State of the Art (1)
Centralized algorithms

Centralized GC:
• counting: incomplete
• tracing: in-place or

compacting

Multiprocessor tracing:
• global termination
• consistent memory
• barrier: mutator-collector

synchronization

Distributed GC Survey -- p. 8© Marc Shapiro 1995

State of the Art (2)
Extensions of centralized algorithms

General algorithms:
• snapshop
• causal ordering
• transaction

Correctness guaranteed
Too strong

Distributed GC:
• Counting: scales,

incomplete, non-FT
• Ladin & Liskov:

centralized
• Hughes: periodic

termination

Distributed GC Survey -- p. 9© Marc Shapiro 1995

State of the Art (3)
Hybrid algorithms

Lang-Queinnec-Piquer:

Trace groups ⇒ more
complete

Dynamic groups
Very complex, high cost

Per-space tracing +
inter-space counting:
• scalable (independent)
• ¬ complete

SGP algorithm + SSP Chains:
• fault-tolerant
• performance
• scalable
Broadcast

Distributed GC Survey -- p. 10© Marc Shapiro 1995

State of the Art (4)
Distributed Shared Store

Shared store ⇒ caching + replication
DSM: worst-case model
Communication, consistency:

high cost
Larchant

• tolerates inconsistency
• replicated tracing in cache
Broadcast

Distributed GC Survey -- p. 11© Marc Shapiro 1995

- 2 -
COUNTING

ALGORITHMS

Naïve distributed reference counting
Weighted Reference Counting (WRC)

Distributed GC Survey -- p. 12© Marc Shapiro 1995

Reference counting

Create object:
• counter := 1
• return reference

Duplicate reference:
• counter += 1

Delete reference:
• counter –= 1
• if counter == 0 then reclaim

Invariant: count == #refs
Continuous; cost
Cycles of garbage are not

reclaimed

Local: scales easily

v w

uroot
x

z

t
y

1 2

2→ 1

1

1

1→0

Distributed GC Survey -- p. 13© Marc Shapiro 1995

Problems of naïve distributed RC

w

u
t

2. increment

1. duplicate
@w

3. decrement

Costly
Doesn't tolerate message faults

loss; out-of-order
Strong invariant

Distributed GC Survey -- p. 14© Marc Shapiro 1995

Weighted Reference Count

y
4

Invariant : ∑ ac = tc

Increment distributed ➠
message order
unimportant

Reliable messages:
strong invariant

Incomplete

total credity
16

20

y

allocated
credit

Distributed GC Survey -- p. 15© Marc Shapiro 1995

WRC create

total credit

y
32

32

y
allocated

credit

Initial credit: a power of 2
Allocated credit: exponent only

Total credit: number

Distributed GC Survey -- p. 16© Marc Shapiro 1995

WRC duplicate

y
16

duplicate
(@y,16)

y
16 32

32

y

Pass on half of allocated credit
(subtract 1 from exponent)

Application message only; reliable
No communication with target

Distributed GC Survey -- p. 17© Marc Shapiro 1995

WRC delete

y
4

total credit

32 28

y

delete (4)

Reliable message to target
Subtract allocated credit from total credit

If goes to 0, deallocate

allocated
credit

. ..

. ..

. ..

Distributed GC Survey -- p. 18© Marc Shapiro 1995

- 3 -
TRACING

ALGORITHMS

Naïve distributed Mark and sweep
Hughes

Ladin & Liskov

Distributed GC Survey -- p. 19© Marc Shapiro 1995

Mark and sweep

v w

uroot
x

z

t
y

Collector:
1. mark: walk from root
2. sweep (linear scan): if

not marked, reclaim

Complete
Beneficial side effects

Distributed GC Survey -- p. 20© Marc Shapiro 1995

Naïve distributed M&S

Fault tolerance: abort
& restart

2 global barriers:
won't scale

RB

t
z

y

1. Mark in parallel
Remote: propagate

to target site
2. Sweep in parallel

RA x
mark (y)

Distributed GC Survey -- p. 21© Marc Shapiro 1995

Hughes' algorithm (1)

Global clock

Reachable ⇒ timestamp
increases

Timestamp < global minimum
⇒ unreachable (sweep)

Gobal minimum: global
algorithm

Effect: multiple parallel M&Ss

Local GC: repeat:
• timestamp root with

current time
• propagate copy father's

timestamp to son
• higher timestamp takes

precedence
Sweep in parallel: repeat:

• if timestamp<minimum
then reclaim

Distributed GC Survey -- p. 22© Marc Shapiro 1995

Hughes' algorithm (2)

RA
RB 85

70

100

z

x

ut

y

B40 mark: z:=40
B50 destroy RB →
A70 mark: y:=70

t:=40

B85 mark. z:=40
100 global min=70
A115 sweep: reclaim a

70

40

40

Distributed GC Survey -- p. 23© Marc Shapiro 1995

Ladin & Liskov algorithm (1)

Trace from

local root ∪ {in-refs}

Send paths to service
Central service simulates

(approximate) graph, traces,
tells spaces of unreachability

Distributed GC Survey -- p. 24© Marc Shapiro 1995

Ladin & Liskov algorithm (2)
Tolerate relativistic effects:

• timestamps
• conservative

Tolerate incomplete information:
• conservative ➠
• completeness ➠ Hughes'

within service: no global termination
Tolerate failures:

• reliable messages
• stable store
• replicate service

Distributed GC Survey -- p. 25© Marc Shapiro 1995

- 4 -
HYBRID

ALGORITHMS

Hybrid: trace + count
Lang, Queinnec, Piquer

SSP Chains + SGP: fault tolerance, races

Distributed GC Survey -- p. 26© Marc Shapiro 1995

Hybrid algorithms

Within space: trace
• complete
• fault tolerant

At space boundary:
reference count
• scale

Issues:
• fault tolerance
• relativistic effect
• garbage cycles

Distributed GC Survey -- p. 27© Marc Shapiro 1995

Hybrid: (1) trace within each space

v w

u
B

x

t

CA

y

Local GC: per-space GC (SGC)
• Roots = local root ∪ {scions}
• Trace independently of other spaces

No synchronization

z

scionstub

Distributed GC Survey -- p. 28© Marc Shapiro 1995

Hybrid: (2) count between spaces

v w

u
B

x

z t<

CA

y

Export reference: scion++
user message

Stub unreachable: scion––
control message

Garbage cycles not collected

dup(@y)

del(t)

Distributed GC Survey -- p. 29© Marc Shapiro 1995

Lang, Queinnec, Piquer: garbage cycles

z

ux
RA

y

w

Form group dynamically
Christopher's algorithm
Disband: restore RCs

Chistopher:
• M&S from scions at group

boundary
• temporarily adjust RCs of

scions reached
• if internal scion has

non-zero RC, reclaim

Distributed GC Survey -- p. 30© Marc Shapiro 1995

Lang, Queinnec, Piquer: properties

Global synchronization: ¬scale
• create group
• terminate mark phase
• terminate sweep, disband

Reclaim garbage cycles
• within group
• all cycles: hierarchy of groups

Concurrent groups, M&Ss: extra complexity

Distributed GC Survey -- p. 31© Marc Shapiro 1995

SSP Chains & SGP Algorithm

 z

@x

z

y
x

R R

R

Within space: trace
Between spaces:

fault-tolerant RC

Reference listing
Send: create scion
Receive: create stub
Invoke: shortcut
Optimizations

Distributed GC Survey -- p. 32© Marc Shapiro 1995

Fault tolerance

Issues:
• mutator message lost

• control message lost

• message races

• crash

Safe inconsistencies allowed
• duplicate reference:

local, conservative
• live message:

idempotent, sent multiple
times

• timestamps

• recovery protocol

Distributed GC Survey -- p. 33© Marc Shapiro 1995

Crashes and recovery
C

x

y

RA

A DB

C crashes:
• recovers: wait

only directly involved objects uncollectable
• terminates: mend chains, collect

Distributed GC Survey -- p. 34© Marc Shapiro 1995

Create/delete race (1)

No global ordering: race
between create and delete
message

1. x reachable from A, B
2. (Picture)

A sends @x to B (again)
B deletes @x, sends del(x)

3. B receives @x, creates stub
without scion!

RBRA

x

@xdel(x)

Distributed GC Survey -- p. 35© Marc Shapiro 1995

Create/delete race (2)

The problem: no record of
past, causality

Solutions:
• causal protocol (complex)
• atomic protocol (costly)
• reference counts (not

fault tolerant)
• detect race

➠ timestamp

BA

x

@xdel(x)

Distributed GC Survey -- p. 36© Marc Shapiro 1995

Using timestamps to avoid races

10050 Local timestamps
Scions, messages, stubs, delete:

timestamped by sender of
reference

Conservative:
• remove scion only if no

message in transit
• drop message possibly

creating stub with no
scion

B

80
100

A

x

@x,70
del(x)

del(x)
thrshld[B]:=80

@x,100

@x,100

80

Distributed GC Survey -- p. 37© Marc Shapiro 1995

- 5 -
COLLECTING

A DISTRIBUTED
SHARED STORE

Limitations of classical model
Persistence By Reachability

Issues: consistency, scale, cost
Larchant

Distributed GC Survey -- p. 38© Marc Shapiro 1995

Limitations of classical
distributed system model

Classical system model:
communication by messages

• No shared memory
• No replication
• No persistence
• No caching
• No groups

Unlike advanced systems

Distributed GC Survey -- p. 39© Marc Shapiro 1995

Persistence By Reachability ⇒
tracing GC

Long-term sharing: persistent data
A points to B:

A persistent ⇒ B persistent
Trace from persistent root
Multiple roots, garbage cycles: reference

counting not adequate
Other benefits: locality, correctness,

programmer productivity

Distributed GC Survey -- p. 40© Marc Shapiro 1995

GC issues in a shared persistent store

Scale
➠

Cost of I/O prohibitive
➠

Most objects live
➠

Mutator performance
➠

Replication, caching
not coherent

Complete GC not primary objective

Distributed GC Survey -- p. 41© Marc Shapiro 1995

GC consistency: easier than general
consistency

Mutator:
• duplicate

Collector:
• create
• delete
• scan
• move, patch

References mutually independent
Not all interleavings unsafe

When in doubt, add to root (⇔ don't collect)

⇒ completeness problem

Coherence:
• propagate
• ownership

Distributed GC Survey -- p. 42© Marc Shapiro 1995

Larchant

b

site cache
server

a c

c

c

d

de

C/C++
Pointers
Single object universe
Reachability from
Persistent Root

Incoherent memory

PR

a b

c d

a b

collectorsite cache
server

collector

Distributed GC Survey -- p. 43© Marc Shapiro 1995

Larchant GC: main ideas

• Partial, local group collections

• Dynamic, opportunistic groups

• GC uses cached data and locks

• Checked-out and unmapped
clusters not collected

• Non-coherent: union

Trace from persistent root
No global synchronization
Copying collector
Avoid I/O, messages,

competing with application

Distributed GC Survey -- p. 44© Marc Shapiro 1995

Collecting a single copy of a
single cluster

scions

stubs

GC:
• trace from scions
• create new stubs

Correctness: trivial
Conservative w.r.t. other

clusters: incomplete w.r.t.
dead cycles across clusters

No concurrent updates: no read
or write barrier

Create not noticed until GC
Client writes: abort GC

Distributed GC Survey -- p. 45© Marc Shapiro 1995

Collecting a group of
clusters at a single site

Complete w.r.t. clusters in the
group

Conservative w.r.t. clusters
not in the group

Locality-based heuristics
➔ segregate data sets:
• scan cached clusters
• exclude checked out

clusters

group
scions

group
stubs

Distributed GC Survey -- p. 46© Marc Shapiro 1995

GC of a replicated cluster

x:= 0; GC
y

A

x

y

A

x

A

x

Which message
arrives first?

S2

S3

S1
<y:= x>;
GC

C2

C3

C1 C1

?

delete (C1, A)

create (C2, A)

Distributed GC Survey -- p. 47© Marc Shapiro 1995

Distributed store GC
safety rules

x points to A:
• in most recent version of x
• in incoherent version of x

Union rule: y live if reachable in any
current version of x

Promptness rule: send creates
before deletes

Causal delivery rule: creates and
deletes delivered in causal order
w.r.t. union messages

Distributed GC Survey -- p. 48© Marc Shapiro 1995

Asynchronous implementation of
GC safety rules

S2

S3

S1
update

replicate
C1

delete

union

create

GC unionunion

GC

GCx:= 0

Union rule

Causal delivery rule

y:= x

Distributed GC Survey -- p. 49© Marc Shapiro 1995

- 6 -
CONCLUSIONS

Distributed GC: important practical &
theoretical problem

Issues: consistency, asynchrony, fault
tolerance, new performance issues

Safety: do not collect ⇒
completeness problem

SSPC:

• fault-tolerance ⇒ recovery
• cycles not solved

Larchant: partial collection ⇒
heuristics

