
Garbage Collection: Java Application Servers’

Achilles Heel

Feng Xian, Witawas Srisa-an, and Hong Jiang

Computer Science and Engineering

University of Nebraska-Lincoln

256 Avery Hall

Lincoln, Nebraska, USA, 68588-0115

Abstract

Java application servers are gaining popularity as a way for businesses to conduct
day-to-day operations. While strong emphasis has been placed on how to obtain
peak performance, only a few research efforts have focused on these servers’ ability
to sustain top performance in spite of the ever-changing demands from users. As a
preliminary study, we conducted an experiment to observe the throughput degra-
dation behavior of a widely-used Java application server running a standardized
benchmark and found that throughput performance degrades ungracefully. Thus,
the goal of this work is three-fold: (i) to identify the primary factors that cause
poor throughput degradation, (ii) to investigate how these factors affect throughput
degradation, and (iii) to observe how changes in algorithms and policies governing
these factors affect throughput degradation.

Key words: Application servers, throughput degradation, garbage collection,
performance analysis

1 Introduction

Web applications have recently become a method of choice for businesses to
provide services and gain visibility in the global marketplace. For example,
eBay has over 180 million users worldwide. In addition, the advent of a suite
of Web applications from Google 1 also propels the sophistication of Web

Email address: {fxian,witty,jiang}@cse.unl.edu (Feng Xian, Witawas
Srisa-an, and Hong Jiang).
1 These applications include office productivity, graphics, and maps (see
www.google.com).

Preprint submitted to Science of Computer Programming 11 September 2007

services and applications to a new height. The enabling software that allows
applications to be served through the Web is referred to as application servers.
Industry observers expect applications servers to generate revenue of about $6
billion by the year 2010[1].

Two of the most adopted application server technologies are based on Java
and .NET, which occupy about 70% of application servers market share (40%
for Java and 30% for .NET) [2]. The major reason for such popularity is
due to the rich set of libraries and features provided by these technologies,
which promotes quick development and short time-to-market. On average,
such technologies often reduce the code size and development cycle by 50%
when compared to older technologies such as CGI written in C/C++[3].

Application servers often face significant variations in service demands —
the higher demands often coincide with “the times when the service has the
most value” [4]. Thus, these servers are expected to maintain responsiveness,
robustness, and availability regardless of the changing demands. However, the
current generation of application servers is not well equipped to meet such
expectations, as they often fail under heavy workload. For example, on the
day that Apple announced the release of its Video Ipod, the Apple store
site was down for over one hour due to heavy traffic [5]. In addition, these
servers are susceptible to Distributed Denial of Service (DDoS) attacks. One
notable example is when a group of Korean high school students launched a
DDoS attack on a university’s website to prevent other students from applying
[6]. While application server technologies continue to be widely adopted, the
knowledge of why these servers fail and how to prevent them from failing is
still elusive.

1.1 This Work

To date, very little research has been conducted on the throughput degradation
behavior of Java application servers [7,8]. Specifically, very little information
is known about the system’s behavior under stress. We have conducted ex-
periments and found that a relatively small change in client’s requests (20%
increase) can cause throughput to drop by as much as 75%. This paper reports
the results of our extensive study to investigate the reasons behind such a poor
throughput degradation behavior of Java application servers. There are three
major contributions resulting from our work.

(1) Identify the primary factors that cause poor throughput degradation.
(2) Investigate the effects of these factors on throughput.
(3) Observe how changes of algorithms and policies utilized in these factors

affect throughput degradation.

2

The remainder of this paper is organized as follows. Section 2 briefly describes
pertinent background concepts related to this work. Section 3 details our ex-
periments to identify opportunities for improvement. Section 4 details our
experimentation plan. Sections 5 and 6 report the results and discuss possi-
ble improvements. Section 7 highlights related work. Section 8 concludes the
paper.

2 Background

2.1 Garbage Collection Overview

One of the most useful language features of modern object-oriented program-
ming languages is garbage collection (GC). GC improves programming produc-
tivity by reducing errors resulting from explicit memory management. More-
over, GC underpins sound software engineering principles of abstraction and
modularity. GC leads to cleaner code since memory management concerns
are no longer cluttered with the programming logic [9,10]. For our purpose,
we summarize three garbage collection schemes that are related to this pa-
per: mark-sweep, generational, and reference counting. Refer to [10,11] for a
comprehensive summary of each garbage collection algorithm.

Mark and sweep collection [12] consists of two phases: marking and sweep-
ing. In the marking phase, the collector traverses the heap and marks each of
the reachable objects as live. The traversal usually starts from a set of roots
(e.g. program stacks, statically allocated memory, and registers) and results
in a transitive closure over the set of live objects. In the sweeping phase, the
memory is exhaustively examined to find all the unmarked (garbage) objects
and the collector “sweeps” their space by linking them into a free list. After
sweeping, the heap can be compacted to reduce fragmentation.

Generational garbage collection [10,13] segregates objects into “genera-
tions” using age as the criterion. The generational collection exploits the fact
that objects have different lifetime characteristics; some objects have a short
lifespan while others live for a long time. As far as distribution, studies have
shown that “most objects die young” (referred to as the weak generational
hypothesis [13,10]). Thus, the main motivation is to frequently collect the
youngest generation, which is only a small portion of the heap. Collection in
the young generation is referred to as minor and collection of the entire heap
is referred to as major or full. Since most of the generational collectors are
copying-based (refer to [10] for more information), small volumes of surviving
objects translate to short garbage collection pauses because there are fewer
number of objects to traverse and copy.

3

Reference counting (RC) [14] records the number of references to an object
in its reference count field (often resides in the object’s header [15,10]). The
counter is initialized to zero when the object is allocated. Each time a pointer
to that object is copied, the reference count is incremented, and each time a
pointer to that object is removed, the reference count is decremented. When
the reference count reaches zero, the object is reclaimed. This approach suffers
from the inability to reclaim cyclic structures. Each structure is purely self-
referential, which represents memory space that cannot be reclaimed during
program execution. Because of this limitation, reference counting is generally
accompanied by a back-up tracing collector [10] or a complex algorithm to
break up and detect the cyclic structures [16,17].

2.2 Merlin Algorithm

To explore the design and evaluation of GC algorithms quickly, researchers
often use trace-driven simulation. The most accurate way is the brute force
method, which generates “perfect traces” by invoking whole-heap GC at every
potential GC point in the program (e.g. after each allocation request). But this
process is prohibitively expensive, and thus, granulated traces resulting from
invoking the garbage collector periodically are used instead. Unfortunately, a
study by Hertz et al. [18] reports that different granularities in GC invocations
can produce significantly different results.

To address the efficiency problems of the brute force method and the accuracy
problems of the granulated traces, Hertz et al. [18] propose the Merlin trace
generation algorithm. The Merlin algorithm records the timestamp of each live
object and later uses the timestamps to reconstruct the time at which the ob-
ject died. Because it uses timestamps rather than collections to identify time
of death, the new algorithm does not require frequent collections. Rather, it
makes use of normal collections to identify which objects have died and then
uses timestamps to identify when they died. Ordering the dead objects from
the latest time-stamp to the earliest, the algorithm works from the current
time backwards. Therefore, it can determine when each object was last known
to be alive, saving further analysis of the object. By avoiding frequent collec-
tions, the Merlin algorithm can make perfect tracing efficient and alleviate the
need for granulated tracing. The Merlin algorithm is used to generate lifetime
information in our experiments.

2.3 Vertical Profiling

An investigation by Hauswirth et al. [19] discovers that it has become more
difficult to understand the performance of modern object-oriented systems.

4

Thus, they propose virtical profiling, a performance analysis technique that
examines multiple execution layers and identifies which layer is the major
factor affecting the overall performance. Their technique profiles the following
layers:

• Architecture: performance monitoring and cache management components
• Operating system: virtual memory management component
• Java virtual machine (JVM): dynamic compilation and dynamic memory

management components
• Application: throughput performance

Our work adopts their proposed technique to understand the performance of
Java application servers. While we do not capture any information from the
architecture level, we utilize information from the operating system, Java vir-
tual machine, and application layers generated by our experimental platform
to analyze the overall performance.

3 Motivation

A study by Welsh et al. [4] reports three important trends that magnify the
challenges facing Web-based applications. First, services are becoming more
complex with widespread adoption of dynamic contents in place of static con-
tents. Second, the service logics “tend to change rapidly”. Thus, the complexity
of development and deployment increases. Third, these services are deployed
on general-purpose systems and thus are not “carefully engineered systems for
a particular service” [4]. Such trends are now a common practice. Complex
services including entire suites of business applications are now deployed using
Web application servers running commodity processors and open-source soft-
ware. With this in mind, we conducted an experiment to observe the degrada-
tion behavior of Java application servers on an experimental platform similar
to the current common practice (i.e. using Linux on X86 system with MySQL
database and JBoss application server). For detailed information on the ex-
perimental setup, refer to section 4.2.

3.1 Benchmarks Comparison

Over the past ten years, numerous studies have been conducted to evalu-
ate the performance of Java runtime environment. The evaluations are done
at key runtime systems including interpretation [20], dynamic compilation
[21,22,23], memory management [23,24,25,26,27,15,28,29,30], and synchroniza-
tion [23,8,31]. However, such research efforts are often conducted using bench-

5

mark programs that are not representative of server workloads. To illustrate
this claim, we compare the basic characteristics of jvm98, a commonly used
benchmark suite from SPEC [32], with jAppServer2004, a standardized appli-
cation server benchmark from SPEC [33], in Figure 3.1.

Characteristic jvm98 jAppServer2004

(Transaction Rate = 100)

of Threads 2 2600+

of Objects 17 million 209 million

Allocated Space 500 MB 15 GB

Execution Time seconds hours

Fig. 1. Comparing basic characteristic of jvm98 to that of jAppServer2004

In most instances, the jvm98 benchmark programs are not multi-threaded
(mtrt is the only multi-threaded application). They create about 17 million
objects at most, and require as little as a few megabytes of heap space to
operate. These applications also complete their execution in tens of seconds.
On the other hand, jAppServer2004 utilizes hundreds to thousands of threads.
Multiple gigabytes of heap space are often needed. The benchmark also takes
as long as a few hours to complete, which loosely emulates the behavior of
long-running servers. With such drastic differences, it is quite possible that
the lessons learned over the past decades may not be fully applicable to server
environments.

3.2 Experimental Methodology

Initially, our experiments were conducted using the smallest amount of work-
load allowed by jAppServer2004. We set the maximum heap size to be twice
as large as the physical memory — 4 GB heap with 2 GB of physical memory
in this case. We chose this setting to emulate application servers facing un-
expected heavy demands, which can drive up the memory requirement. Also
note that our adopted Java virtual machine, HotSpot from Sun Microsystems
[34], only commits a small amount of memory at the beginning and gradually
commits more memory as the demand increases. We monitored the through-
put delivered by the system. We then gradually increased the workload until
the system refused to service any requests.

For comparison, we also conducted another experiment to observe the degra-
dation behavior of the Apache Web server (we used the same computer sys-
tem and web2005, a benchmark from SPEC [35] to create requests). Since
the two benchmarks report different throughput metrics (jobs per second for

6

N
o
rm

a
liz

e
d
 P

e
rf

o
rm

a
n
c
e
 (

%
)

Normalized Workload (%)

Fig. 2. Throughput degradation behaviors of JBoss and Apache

jAppServer2004 and connections per second for web2005), we normalized the
throughput and the workload to percentage. That is, we considered the maxi-
mum throughput delivered by a system during an execution as 100% (referred
to as t) and the maximum workload when a system completely refuses re-
quests as 100% (referred to as w). The degradation rate (referred to as d) is
d = ∆t

∆w
.

3.3 Results and Analysis

According to Figure 2, the result shows that JBoss is able to deliver good
throughput performance for about 60% of the given workload. However, when
the workload surpasses 60%, the throughput reduces drastically. This sys-
tem begins to refuse connection at 80% of the maximum workload. A drastic
degradation in throughput (nearly 75%) occurs when the workload increases
by only 20%. Thus, the degradation rate, d, is 0.75

0.20
= 3.40. Also notice that the

value of d for the Apache is 1.69 (see Figure 2). A smaller value of d means
that the application is more failure-resistant to increasing workload. We also
investigated the effect of larger memory on throughput performance. Again,
larger memory improves the maximum throughput (see Figure 3) but has very
little effect on degradation behavior.

Analysis. According to Hibino et al. [8], the degradation behavior exhibited
by the application server is considered ungraceful because such a behavior can
lead to non-linear responses and unpredictable systems. Moreover, it gives
very little time to administer recovery procedures. Hibino et al. investigate
the factors that affect the throughput degradation behavior of Java Servlets
by examining the operating system behaviors. They find that thread synchro-

7

T
h

ro
u

g
h

p
u

t
(J

O
P

S
)

Transaction Rate (Tx)

Fig. 3. Throughput comparison with respect to heap sizes

nization at the OS level is the most prominent factor causing poor degradation.
We wish to point out that their work does not examine any factors within Java
virtual machines. On the other hand, our investigation is focused specifically at
the Java Virtual Machine level. Since Java Virtual Machines (JVMs) provide
execution environments for these application servers, we hypothesized that the
major factors causing throughput performance to degrade ungracefully reside
in the Virtual Machines.

4 Experiments

In this study, our main objectives are as follows:

Research Objective 1 (RO1): Identify the major factors responsible for the
rapidly declining throughput of Java application servers due to small workload
increase.

Research Objective 2 (RO2): Investigate how these factors affect the
throughput of Java application servers.

Research Objective 3 (RO3): Observe how changes in algorithms and
policies controlling these factors affect the throughput of Java application
servers.

8

4.1 Benchmarks

There are two major components: application servers and workload drivers.
The selected application servers must meet the following criteria. First, they
must be representative of real-world/widely- used application servers. Second,
we must have accessibility to the source code to control and manipulate their
execution context. Our effort began with the identification of server applica-
tions that fit the two criteria. We investigated several possibilities and selected
the two open-source application servers described below.

JBoss [36] is by far the most popular open-source Java application server
(34% of market share and over fifteen million downloads to date). It fully sup-
ports J2EE 1.4 with advanced optimization including object cache to reduce
the overhead of object creation.

Java Open Application Server (JOnAS) [37] is another open-source
application server. It is built as part of the ObjectWeb initiative. Its collabo-
rators include the France Telecom, INRIA, and Bull (a software development
company).

For the workload driver, we chose jAppServer2004 [33], a standardized bench-
mark from SPEC for testing the performance of Java application servers. It
emulates an automobile manufacturer and its associated dealerships. Dealers
interact with the system using web browsers (simulated by a driver program)
while the actual manufacturing process is accomplished via RMI (also driven
by the driver). This workload stresses the ability of Web and EJB contain-
ers to handle the complexities of memory management, connection pooling,
passivation/activation, caching, etc.

The workload can be configured by varying the transaction rate, which spec-
ifies the number of Dealer and Manufacturing threads. Throughput of the
benchmark is measured by JOPS (job operations per second). The jAppServer2004’s
design document [33] includes a complete description of the workload and the
application environment in which it is executed.

Note that in this paper, we chose not to include other industrial standard
server-side benchmarks such as SPECjbb2000 [38] or a more recent release
SPECjbb2005 [39]. This is because these benchmarks do not provide realistic
server environments. For example, both versions of SPECjbb simply simulate
application servers, and all the database requests are not processed by real
database engines. Additionally, they do not simulate network I/O and request
time-out mechanism, which are common in real-word Java application servers.

9

4.2 Experimental Platforms

To deploy jAppServer2004, we used four machines to construct two three-tier
architectures. Since our experiments utilized both the Uniprocessor system
and the Multiprocessor system, our configuration can be described as follows.

Uniprocessor application server (System A): The client machine is a
dual-processor Apple PowerMac with 2x2GHz PowerPC G5 processors and 2
GB of memory. The server is a single-processor 1.6 GHz Athlon with 1GB of
memory. The MySQL 2 database server is a Sun Blade with dual 2GHz AMD
Opteron processors as the client machine running Fedora Core 2 and 2 GB of
memory.

Multiprocessor application server (System B): The client machine is
the same as the system above. However, we swapped the application server
machine and the database server machine. Thus, the dual-processor Sun Blade
is used as the application server, and the single-processor Athlon is used as
the database server.

In all experiments, we used Sun HotSpot virtual machine shipped as part of
the J2SE 1.5.0 on the server side. The young generation area is set to 1/9 of the
entire heap, which has been shown to minimize the number of the expensive
mature collections. We ran all experiments in stand-alone mode with all non-
essential daemons and services shut down.

The virtual machine was instrumented to generate trace information pertain-
ing to the runtime behavior, e.g. object allocation information, reference as-
signments, execution thread information, on-stack references, and garbage col-
lection (GC) information. It is not uncommon for these traces to be as large
as several gigabytes. These trace files were then used as inputs to our analysis
tool that performs lifetime analysis similar to the Merlin algorithm proposed
by Hertz et al. [18]. The major difference between our approach and theirs is
that we employed off-line analysis instead of on-line analysis.

4.3 Variables and Measures

We utilized several workload configurations to vary the level of stress on the
application server. In all experiments, we increased the workload from the min-
imum value available to the maximum value that still allows the application to
operate. For example, we began our experiment by setting the transaction rate
to 1. In each subsequent experiment, we increased the transaction rate until

2 MySQL available from http://www.mysql.com

10

JBoss encounters failure. The failure point is considered to be the maximum
workload that the system (combination of application server, Java virtual ma-
chine, OS, etc.) can handle. As shown in section 3, throughput dramatically
degrades as the workload increases. This degradation is likely caused by the
runtime overhead. To address our RO1, we monitored the overall execution
time (T), which is defined as:

T = Tapp + Tgc + Tjit + Tsync

It is worth noticing that Tapp is the time spent executing the application it-
self. Tgc is the time spent on garbage collection. Tjit is the time spent on
runtime compilation. Many modern virtual machines use Just-In-Time (JIT)
compilers to translate byte-code into native instructions when a method is
first executed. This time does not include the execution of compiled meth-
ods; instead, it is the time spent on the actual methods compilation and code
cache management. Finally, Tsync is the time spent on synchronization. We
monitored synchronization operations such as lock/unlock, notify/wait, the
number of threads yield due to lock contentions. We chose these time compo-
nents because they have historically been used to measure the performance of
Java Virtual Machines [20].

By measuring the execution time of each run-time function, we can identify the
function that is most sensitive to the increasing workload. The result of this
research objective is used as the focal point in RO2. To address RO2, we further
investigated the runtime behaviors of these factors. Once again, we varied
the workload but this time, we also measured other performance parameters
such as the number of page faults in addition to throughput performance.
These parameters gave us deeper insight into the effects of these factors on
the throughput performance. To address RO3, we conducted experiments that
adjust both the fundamental algorithms and the policies used by the runtime
factors and observed their effects on the throughput performance. By making
these changes, we expected to identify alternative algorithms and policies more
suitable for Java application servers.

4.4 Hypotheses

We hypothesized that increasing workload can affect two major runtime com-
ponents of a JVM: threading and garbage collection. Our hypothesis was based
on two observations. First, increasing workload is due to more simultaneous
clients. This can, in turn, result in larger synchronization overhead, which af-
fects performance. Second, a larger number of clients also result in more object
creations. Therefore, the heap is filled up quicker, and garbage collection is
called more frequently.

11

We conducted experiments to investigate the validity of these conjectures
based on the following hypotheses.

H1: Thread synchronization and garbage collection are the two run-
time functions most sensitive to workload. Our second research question
attempts to identify the causes that affect the performance of the identified
runtime functions, and in turn, affect the throughput of the applications. We
conjectured that runtime algorithms (e.g. generational garbage collection) and
policies (e.g. when to call garbage collection) can greatly affect the perfor-
mance of runtime functions. Therefore, our experiments are designed to also
validate the following hypothesis.

H2: Runtime algorithms and management policies can affect the
performance of runtime functions and overall throughput. Therefore,
changes in the algorithms and/or policies can affect throughput degradation
behavior. We conducted experiments to validate this hypothesis and reported
the results.

5 Results

5.1 RO1: Factors that Affect Throughput

We conducted experiments to identify factors that can affect the throughput
performance of Java application servers. We measured the execution time of
each major runtime function in the virtual machine when the system is facing
(i) the lightest workload and (ii) the heaviest workload. Figure 4 reports the
accumulated execution time (T). Notice that when the workload is light, only a
small portion of time is spent in common VM functions. That is, Tgc, Tsync, and
Tjit only account for 5%, 2% and 5% of the execution time, respectively. The
remaining 88% is spent on application execution (Tapp). Within this period, the
maximum throughput is also achieved. Also notice that Tjit is very small and
does not increase with workload. Because most commercial virtual machines
do not discard compiled methods, they can be reused throughout the program
execution [40,22].

Synchronization as a factor. A study by Hibino et al. [8] reports that
thread synchronization is the major factor that causes the throughput of the
dynamic content generation tier to degrade differently among various operat-
ing systems; in most cases, the throughput performance degrades ungracefully.
Because their observation is made at the operating system level, it is not sur-
prising for them to draw such a conclusion. Most runtime functions in JVMs
may not utilize system calls. For example, a memory allocator invokes system

12

10

10 20 0 30 40 50 60 70 80 90 100

20

30

40

50

60

70

80

90

100

Application

Garbage Collection

A
c
c
u

m
u

la
ti
v
e

 P
e

rc
e

n
ta

g
e

 o
f

E
x
e

c
u

ti
o

n
 t
im

e

Transaction Rate (Tx)

Synchronization

JIT Compilation

Fig. 4. Accumulative time spent in major runtime functions

calls only when it needs to enlarge the heap. Thus, their methodology would
regard runtime functions in the VM as application execution. We expect that
deeper insight can be gained by observing the application, virtual machine,
and operating system performances in a similar fashion to the vertical profiling
technique introduced by Hauswirth et al. [19].

As stated earlier, we monitored the accumulated execution time of all ma-
jor runtime functions in HotSpot. Our result is reported in Figure 4. Notice
that the experimental result confirms our hypothesis that synchronization is
workload-sensitive, as the time spent in synchronization becomes larger with
higher workload due to more resource contentions. However, the increase is
only a small percentage and should not affect throughput degradation behav-
ior.

Garbage collection as a factor. Figure 4 shows that the time spent in
garbage collection increases dramatically with heavier workload. Just prior to
the complete failure of JBoss, the accumulative garbage collection time is more
than 50% of the overall execution time. We also found that garbage collec-
tion pauses can be as much as 300 seconds during the heaviest workload (see
Figure 5.1). As more time is spent on garbage collection, less time is spent on
executing the application; thus, the throughput performance degrades drasti-
cally. As a result, we conclude that garbage collection is a major factor that
can affect the throughput and degradation behavior of the Java application
server.

13

Minor GC Full GC

Workload # of Avg. Pause (min:max) # of Avg. Pause (min:max)

invocations (seconds) invocations (seconds)

10 2037 0.021 (0.015:0.026) 48 0.78 (0.412:1.340)

20 2219 0.020 (0.011:0.033) 72 1.02 (0.232:2.021)

30 2901 0.022 (0.014:0.031) 115 1.13 (0.512:2.372)

40 3213 0.024 (0.011:0.039) 140 1.20 (0.412:3.721)

50 3907 0.021 (0.015:0.029) 192 1.45 (0.670:5.142)

60 4506 0.023 (0.012:0.026) 250 2.91 (1.010:7.020)

70 5102 0.027 (0.014:0.036) 370 3.31 (1.012:12.012)

80 5678 0.023 (0.015:0.037) 422 4.98 (2.102:34.014)

90 6150 0.025 (0.013:0.039) 512 6.12 (2.456:100.040)

100 7008 0.028 (0.015:0.039) 709 10.10 (3.124:300.024)

Fig. 5. Garbage collection activities and pause times

5.2 RO2: Effects of GC on Throughput Performance

Currently, many commercial virtual machines including Sun J2SE 1.5 and
Microsoft .NET CLR rely on generational garbage collection as the algorithm
of choice for object management in server systems. Thus, our first focus is
on the effects of the generational algorithm on throughput performance. For
more information on generational garbage collection, refer to Section 2.

Since the heap size can also affect garbage collection performance (i.e. a bigger
heap translates to more time for objects to die), heap resizing policy can also
play an important role. Thus, it is the second focus of our study. In addition,
we also study other factors such as programmer’s intervention and garbage
collection triggering policy that can affect the performance and efficiency of
garbage collection.

5.2.1 Effects of Generational Garbage Collection

Generational collectors are designed to work well when the majority of objects
die young. As reported earlier, the generational collector used in the JDK 1.5
performs extremely well when the workload is light. However, its performance
degrades significantly as the workload becomes much heavier. To understand
the major causes of such a drastic degradation, we investigated the garbage
collection frequency when the workload is heavy.

Notice that more time is spent on full collection as the workload is getting
heavier (see Figure 6). At the heaviest workload, the system spent over 7000
seconds on full collection (about 36 times longer than that of minor collec-
tion and over 190 times longer than the time spent on full GC at the lightest

14

10000

1000

100

40

10

1

100 80 60 40 20 0

Normalized Workload (%)

G
C

 T
im

e
 (

S
e

c
o

n
d

s
,
lo

g
 s

c
a

le
)

Fig. 6. Time spent in minor GC and full GC

workload). Pause time can also be as long as 300 seconds. We further inves-
tigated this behavior and found that frequent garbage collection prevents the
application from making any significant progress. In effect, the garbage col-
lector simply thrashes. Thus, the mark-sweep collector used to perform full
collection touches objects again and again, resulting in high garbage collection
processing cost.

Investigating lifespan. One possible reason for frequent mature collection
invocations is that many objects survive minor collection, and thus, quickly oc-
cupy space in the mature collection. To investigate whether such phenomenon
exists in jAppServer2004, we conducted a set of experiments to compare the
life spans of objects in desktop applications and server applications.

We measured lifespan by the amount of memory allocated between birth and
death (in bytes). (We only accounted for objects allocated in the garbage-
collected heap and ignored any objects created in the permanent space.) We
measured the execution progress by the accumulated amount of allocated
memory (also in bytes) [27]. We chose allocated memory instead of time be-
cause it is completely independent of other execution factors such as paging
overhead. Figure 7 depicts our findings. The x-axis represents the normalized
life spans, and the y-axis represents the normalized death times with respect
to the normalized total allocated memory.

The vast majority of objects in jess, a benchmark in jvm98, are short-lived;
that is, most objects have life spans of less than 10% of the maximum lifespan.
Moreover, the number of dead objects is uniformly distributed throughout the
execution. Note that we also conducted similar studies using other applications
in the jvm98 benchmark suite and found their results to be very similar to

15

SPECjvm98 (jess)

1.0

0.9

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1

0
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

Normalized Lifespan

N
o

rm
a

liz
e

d
 T

o
ta

l A
llo

c
a

te
d

 M
e

m
o

ry

SPECjAppServer2004

1.0

0.9

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1

0
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

Normalized Lifespan

N
o

rm
a

liz
e

d
 T

o
ta

l A
llo

c
a

te
d

 M
e

m
o

ry

Fig. 7. Comparing life spans of objects in jess with life spans of objects in
jAppServer2004

Jess. For brevity, we do not include the results of those studies. The results of
our study nicely conform to the “weak generational hypothesis” (most objects
die young), which is the cornerstone of generational garbage collection [41,13].

On the other hand, the lifespan characteristic of objects in jAppServer2004
is significantly different than that of objects in Jess. First, in addition to the
short-lived objects, a large number of objects in the server application have life
spans of up to 30% to 50% of the maximum lifespan. Second, the number of
dead objects is not distributed uniformly; that is, there are more dead objects
as these applications move toward the end of execution. Thus, we conclude
that objects in jAppServer2004 become longer living as the workload becomes
heavier.

Remote versus local objects. A study by [42] has shown that there are
commonly two types of objects in .NET server applications: local and remote.
Remote objects are defined as objects created to serve remote requests, and
local objects are created to serve local requests. Note that we define remote
objects as remotable objects (a remotable object is the object, which imple-
ments interface java.rmi.Remote) or any objects directly or indirectly reach-
able from a remotable object. In Java Application Servers (J2EE, JBoss, etc),
all Enterprise Java Beans (EJBs) are remotable objects. They implement
two interfaces: EJBHome and EJBObject, which extend the superinterface
java.rmi.Remote. All objects other than remote objects are local objects. The
study showed that objects of these two corresponding types have very distinc-
tive life spans; remote objects tend to live much longer. To investigate whether
such observation applies to our experiments, we investigated the life spans of
remote objects and local objects when JBoss faces the heaviest workload.

Figure 8 indicates that the average lifespan of remote objects is longer than
that of local objects. Thus, a generational garbage collector is likely to spend
additional time and resources to promote these long-lived remote objects.

16

Transaction Rate (Tx)

L
if
e

s
p

a
n

 (
K

B
)

Fig. 8. Comparing life spans of local and remote objects

5.2.2 Effects of Heap Enlargement Policy

We also investigated heap enlargement policy adopted in HotSpot as a possible
cause of poor garbage collection performance. Typically, there are two major
considerations in performing heap resizing: when to resize and by how much.

In HotSpot, the pause time of each GC is evaluated by applying a linear curve
fitting process to the most recent GC pause times. If the slope of the resultant
linear function is positive (i.e. the pause times are increasing), HotSpot would
expand the heap by 20%. If the slope is negative, HotSpot would reduce the
heap by 4%. This approach has two significant drawbacks based on our ex-
perimental observation. First, the VM increases the heap size aggressively but
reduces the heap size too conservatively. When the footprint in the heap is
smaller than the memory size, but the total heap is larger than the memory
size, it takes a long time to reduce the heap.

Second, the heap enlargement mechanism does not take into account the phys-
ical memory available and often lets the heap grow to be larger than the
physical memory capacity very quickly. For example, Figure 9 (a) shows the
heap sizing activity at the heaviest workload (transaction 100). Note that the
physical memory size is 2GB. The solid line is the new heap size after each
sizing point. The dotted line is the actual heap usage (i.e., the number of live
objects) after each GC invocation. The star line is the number of page faults
during the lifetime measured using the scale shown on the y-axis on the right
of both figures. The figure shows that the heap is increased to be larger than
the available physical memory at about 33% of the execution time. At this
point, the actual heap usage is still smaller than the physical memory size.
This enlargement induces a large number of page faults for the remainder of
the execution. As stated earlier (see Figure 5.1), the pause time can be as
long as 300 seconds as a significant amount of page faults occur during a full

17

0.1

1

10

N
u

m
b

e
r

o
f
P

a
g

e
 F

a
u

lt
s
 (

x
1

0
^
6

,
lo

g
 s

c
a

le
)

0.1

1

10

Normalized Execution Time

H
e

a
p

 S
iz

e
 (

G
B

)

0.5

1.0

1.5

2.0

2.5

0
20 40 60 80 100

a) Default Enlargement Policy b) Proposed Enlargement Policy

0.5

1.0

1.5

2.0

2.5

0
20 40 60 80 100

Fig. 9. Comparing memory and paging activities of Jboss with (left) and without
(right) the adaptive sizing mechanism (transaction rate=100)

collection invocation.

Summary. We found that generational garbage collection may not be suitable
for application servers under stress. This is due to a large number of objects
in applications servers tend to be longer living; thus, less objects are collected
in each minor collection and more frequent full collection is invoked.

In addition, the current policy adopted by HotSpot also enlarges the heap
very frequently to yield optimal garbage collection performance early on. In
this strategy, the heap can become so large that the heap working set can no
longer fit within the physical memory capacity. If this point is reached too
soon, the system would spend a large amount of time servicing page faults.
This is especially true during the mature collection, as mark-sweep has been
known to yield poor paging locality [10,30]. Two possible solutions to address
this issue are: (i) to use garbage collection techniques that are more suitable for
long-lived objects, and (ii) to adaptively resize the heap based on the amount
of physical memory and transaction time requirement. We will preliminarily
evaluate these two options in the next subsection.

5.2.3 Intervention from Programmers

Often times, programmers creates customize data structure in hope of im-
proving the overall performance. Such an example exists in JBoss where pro-
grammers create a special region in the heap to cache objects to reduce the
allocation efforts. However, such a cache can also lead to a larger number of
long-lived objects that must be promoted during garbage collection, as these
objects continue to be reachable from the cache. In this subsection, we inves-
tigate the effect of object cache on garbage collection performance.

18

Objects-cache. JBoss uses a large cache pool to keep hot beans. As more
beans are kept in the cache, fewer calls are made to the database [43] . Usually
the optimal cache size is set to be proportional to the workload. Keeping
objects in the cache makes these objects long-lived, reducing the efficiency of
generational garbage collection.

In our study, we found that the maximum number of beans in the JBoss cache
pool can reach 1 million, which translates to at least 8MB of heap space.
We also discovered that the average tracing rate of the mark-sweep garbage
collector is 59.2MB/sec. This means that the garbage collector spends about
130 milliseconds traversing objects in the cache pool. Since these objects are
kept alive by the cache, they are traversed again and again. During the heaviest
workload, it will take up as much as 10% of the overall garbage collection
time. As a reminder, the GC time during this period can be as much as 50%
of execution time. Therefore, the time spent by the collector in the cache pool
is very noticeable.

5.2.4 Untimely Garbage Collection Invocations

The collection triggering mechanism can also affect the throughput of ap-
plication servers. Currently, the most adopted approach is space-based, i.e.,
the virtual machine invokes garbage collection when the heap space is full.
Therefore, this technique may not invoke garbage collection at the point that
yields the highest garbage collection efficiency. Poor efficiency results in longer
pauses.

We first describe our definition of garbage collection efficiency. Note that the
description can be applied to any stop-the-world garbage collectors. In long
running server applications, the path of execution consists of several GC cycles
and mutation cycles. Each GC cycle corresponds to a period when GC is
working. Each mutation cycle corresponds to a period when the application is
running. Stop-the-world garbage collectors performed all GC work at the end
of the mutation cycles when the heap memory is exhausted, in effect halting
the application until the end of the GC cycle.

When a GC cycles begins, the collector traverses all reachable objects and
reclaims unreachable objects. Here we define

∑
live(t) and

∑
dead(t) as the

number of live objects and the number of dead objects at time t, respectively.
The former reflects the cost of detecting and maintaining all reachable objects
(e.g. copying, traversing, and marking), and the latter reflects the amount of
garbage that can be reclaimed (e.g. sweeping). The best time to invoke garbage
collection is when the number of dead objects is high while the number of live
objects is low. Here we define the GC efficiency of time t as:

19

Transaction Rate (Tx)

D
is

tr
ib

u
ti
o

n
 (

%
)

Fig. 10. Execution regions that contain optimal GC invocation points

Efficiency(t) =

∑
dead(t)

∑
dead(t) +

∑
live(t)

This formula also represents the garbage and live objects ratio at time t.
It is proportional to

∑
dead(t) while inversely proportional to

∑
live(t). We

then computed the exact object reachability and lifetime information. Such
information can be used to calculate

∑
dead(t),

∑
live(t), and Efficiency(t)

at any time t.

Based on the calculation, we can obtain the exact invocation points that would
yield the most efficient garbage collection. We then examine the accuracy of the
space-based approach in invoking garbage collection at these efficient points.
Our method divides the mutation cycles into three regions: first-half (within
the first half of a mutation cycle), second-half (within the second half of a
mutation cycle), and at-the-end (when the heap is full). Figure 10 depicts our
finding.

It is very interesting that with lighter workload, the efficient invocation points
tend to be toward the end of mutation cycles. This means that the current
space-based approach would have worked efficiently most of the time. However,
as the workload becomes heavier, the most efficient points tend to fall in the
second half of the mutation cycles but not at the end. This implies that most
garbage collection invocations are not triggered at the most optimal places.
The inefficient triggering mechanism prolongs pause time and, in turn, affects
the server performance and throughput.

20

5.3 RO3: Effects of Changes in Algorithms and Policies on Throughput

In this section, we report the results of our experiments to investigate the effect
of changes in garbage collection algorithms and the governing policies adopted
in HotSpot. We experimented with different garbage collection algorithms that
also include parallel and concurrent techniques. Our experiments also varied
parameters and policies that control the following mechanisms: heap sizing,
object cache sizing, and GC invocation.

5.3.1 Adaptive Heap Sizing Mechanism

From the previous section, we discovered that the adopted policy in HotSpot
increases the heap size so quickly that the heap exceeds the physical memory
capacity very early in the execution. As a result, the system suffers a large
number of page faults. We experimented with a new adaptive heap sizing
policy that has been implemented into HotSpot. Our new policy attempted to
maintain the lowest possible heap size especially when the physical memory
resource is scarce. As stated earlier, there are two considerations to perform
heap resizing: when to expand or reduce the heap and by how much.

Our approach does not change the decision of when to resize the heap. How-
ever, we changed the adjustment quantity. Based on our study of the current
heap sizing policy in HotSpot, we noticed that page faults begin to occur when
the heap is larger than 75% of the physical memory (e.g. 1500 MB heap in
a system with 2 GB physical memory). Thus, we used this insight to set a
threshold to adjust our sizing policy. When the current heap size is smaller
than 75% of the physical memory, the heap is increased by α percent during
an expansion. Once the heap size exceeds the 75% threshold, the percent-
age of enlargement is reduced to β (β ≤ α). We investigated the throughput
and its degradation behavior under four different configurations of α and β:
α=20/β=20, α=20/β=10, α=10/β=5, and α=5/β=2.5 Notice that α=20 and
β=20 represents the original policy. In the α = β = 20 approach, the heap is
always increased by 20% of the current size, no matter if its size exceeds the
physical memory capacity or not. In our adaptive approach, the JVM adjusts
the increasing percentage according to the available memory space. For exam-
ple, in the α=10/β=5 approach, the heap is enlarged by 10% prior to 1500
MB heap size; afterward, the heap is increased by only 5%.

Figure 11 reports our finding. It is worth noticing that the changes in the
heap sizing policy have only minor effects on the throughput degradation
behavior. However; a more conservative enlargement policy can significantly
degrade the throughput as shown with α=5/β=2.5 configuration. Also notice
that the current policy used by HotSpot (α=20/β=20) does not yield the

21

T
h

ro
u

g
h

p
u

t
(J

O
P

S
)

Transaction Rate (Tx)

Fig. 11. Throughput performance after applying the adaptive sizing mechanism

best throughput performance; instead, α=10/β=5 yields the best throughput
throughout the execution. Even though the proposed adaptive heap sizing
policy has very little effect on the throughput degradation behavior, it can
yield two additional benefits: lower heap usage and smaller number of page
faults.

Reduction in heap usage. Figure 12 compares the amount of heap space
needed by the application server with the actual heap size allocated by the
JVM using two policies: α=20/β=20 and α=10/β=5. As a reminder, α=20/β=20
is the approach currently used in the HotSpot VM and α=10/β=5 has shown
to yield higher throughput. Notice that the proposed adaptive heap sizing pol-
icy utilizes the heap space more efficiently by committing the heap memory
only slightly higher than the actual heap usage (125 MB). On the other hand,
the approach currently used by HotSpot committed a much larger amount
of additional memory (about 500 MB) once the memory usage exceeds the
physical memory.

Reduction in page faults. We compared the number of page faults between
the two policies: α=20/β=20 and α=10/β=5. Figure 9(b) shows that our
decision to slow the growth percentage at the beginning (α=10 instead of
α=20) results in a reduction in the number of page faults early on (highlighted
by the lower rectangular box). The reduction is about 10%. However, the
proposed adaptive sizing policy has very little effect on the number of page
faults once the threshold is reached. Based on our results, we conclude that:

• Moderately conservative heap sizing policy has only a slight effect on maxi-
mum throughput. This is illustrated when we can achieve the best through-
put with α=10/β=5 approach.

• Moderately conservative heap sizing policy can significantly reduce the num-

22

y = x

Proposed
sizing policy

Default
sizing policy

Used Heap Size (MB)

T
o

ta
l
H

e
a

p
 S

iz
e

 (
M

B
)

Heap size (2 GB)

Fig. 12. Heap usage with the adaptive sizing mechanism

ber of page faults. However, the technique is more effective before the thresh-
old is reached.

• Conservative heap sizing policy can reduce the amount of memory usage
(highlighted by the top rectangular box in Figure 9(b)) and slightly improves
the throughput throughout the execution. However, it has very little effect
on the throughput degradation behavior.

5.3.2 Improving Garbage Collection Paralellism

Starting in J2SE 1.4.x, Sun also provides two additional GC techniques, par-
allel garbage collection (ParGC) and concurrent garbage collection (CMS), in
addition to the default generational mark-sweep [7]. The parallel collector is
similar to the generational mark-sweep approach except that it utilizes paral-
lel threads to perform minor and major collection. Thus, it is a stop-the-world
approach designed to minimize pause time.

In Concurrent Mark-Sweep (CMS), a separate garbage collector thread per-
forms parts of the major collection concurrently with the applications threads.
For each major collection invocation, the concurrent collector pauses all the
application threads for a brief period at the beginning of the collection and
toward the middle of the collection. The remainder of the collection is done
concurrently with the application. This collector performs parallel scavenging
in the minor collections and concurrent mark-and-sweep in the major collec-
tions.

According to Sun, the concurrent collector is ideal for server applications run-
ning on multi-processor systems (it cannot be used in single-processor sys-
tems). A study by Sun has shown that the concurrent collector can deliver
higher throughput performance than the other approaches [34]. However, the

23

T
h

ro
u

g
h

p
u

t
(J

O
P

S
)

Transaction Rate (Tx)

Fig. 13. Effects of CMS and ParGC on throughput performance

effect of the concurrent garbage collector on the throughput degradation be-
havior is not known. Therefore, the goal of this experiment is to investigate
the effect of CMS on throughput degradation behavior. Note that we used
system B, the multi-processor system for this experiment.

Figure 13 indicates that CMS can greatly improve the maximum throughput
of the system. The differences in throughput performances between the con-
current collector and the single threaded generational mark-sweep (GenMS)
can be as high as 40%. However, comparing the degradation rates of the three
GC techniques, dCMS, dParGC, and dgenMS, shows that both CMS and ParGC
have very little effects on the degradation rates. Based on this finding, we
concluded that the concurrent collector running on a more powerful computer
system improves the maximum throughput due to better parallelism, but does
not make the throughput degrade more graceful.

5.3.3 Different Garbage Collection Algorithms

We conducted our experiments on the Jikes RVM due to its flexibility in
choosing different garbage collection algorithms. Since JBoss is not supported
on the RVM, we also used a different application server. JOnAS is another
open-source application server that is supported by the RVM. Once again, we
used jAppServer2004 as the workload driver.

To make certain that our substitution still provides a sound experimental plat-
form, we conducted an experiment to compare the throughput degradation be-
haviors of the two systems, systemHotSpot (jAppServer running on JBoss and
J2SE 1.5) and systemRV M (jAppServer running on JOnAS and RVM using
generational collection (GenMS)). If the two systems show similar throughput
patterns (based on normalized information), we assumed that any improve-
ment resulting from modifications of systemRV M would also translate to simi-

24

HotSpot

RVM

N
o

rm
a

liz
e

d
 P

e
rf

o
rm

a
n

c
e

Normalized Workload

Fig. 14. Comparing throughputs of systemRV M to systemHotSpot

lar improvements in systemHotSpot if the same modifications were also applied.
Figure 14 depicts the results of our comparison. Notice that the patterns are
nearly identical.

Next, we conducted a set of experiments using different garbage collection
techniques. The goal of these experiments is to compare the differences in
the throughput behavior of each technique from the reference configuration
(systemRV M). The description of each technique is given below.

GenMS: This hybrid generational collector uses a copying nursery and the
MarkSweep policy for the mature generation. It is very similar to the genera-
tional mark-and-sweep collector in HotSpot. Thus, it is used as the reference
configuration.

SemiSpace: The semi-space algorithm uses two equal sized copy spaces. It
contiguously allocates into one, and reserves the other space for copying into
since in the worst case all objects could survive. When full, it traces and copies
live objects into the other space, and then swaps them.

GenCopy: The classic copying generational collector [44] allocates into a
young (nursery) space. The write barrier records pointers from mature to
nursery objects. It collects when the nursery is full, and promotes survivors
into a mature semi-space. When the mature space is exhausted, it collects the
entire heap.

MarkSweep: It is a tracing and non-generational collector. When the heap
is full, it triggers a collection. The collection traces and marks the live objects
using bit maps, and lazily finds free slots during allocation. Tracing is thus
proportional to the number of live objects, and reclamation is incremental and
proportional to allocation.

25

0

5

10

15

20

25

30

35

20 40 40 40 100

T
h
ro

u
g
h
p
u
t
(J

O
P

S
)

Transaction Rate (Tx)

Fig. 15. Comparing the throughputs of different GC techniques

RefCount: The deferred reference-counting collector uses a freelist allocator.
During mutation, the write barrier ignores stores to roots and logs mutated ob-
jects. It periodically updates reference counts for root referents and generates
reference count increments and decrements using the logged objects. It then
deletes objects with a zero reference count and recursively applies decrements.
It uses trial deletion to detect cycles [16,45].

GenRC: This hybrid generational collector uses a copying nursery and Ref-
Count for mature generation [15]. It ignores mutations to nursery objects by
marking them as logged, and logs the addresses of all mutated mature ob-
jects. When the nursery fills, it promotes nursery survivors into the reference
counting space. As part of the promotion of nursery objects, it generates refer-
ence counts for them and their referents. At the end of the nursery collection,
GenRC computes reference counts and deletes dead objects, as in RefCount.

Figure 15 reports our finding. It is worth noticing that most techniques yield
very similar throughput degradation behaviors. The two exceptions are SemiS-
pace and GenRC. For SemiSpace, the collection time is proportional to the
number of live objects in the heap. Its throughput suffers because it reserves
one-half of heap space for copying. It also repeatedly copies objects that sur-
vive for a long time. Therefore, it has the lowest throughput at all workload
levels compared to the other 5 collectors.

GenRC, on the other hand, allows the throughput of the application server
to degrade much more gracefully. Unlike GenMS in which mature collection
is frequently invoked during the heaviest workload, GenRC allows mature
collection to be performed incrementally; thus, long pauses are eliminated
and the memory space is recycled more efficiently. In addition, GenRC also
ignores mutations of the young objects; thus, the bookkeeping overhead due

26

to reference manipulations is avoided.

5.3.4 Object-Cache Management

As stated earlier, the more beans in cache, the longer it will take to scan the
cache pool during garbage collection. Therefore, varying the cache size may
affect the throughput performance and the degradation behavior of applica-
tion servers. In our investigation, we varied the JBoss cache pool size and
observed the effects of the cache size on the throughput performance. Figure
16 represents performances of four different cache sizes: 256K, 512K, 768K
and 1M beans.

T
h
ro

u
g
h
p
u
t
(J

O
P

S
)

Transaction Rate (Tx)

Fig. 16. Effects of varying sizes of object-cache

The figure shows that the 256K cache size has the worst peak throughput
and the poorest degradation behavior. This is because the cache size is too
small, and results in much more frequent objects creation and possible com-
munication overhead between the application server and the database server.
In contrast, the 768K cache size performs the best and shows nearly the same
peak throughput as the 1 MB cache size. It also performs best under heavy
workload. This indicates that a cache pool can benefit server performance if
its size is set appropriately. However, if this value is set too large, GC overhead
incurred by cache pool may outweigh its benefit.

5.3.5 Optimal Garbage Collection Triggering Locations

To investigate the benefits of invoking garbage collection at the most optimal
locations, we created a mark-sweep collection simulator that takes allocation
information and optimal triggering locations as the input. Our simulator can
utilize the space based criterion as well as the optimal locations to trigger

27

garbage collection. Since our investigation was simulation-based, we could not
measure the execution time or throughput, but we could measure the efficiency
of each garbage collection invocation.

We used 100-transaction rate in jAppServer2004 because it is the rate that
causes the system to refuse connection. Figure 17 depicts our finding. The
x-axis represents GC invocation points during the benchmark execution. The
y-axis represents the GC efficiency. The solid line represents the actual GC
efficiency values of the space-based approach after each GC invocation. The
dotted line represents the simulated optimal GC efficiency values between two
adjacent GC points.

G
C

 E
ff
ic

ie
n

c
y
 (

%
)

GC Invocation Number

Actual Efficiency
Optimal Efficiency

1000 2000 3000 4000 5000 6000 7000 8000
0

10

20

30

40

50

60

70

80

Fig. 17. Identifying efficient garbage collection triggering points

The space-based approach performs very well when the workload is light.
However, after the first 13% of all garbage collection invocations, the optimal
approach yields consistently higher efficiency (as much as 30%). While the
result showed great promise, it is non-trivial to identify the optimal garbage
collection points. Moreover, it is unclear how the improved GC efficiency af-
fects the throughput degradation. We will leave more experimentation and
analysis of this approach for future work.

6 Future Work

Our experiments show that inappropriate triggering mechanism can affect
server performance. However, identifying the most efficient invocation points
dynamically is not trivial. We have developed a predictive model called For-
tune Teller [46] to estimate the amount of dead objects in the heap. Our
preliminary experiments already showed that it is sufficiently accurate on sev-

28

A
llo

c
a

te
d

 M
e

m
o

ry
 (

M
B

)

L
iv

e
-s

iz
e

 (
M

B
)

0

200

400

600

800

2

4

6

8

10

12

14

16

18

0

0 10 20 30 40

Time (seconds)

50

A
llo

c
a

te
d

 M
e

m
o

ry
 (

M
B

)

L
iv

e
-s

iz
e

 (
M

B
)

100

110

120

130

140

150

160

170

180

2

4

6

8

10

12

14

16

18

0

5 6 7 8 9 10

Time (seconds)

Fig. 18. Correlation between allocation pauses and the volume of lived objects

eral jvm98 benchmark applications. The model needs to be validated on more
applications, particularly on server applications. By using this model, we can
use its information to invoke garbage collection at instances yielding highest
efficiency so that the unused memory is recycled more efficiently.

It is also possible that there is a correlation between allocation behavior and
lifespan. We have conducted preliminary experiments and found that in many
applications, there are allocation pauses that coincide with the highest mor-
tality rates (see Figure 18). The upper graph shows the volume of live ob-
jects in the heap and the total allocated bytes of an application server thread
throughout its lifetime. The bottom graph shows an enlarged portion of the
upper graph, which clearly shows that a large number of objects die after each
pause. This insight may allow us to predict the best time to invoke garbage
collection. We are currently working on a phase-based triggering garbage col-
lector.

In Java application servers, objects can be classified into local objects and

29

remote objects, depending on the type of services for which they were created.
We have demonstrated that remote objects tend to be long-lived. We are
currently working on a Service-Oriented garbage collection that segregates
objects based on service types. The simulation results have shown that the
scheme can significantly reduce the number of mature collection invocations
[47].

We also investigated the garbage collection overhead by looking at several GC
components such as heap size, collection algorithm, triggering mechanism and
sizing policy. We did not consider other non-GC components in the VM that
may influence GC and throughput performance. One possible component is
thread scheduling. In a multi-threaded server environment, a large number of
threads are created and operate simultaneously. We plan to experiment with
thread scheduling algorithms that are GC cognizant. For example, threads that
are expected to relinquish a large amount of memory may be given a higher
priority so that memory is timely reclaimed. We expect that such algorithms
can further improve throughput and affect the degradation behavior.

7 Related Work

A study by Blackburn et al. [48] compares the cost of different GC techniques
using different heap sizes and architectures. There are also several research ef-
forts that recognize the effect of garbage collection on throughput performance.
Ulterior reference counting [15] attempts to improve the overall throughput
of Java applications by using reference counting for the mature generation
space. These efforts do not study the influence of GC techniques on through-
put degradation of application servers.

Recent studies have shown that once the heap size is larger than the physical
memory, paging overhead dominates the execution time, and may even result
in thrashing [27,49,29,30]. Recent efforts have concentrated on dynamic sizing
of the heap to maximize the performance of the existing GC techniques while
minimizing paging [50,29,30,49,51]. While these solutions have shown to work
well, they all accept the fact that generational GC is memory inefficient, and
therefore assume there is enough physical memory for the needed headroom.
In large server applications, this assumption does not always hold. Workload
variation can reduce the amount of available headroom and cause the heap
size to be larger than the available physical memory.

Currently, there are two general techniques to improve the efficiency of gener-
ational GC. The first technique is pretenuring. The basic notion is to identify
long-lived objects and create them directly in the mature generation. The goal
of this technique is to reduce promotion cost, thus reducing the GC time and

30

improving the overall performance. Blackburn et al. [27] use a profile-based
approach to select objects for pre-tenuring. They report the reduction in GC
time of up to 32% and an improvement in execution time by 7%. They also re-
port a slight increase in heap usage with pretenuring. Harris [52] uses dynamic
sampling based on overflow and size to predict long-lived objects. Subsequent
work to further optimize pretenuring includes dynamic object sampling [53]
and class-based lifespan prediction [54].

The second technique is to avoid performing garbage collection on newly cre-
ated objects because they may not have sufficient time to die; instead, the
collection effort is mostly spent on older objects. Stefanović et al. [28] pro-
pose an older-first garbage collector that prioritizes collection of older objects
to give young objects more time. This technique evolves to become a major
part of the Beltway framework, introduced by Blackburn et al. [9]. In this
framework, the heap is divided into several belts, and each belt groups one
or more increments (a unit of collection) in a FIFO fashion. All objects are
allocated into belt 0 (similar as the young generation). Beltway uses an older-
first approach to collect each belt and all survivors are promoted to the last
increment of the higher belt. Beltway always collects the oldest increment of a
belt first, which gives youngest objects more time to die. The results of their
experiment show an average of 5% to 10% improvement in execution times
and 35% improvement under tight heaps.

It is unclear how pretenuring and the beltway framework would handle ap-
plications with a large number of longer living objects. If the decision is to
pretenure these objects, then the major collection frequency would be high.
On the other hand, if the heap size is enlarged to allow more time for objects
to die in the nursery, then very short-lived objects are not reclaimed promptly.
Similarly, each belt in the Beltway framework can be viewed as a generation.
While the use of increments can avoid collection of the newly created objects,
the framework still must make the decision on how to deal with longer-living
objects. If belt 0 is small, these objects would be promoted to the subsequent
belt, resulting in more frequent collection of the older belts. If belt 0 is large,
short-lived objects are still not collected promptly.

An effort by Hibino et al. [8] investigates the degradation behavior of Web
application servers running on different operating systems, including Linux,
Solaris 9, FreeBSD, and Windows 2003 servers. They report that Solaris 9
has the most graceful degradation behavior. They also identify the factor that
has the greatest effect on the degradation behavior as thread synchronization
(waiting time to acquire locks). They report that Linux threads issue a larger
number of system calls during the operation, and the thread scheduling policy
is inappropriate.

31

8 Conclusion

This paper explored the throughput degradation behavior of a standardized
Java application server benchmark. We found that throughout performance
degrades ungracefully. During a period of heavy workload, a 22% increase in
the workload can degrade throughout by as much as 75%. This result mo-
tivated us to investigate the major factors affecting throughput performance
and how they affect degradation behavior.

We monitored execution time of three major components in the Virtual Ma-
chine: runtime compilation, garbage collection, and synchronization. Our re-
sults show that garbage collection is the major factor. GC can consume as
much as 50% of the overall execution time at the heaviest workload. Further
studies led us to the following conclusions:

(1) The assumption that most objects die young may not hold true in appli-
cation servers. Thus, the Generation Mark-Sweep technique used in the
HotSpot VM does not perform well.

(2) Garbage collection techniques that increase parallelism while greatly im-
proving maximum throughput have very little effect on degradation be-
havior.

(3) Ulterior Reference Counting, an incremental generational technique, can
positively impact degradation behavior.

(4) More conservative heap sizing policy only minutely affects the degrada-
tion behavior. However, it can reduce the heap usage by 20% and reduce
the number of page faults by 10%.

(5) Space-based criteria to invoke garbage collection may not be the most
efficient approach at heavy workload. Our study showed that the most
efficient invocation points occur before the heap space is fully exhausted.

9 Acknowledgments

This work was sponsored in part by the National Science Foundation through
awards CNS-0411043 and CNS-0720757 and by the Army Research Office
through DURIP award W911NF-04-1-0104. We thank the anonymous review-
ers for providing insightful comments for the final version of this paper.

32

References

[1] Stephen Swoyer, Impressive Growth Ahead for Application Server Market,
On-line article, http://www.adtmag.com/article.aspx?id=19970 (January
2007).

[2] D. Sholler, .NET Seen Gaining Steam in DEV Projects, On-line article,
http://techupdate.zdnet.com (April 2002).

[3] Sun Microsystems, Five Reasons to Move to the J2SE 5 Platform,
http://java.sun.com/developer/technicalArticles/J2SE/5reasons.html (2005).

[4] M. Welsh, D. E. Culler, E. A. Brewer, SEDA: An Architecture for
Well-Conditioned, Scalable Internet Services, in: Proceedings of the ACM
Symposium on Operating Systems Principles (SOSP), Chateau Lake Louise,
Banff, Canada, 2001, pp. 230–243.

[5] Netcraft, Video iPod Launch Slows Apple Store, On-line article,
http://news.netcraft.com/archives/2005/10/12/video ipod launch slows apple store.html
(2005).

[6] Chosun Ilbo, Cyber Crime Behind College Application Server Crash, On-line
article,
http://english.chosun.com/w21data/html/news/200602/200602100025.html
(2006).

[7] A. Gupta, M. Doyle, Turbo-charging Java HotSpot Virtual Machine, v1.4.x to
Improve the Performance and Scalability of Application Servers, On-line
article,
http://java.sun.com/developer/technicalArticles/Programming/turbo/.

[8] H. Hibino, K. Kourai, S. Shiba, Difference of Degradation Schemes among
Operating Systems: Experimental Analysis for Web Application Servers, in:
Workshop on Dependable Software, Tools and Methods, Yokohama, Japan,
2005, http://www.csg.is.titech.ac.jp/paper/hibino-dsn2005.pdf.

[9] S. M. Blackburn, R. E. Jones, K. S. McKinley, J. E. . B. Moss, Beltway:
Getting Around Garbage Collection Gridlock, in: Proceedings of the ACM
SIGPLAN Programming Languages Design and Implementation (PLDI),
Berlin, Germany, 2002, pp. 153–164.

[10] R. Jones, R. Lins, Garbage Collection: Algorithms for automatic Dynamic
Memory Management, John Wiley and Sons, 1998.

[11] P. R. Wilson, Uniprocessor Garbage Collection Techniques, in: Proceedings of
the International Workshop on Memory Management (IWMM), St. Malo,
France, 1992, pp. 1–42.

[12] J. L. McCarthy, Recursive Functions of Symbolic Expressions and Their
Computation by Machine, Communications of the ACM 3 (4) (1960) 184–195.

33

[13] D. Ungar, Generation Scavenging: A non-disruptive high performance storage
reclamation algorithm, in: Proceedings of the First ACM
SIGSOFT/SIGPLAN Software Engineering Symposium on Practical Software
Development Environments, 1984, pp. 157–167.

[14] J. Weizenbaum, Symmetric List Processor, Communications of the ACM 6 (9)
(1963) 524–544.

[15] S. M. Blackburn, K. S. McKinley, Ulterior Reference Counting: Fast Garbage
Collection Without a Long Wait, in: Proceedings of the ACM SIGPLAN
Conference on Object-Oriented Programing, Systems, Languages, and
Applications (OOPSLA), Anaheim, California, USA, 2003, pp. 344–358.

[16] D. F. Bacon, C. R. Attanasio, H. Lee, V. T. Rajan, S. Smith, Java without
the Coffee Breaks: A Nonintrusive Multiprocessor Garbage Collector, in:
Proceedings of the ACM SIGPLAN Conference on Programming Language
Design and Implementation (PLDI), 2001, pp. 92–103.

[17] T. W. Christopher, Reference Count Garbage Collection, Software Practice
and Experience 14 (6) (June, 1984) 503–507.

[18] M. Hertz, S. M. Blackburn, J. E. B. Moss, K. S. McKinley, D. Stefanović,
Error-Free Garbage Collection Traces: How to Cheat and Not Get Caught, in:
Proceedings of the 2002 ACM International Conference on Measurement and
Modeling of Computer Systems (SIGMETRICS), Marina Del Rey, California,
2002, pp. 140–151.

[19] M. Hauswirth, P. F. Sweeney, A. Diwan, M. Hind, Vertical Profiling:
Understanding the Behavior of Object-Oriented Applications, in: Proceedings
of the ACM SIGPLAN Conference on Object-Oriented Programming
Systems, Languages, and Applications (OOPSLA), Vancouver, British
Columbia, Canada, 2004, pp. 251–269.

[20] E. Armstrong, HotSpot A new breed of virtual machine, JavaWorld.

[21] L. Zhang, C. Krintz, Profile-Driven Code Unloading for Resource-Constrained
JVMs, in: International Conference on the Principles and Practice of
Programming in Java (PPPJ), Las Vegas, NV, 2004, pp. 83–90.

[22] L. Zhang, C. Krintz, Adaptive Code Unloading for Resource-Constrained
JVMs, in: Proceedings of the ACM SIGPLAN/SIGBED Conference on
Languages, Compilers, and Tools for Embedded Systems (LCTES),
Washington, DC, USA, 2004, pp. 155–164.

[23] Sun Microsystems, White Paper:The Java HotSpot Virtual Machine,
http://java.sun.com/products/hotspot/docs/whitepaper/Java Hotspot v1.4.1/
Java HSpot WP v1.4.1 1002 1.html.

[24] S. M. Blackburn, P. Cheng, K. S. McKinley, Oil and Water? High
Performance Garbage Collection in Java with MMTk, in: Proceedings of the
26th International Conference on Software Engineering (ICSE), Scotland, UK,
2004, pp. 137–146.

34

[25] D. F. Bacon, P. Cheng, V. T. Rajan, Controlling Fragmentation and Space
Consumption in the Metronome, a Real-Time Garbage Collector for Java, in:
Proceedings of the 2003 ACM SIGPLAN/SIGBED Conference on Languages,
Compilers, and Tools for Embedded Systems (LCTES), San Diego, California,
USA, 2003, pp. 81–92.

[26] F. Xian, W. Srisa-an, C. Jia, H. Jiang, AS-GC: An Efficient Generational
Garbage Collector for Java Application Servers, in: Proceedings of the 21st
European Conference on Object-Oriented Programming (ECOOP), Berlin,
Germany, 2007, pp. 126–150.

[27] S. M. Blackburn, S. Singhai, M. Hertz, K. S. McKinely, J. E. B. Moss,
Pretenuring for Java, in: Proceedings of the ACM SIGPLAN Conference on
Object Oriented Programming Systems Languages and Applications
(OOPSLA), Tampa Bay, FL, 2001, pp. 342–352.

[28] D. Stefanović, K. S. McKinley, J. E. B. Moss, Age-based garbage collection,
in: Proceedings of the ACM SIGPLAN Conference on Object-Oriented
Programming, Systems, Languages, and Applications (OOPSLA), Denver,
Colorado, United States, 1999, pp. 370–381.

[29] T. Yang, E. D. Berger, S. F. Kaplan, J. E. B. Moss, Cramm: Virtual memory
support for garbage-collected applications, in: Proceedings of the USENIX
Conference on Operating System Design and Implementation (OSDI), Seattle,
WA, 2006, pp. 103–116.

[30] M. Hertz, E. Berger, Quantifying the Performance of Garbage Collection vs.
Explicit Memory Management, in: Proceedings of the ACM SIGPLAN
Conference on Object-Oriented Programming Systems, Languages, and
Applications (OOPSLA), San Diego, CA, USA, 2005, pp. 313–326.

[31] D. F. Bacon, R. Konuru, C. Murthy, M. Serrano, Thin Locks: Featherweight
Synchronization for Java, in: Proceedings of the ACM SIGPLAN Conference
on Programming Language Design and Implementation (PLDI), Montreal,
Quebec, Canada, 1998, pp. 258–268.

[32] Standard Performance Evaluation Corporation, SPECjvm98 User’s Guide,
On-Line User’s Guide, http://www.spec.org/jvm98 (1998).

[33] Standard Performance Evaluation Corporation, SPECjAppServer2004 User’s
Guide, On-Line User’s Guide,
http://www.spec.org/osg/jAppServer2004/docs/UserGuide.html (2004).

[34] Sun, Tuning Garbage Collection with the 1.4.2 Java[tm] Virtual Machine,
On-Line Documentation, http://java.sun.com/docs/hotspot/gc1.4.2 (Last
Retrieved: June 2007).

[35] Standard Performance Evaluation Corporation, SPECWeb2005, White Paper,
http://www.spec.org/web2005 (2005).

[36] JBoss, Jboss Application Server, Product Literature,
http://www.jboss.org/products/jbossas (Last Retrieved: June 2007).

35

[37] ObjectWeb, JOnAS: Java Open Application Server, White Paper,
http://www.jonas.objectweb.org (Last Retrieved: June 2007).

[38] Standard Performance Evaluation Corporation, SPECjbb2000, White Paper,
http://www.spec.org/osg/jbb2000/docs/whitepaper.html (2000).

[39] Standard Performance Evaluation Corporation, SPECjbb2005, On-Line
Documentation, http://www.spec.org/jbb2005 (2005).

[40] D. Stutz, T. Neward, G. Shilling, Shared Source CLI Essentials, O’Reilly and
Associates, 2003.

[41] H. Lieberman, C. Hewitt, A Real-Time Garbage Collector Based on the
Lifetimes of Objects, Communications of the ACM 26 (6) (1983) 419–429.

[42] W. Srisa-an, M. Oey, S. Elbaum, Garbage Collection in the Presence of
Remote Objects: An Empirical Study, in: Proceedings of the International
Symposium on Distributed Objects and Applications (DOA), Agia Napa,
Cyprus, 2005, pp. 1065–1082.

[43] JBoss Online Tutorial, Container Configuration, On-line article,
http://www.huihoo.com/jboss/online manual/3.0/ch07s16.html.

[44] A. W. Appel, Simple Generational Garbage Collection and Fast Allocation,
Software Practice and Experience 19 (2) (1989) 171–183.

[45] D. F. Bacon, V. T. Rajan, Concurrent Cycle Collection in Reference Counted
Systems, in: European Conference on Object-Oriented Programming
(ECOOP), Budapest, Hungary, 2001, pp. 207–235.

[46] F. Xian, W. Srisa-An, H. Jiang, Fortune Teller: Improving Garbage Collection
Performance in Server Environment, in: Companion to the ACM SIGPLAN
Conference on Object-Oriented Programming, Systems, Languages, and
Applications (OOPSLA), San Diego, CA, USA, 2005, pp. 246–247.

[47] F. Xian, W. Srisa-an, H. Jiang, Service-Oriented Garbage Collection:
Improving Performance and Robustness of Application Servers, in:
Companion to the ACM SIGPLAN Conference on Object-Oriented
Programming, Systems, Languages, and Applications (OOPSLA), Portland,
Oregon, USA, 2006, pp. 661–662.

[48] S. M. Blackburn, P. Cheng, K. S. McKinley, Myths and Realities: the
Performance Impact of Garbage Collection, in: Proceedings of the joint
International Conference on Measurement and Modeling of Computer Systems
(SIGMETRICS), New York, NY, USA, 2004, pp. 25–36.

[49] T. Yang, M. Hertz, E. D. Berger, S. F. Kaplan, J. E. B. Moss, Automatic
Heap Sizing: Taking Real Memory into Account, in: Proceedings of the ACM
SIGPLAN International Symposium on Memory Management(ISMM),
Vancouver, British Columbia, Canada, 2004, pp. 61–72.

36

[50] C. Zhang, K. Kelsey, X. Shen, C. Ding, M. Hertz, M. Ogihara, Program-Level
Adaptive Memory Management, in: Proceedings of the ACM SIGPLAN
International Symposium on Memory Management (ISMM), Ottawa, Canada,
2006, pp. 174–183.

[51] C. Grzegorczyk, S. Soman, C. Krintz, R. Wolski, Isla Vista Heap Sizing: Using
Feedback to Avoid Paging, in: Proceedings of the International Symposium on
Code Generation and Optimization (CGO), San Jose, CA, USA, 2007, pp.
325–340.

[52] T. L. Harris, Dynamic Adaptive Pre-Tenuring, in: Proceedings of the ACM
SIGPLAN International Symposium on Memory Management (ISMM), Vol.
36(1), 2000, pp. 127–136.

[53] M. Jump, S. M. Blackburn, K. S. McKinley, Dynamic Object Sampling for
Pretenuring, in: Proceedings of the ACM SIGPLAN International Symposium
on Memory Management (ISMM), Vancouver, BC, Canada, 2004, pp. 152–162.

[54] W. Huang, W. Srisa-an, J. Chang, Dynamic Pretenuring for Java, in:
Proceedings of the IEEE International Symposium on Performance Analysis
of Systems and Software (ISPASS), Austin, TX, 2004, pp. 133–140.

37

	Introduction
	This Work

	Background
	Garbage Collection Overview
	Merlin Algorithm
	Vertical Profiling

	Motivation
	Benchmarks Comparison
	Experimental Methodology
	Results and Analysis

	Experiments
	Benchmarks
	Experimental Platforms
	Variables and Measures
	Hypotheses

	Results
	RO1: Factors that Affect Throughput
	RO2: Effects of GC on Throughput Performance
	RO3: Effects of Changes in Algorithms and Policies on Throughput

	Future Work
	Related Work
	Conclusion
	Acknowledgments
	References

