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Abstract--Prior research has shown that customer reported software faults are often the result of violated dependencies 

that are not recognized by developers implementing software. Many types of dependencies and corresponding measures 
have been proposed to help address this problem. The objective of this research is to compare the relative performance of 
several of these dependency measures as they relate to customer reported defects. Our analysis is based on data collected 
from two projects from two independent companies. Combined, our data set encompasses eight years of development 
activity involving 154 developers. The principal contribution of this study is the examination of the relative impact that 
syntactic, logical and work dependencies have on the failure proneness of a software system.  While all dependencies in-
crease the fault proneness, the logical dependencies explained most of the variance in fault proneness, while workflow 
dependencies had more impact than syntactic dependencies. These results suggest that practices such as re-architecting, 
guided by the network structure of logical dependencies, holds promise for reducing defects. 
 

Index Terms — Distribution / maintenance / enhancement, metrics / measurement, organizational management and co-
ordination, quality analysis and evaluation. 

I. INTRODUCTION 

It has long been established that many software faults are caused by violated dependencies that 

are not recognized by developers designing and implementing a software system [12, 26]. The 

failure to recognize these dependencies could stem from technical properties of the dependencies 

themselves as well as from the way development work is organized.  In other words, two dimen-

sions are at play – technical and organizational. 

On the technical side, the software engineering literature has long recognized call and data-

flow syntactic relationships as an important source of error [4, 29, 40]. Research in the software 

evolution literature has introduced a new view on technical dependencies among software mod-

ules. Gall and colleagues [21] introduced the idea of “logical” coupling (or dependencies) by 

showing that source code files that are changed together can uncover dependencies among those 

files that are not explicitly identified by traditional syntactic approaches. Past work has also ex-

amined aspects of the relationship between logical dependencies and failures in software sys-
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tems. Eick and colleagues [15] used increases of such logical coupling as an indicator of “code 

decay”.  Graves and colleagues [23] showed that past changes are good predictors of future 

faults, and Mockus and Weiss [32] found that the spread of a change over subsystems and files is 

a strong indicator that the change will contain a defect.  

Human and organizational factors can also strongly affect how dependencies are handled, po-

tentially affecting the quality of a software system. Research has shown that the level of interde-

pendency between tasks tends to increase the level of communication and coordination activities 

among workers [20, 46].  Recent studies suggest however, that the identification and manage-

ment of technical dependencies is a challenge in software development organizations, particu-

larly when those dependencies are semantic rather than syntactic [7, 12, 24, 27].  Appropriate 

levels of communication and coordination may not occur, potentially decreasing the quality of a 

system [11, 26]. Consequently, it is important to understand how work dependencies (i.e., the 

way dependencies are manifested in development tasks) impact failure proneness. 

In contrast with research on fault prediction models [35, 36, 48], our work focuses on evaluat-

ing several potential causes of defects, rather than formulating a predictive model. The principal 

contribution of this study is the examination of the relative impact that syntactic, logical and 

work dependencies have on the failure proneness of software systems.  While all these factors 

are shown to be related to failures, the strength of the relationships varies dramatically.  Under-

standing the relative impact is critical for determining where to focus research, tools, and process 

improvement.  In addition, we also sought to improve the external validity of the study by repli-

cating the analysis over multiple releases of two distinct projects from two unrelated companies.  

The remainder of the paper is organized as follows. The next two sections elaborate on how 

syntactic, logical, and work-related dependencies relate to a software system’s failure proneness. 



 

 

4

Sections 4, 5 and 6 describe the study methodology, preliminary analyses and the results, respec-

tively. We conclude the paper with a discussion of the contributions, limitations, and future 

work. 

II. SOFTWARE DEPENDENCIES AND FAILURE PRONENESS 

The traditional syntactic view of software dependency had its origins in compiler optimiza-

tions, and focused on control and dataflow relationships [28]. This approach extracts relational 

information between specific units of analysis such as statements, functions or methods, and 

source code files.  Dependencies are discovered, typically, by analysis of source code or from an 

intermediate representation such as bytecodes or abstract syntax trees. These relationships can be 

represented either by a data-related dependency (e.g. a particular data structure modified by a 

function and used in another function) or by a functional dependency (e.g. method A calls me-

thod B).  

The work by Hutchens and Basili [29] and Selby and Basili [40] represents the first use of de-

pendency data in the context of a system’s propensity for failure. Building on the concepts of 

coupling and cohesion proposed by Stevens, Myers and Constantine [43], Hutchens and Basili 

[29] presented metrics to assess the structure of a system in terms of data and functional relation-

ships, which were called bindings. The authors used clustering methods to evaluate the modu-

larization of a particular system. Selby and Basili [40] used the data binding measure to relate 

system structure to errors and failures. They found that routines and subsystems with lower cou-

pling were less likely to exhibit defects than those with higher levels of coupling. Similar results 

have been reported in object-oriented systems. Chidamber and Kemerer [9] proposed a set of 

measures that captures different aspects of the system of relationships between classes. Briand 

and colleagues [4] found that the measures of coupling proposed by Chidamber and Kemerer 
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were positively associated with failure proneness of classes of objects. 

More recently, models focused on the prediction of failure proneness have been explored using 

various concepts to organize (or group) software artifacts into various units of analysis. These 

organizing concepts include architectural, graph-theoretic, and “concerns” perspectives.  Meas-

ures such as network, syntactic dependency, and complexity metrics are used to explore the as-

sociation between the artifact groups and post-release defects. Eaddy and colleagues [14] ex-

plored defects using concerns (i.e., features or requirements) to organize software artifacts for 

analysis.  Here, the authors found that dispersion of a concern’s implementation (“scatter”) was 

associated with software defects.  Nagappan and Ball [35] explored software failures using two 

architectural levels within Microsoft Windows to establish their unit of analysis. The authors 

found that syntactic dependencies and source-code change metrics (“churn”) calculated within 

and between components (binaries or DLLs) and higher level application areas (e.g. the Internet 

Explorer area) were predictive of post-release failures. Zimmerman and Nagappan [48] applied a 

graph theoretic lens to classify and calculate network measures for Windows binaries.  In this 

work, the authors demonstrated that orthogonal linear combinations of network, syntactic de-

pendency, and complexity metrics could be used to predict post-release defects. 

In contrast to the previously discussed research, an alternative view of dependency has been 

developed in the software evolution literature. This approach focuses on deducing dependencies 

between the source code files of a system that are changed together as part of the software devel-

opment effort and it was first discussed in the literature as “logical coupling” by Gall and col-

leagues [21]. Unlike traditional syntactic dependencies, this approach identifies indirect or se-

mantic relationships between files that are not explicitly deducible from the programming lan-

guage constructs [21]. There are several cases where logical dependencies provide more valuable 
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information than syntactic dependencies. Remote procedure calls (RPCs) represent a simple ex-

ample. Although the syntactic dependency approach would provide the necessary information to 

relate a pair of modules, such information would be embedded in a long path of connections 

from the RPC caller through the RPC stubs all the way to the RPC server module. On the other 

hand, when the module invoking the RPC and the module implementing the RPC server are 

changed together a logical dependency is created, showing a direct dependency between the af-

fected source code files. The logical dependency approach is even more valuable in cases such as 

publisher-subscriber or event-based systems where the call-graph approach would fail to relate 

the interdependent modules since no syntactically visible dependency would exist between, for 

instance, a module that generates an event and a module that registers to receive such an event. 

Not only does the logical dependency approach have the potential to identify important de-

pendencies not visible in syntactic code analyses, it may also filter out syntactic dependencies 

that are unlikely to lead to failures. For example, in the case of basic libraries (e.g. memory man-

agement, printing functionality, etc.) the syntactic dependencies approach would highlight these 

highly coupled files. Yet, they tend to be very stable and unlikely to fail despite a high level of 

coupling. The logical dependency approach eliminates these problems as the likelihood of 

change in files that implement these basic functions is very low, hence, a logical dependency 

would not be established.  

It is difficult to know if the logical dependency approach actually realizes these potential ad-

vantages.  Only limited work has focused on the relationship between logical dependencies and 

failure proneness of a system. Mockus and Weiss [32] found that in a large switching software 

system, the number of subsystems modified by a change is an excellent predictor of whether the 

change contains a fault. Nagappan and Ball [35] found that architecturally based logical coupling 
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metrics are correlated with post-release failure proneness of programs. However, the authors 

computed metrics at the level of component and program areas, a coarse-grain approach resulting 

in measures too highly correlated to allow the authors to assess each metric’s relative impact on 

failure proneness.  

In sum, the extant research exploring the relationship between failure proneness of software 

with regard to dependencies has focused on a single dependency type (syntactic or logical) and 

has not examined the relative contribution of each of these types.  One implication of this limita-

tion is that decisions regarding the focus of quality improvement efforts may be misplaced.  Ad-

ditionally, research in this area has examined only a single project limiting the external validity 

of results.  This leads to our first research question: 

RQ 1: What is the relative impact of syntactic and logical dependencies on the failure 

proneness of a software system? 

III. WORK DEPENDENCIES AND FAILURE PRONENESS 

The literature on failure proneness has only recently begun to look at the impact of human and 

organizational factors on the quality of such systems. The work on coordination in software de-

velopment suggests that identification and management of work dependencies is a major chal-

lenge in software development organizations [12, 24, 27]. Modularization is the traditional ap-

proach used to cope with dependencies in product development. In software engineering, Parnas 

[37] was the first to articulate the idea of modular software design introducing the concept of in-

formation hiding. Parnas argued that modules be considered work items, not just a collection of 

subprograms. The idea being that development on one module can proceed independently of the 

development of another. Baldwin and Clark [2], in the product development literature, argued 

that modularization makes complexity manageable, enables parallel work and tolerates uncer-
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tainty. Like Parnas, Baldwin and Clark argued that a modular design structure leads to an equiva-

lent modular work structure.   

The modularization argument assumes a simple and obvious relationship between product 

modularization and task modularization – reducing the technical interdependencies among mod-

ules also reduces the interdependencies among the tasks involved in producing those modules.  

In addition, the modular design approach assumes that reducing dependencies reduces the need 

for work groups to communicate. Unfortunately, there are several problems with these assump-

tions. Recent empirical evidence indicates that the relationship between product structure and 

task structure is not as simple as previously assumed [6]. Moreover, promoting minimal commu-

nication between teams responsible for related modules is problematic because it significantly 

increases the likelihood of integration problems [13, 24]. Herbsleb and colleagues [26] theorized 

that the irreducible inter-dependence among software development tasks can be thought of as a 

distributed constrain satisfaction problem (DSCP) where coordination is a solution to the DSCP. 

Within that framework, the authors argued that the patterns of task interdependence among the 

developers as well as the density of the dependencies in the constraint landscape are important 

factors affecting coordination success and, by extension, the quality of a software system and the 

productivity of the software development organization.  

More recently, Nagappan and colleagues [36], Pinzger and colleagues [38], and Meneely and 

colleagues [32] investigated a series of organizational metrics as predictors of failure proneness 

in Windows components and other software. All of the above studies share important limitations 

with respect to understanding the impact of organizational and social factors in failure proneness. 

First, they focus on failure prediction models and contain no analysis of the relative importance 

of the measures in predicting software defects. Furthermore, the proposed measures do not spe-
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cifically capture work dependencies per se but rather they are proxies for numerous phenomena 

not necessarily related to the issue of work dependencies. For instance, the measure “number of 

unique engineers who have touched a binary'' in [36, pg. 524] could be capturing different 

sources of failures such as difficulties stemming from disparities in engineers' experience and 

organizational processes rather than capturing issues of coordination [36]. In sum, there is a need 

to better understand how the quality of a software system is affected by the ability of the devel-

opers to identify and manage work dependencies. This leads to our second research question:  

RQ 2: Do higher levels of work dependencies lead to higher levels of failure proneness of a 

software system? 

IV. METHODS 

We examined our research questions using two large software development projects. One pro-

ject was a complex distributed system produced by a company operating in the computer storage 

industry. The data covered a period of approximately three years of development activity and the 

first four releases of the product. The company had one hundred and fourteen developers 

grouped into eight development teams distributed across three development locations. All the 

developers worked full time on the project during the time period covered by our data. The sys-

tem was composed of approximately 5 million lines of code distributed in 7737 source code files 

in C language with a small portion of 117 files, in C++ language.   

The second project was an embedded software system for a communications device developed 

by a major telecommunications company. Forty developers participated in the project over a pe-

riod of five years covering six releases of the product. All but one developer worked in the same 

location. The system had more than 1.2 million lines of C and C++ code in 1224 files with 427 

files written using in C++. We will refer to the distributed system as “project A” and to the em-
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bedded system as “project B”.  

In both development organizations, every change to the source code was controlled by modifi-

cation requests. A modification request (MR) is a development task that represents a conceptual 

change to the software that involves modifications to one or more source code files by one or 

more developers [33]. The changes could represent the development of new functionality or the 

resolution of a defect encountered by a developer, the quality assurance organization, or reported 

by a customer. We refer to latter type of defects as “field” defects.  A similar process was associ-

ated with each modification request in both projects. Upon creation, the MR is in new state, it is 

then assigned to a particular development team by a group of managers performing the role of a 

change control board. Commits to the version control systems were not allowed without modifi-

cation request identifier. This characteristic of the process allowed the organizations to have a 

reliable mechanism of associating the modification request reports with the actual changes to the 

software code. As soon as all the changes associated with a modification request are completed, 

the MR is set to review required state and a reviewer is assigned. Once the review is passed and 

the changes are integrated and tested, the modification request is set to closed state. In project A, 

we collected data corresponding to a total of 8257 resolved MRs belonging to the first four re-

leases of the product. We collected the data associated with more than 3372 MRs in project B. In 

the remainder of this section, we describe the measures and the statistical models used in this re-

search.  

A. Descriptions of the Data and Measures 
We used three main sources of data in both projects A and B. First, the MR-tracking system 

data was used to collect the modification requests included in our analysis. Secondly, the version 

control systems provided the data that captured the changes made to the system’s source code. 

Finally, the source code itself. Using the above data sources, we constructed our dependent and 
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independent measures that are described in the following paragraphs. 

1) Measuring Failure 

We chose to investigate failure proneness at the file level. Our dependent variable, File Buggy-

ness, is a binary measure indicating whether a file has been modified in the course of resolving a 

field defect.  For each file, we determined if it was associated with a field defect in any release of 

the product covered by our data.  We used the logistic regression model shown in Equation 1 in 

order to model the binary dependent variable and assess the effect of syntactic, logical and work 

dependencies.  
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2) Syntactic Dependencies  

We obtained syntactic dependency information using a modified version of the C-REX tool 

[25] to identify programming language tokens and references in each entity of each source code 

file.1 For all revisions of both systems, a separate syntactic dependency analysis was performed 

for a snapshot of all source code associated with that revision.  Each source code snapshot was 

created at the end of the quarter in which the release took place. Using the resulting data, we 

computed syntactic dependencies between source code files by identifying data, function and 

method references crossing the boundary of each source code file. Let Dij represent the number 

of data/function/method references that exist from file i to file j. We refer to data references as 

data dependencies and function/method references as functional dependencies.  

 
1 We were not able to utilize common object oriented coupling measures as both systems are predominantly written using the C programming 

language. 
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Arguably, data and functional syntactic dependencies could impact failure proneness differ-

ently. Functional dependencies provide explicit information about the relationship between a 

caller and a callee. On the other hand, data relationships are not quite as obvious, particularly, in 

terms of understanding the modification sequences of data objects such as global variables. Such 

understanding, typically, requires the usage of a tool such as a debugger. Consequently, we col-

lected four syntactic dependencies measures: inflow and outflow data relationships and inflow 

and outflow functional dependencies. Each of those four measures capture the number of syntac-

tic dependencies of such type exhibited by each file i.  

3) Logical Dependencies 

Logical dependencies relate source code files that are modified together as part of an MR. If an 

MR can be implemented by changing only one file, it provides no evidence of any dependencies 

among files.  However, when an MR requires changes to more than one file, we assume that de-

cisions about the change to one file depend in some way on the decisions made about changes to 

the other files involved in the MR. The concept of logical dependencies is equivalent to Gall and 

colleagues’ [21] idea of logical coupling. 

In both projects, modification requests contained information about the commits made in the 

version control system. As described earlier, such information was reliably generated as part of 

the submission procedures established in the development organizations. Such data allowed us to 

identify the relationship between development tasks and the changes in the source code associ-

ated with such tasks. Using this information, we constructed a logical dependency matrix.  The 

logical dependency matrix is a symmetric matrix of source code files where Cij represents the 

sum, across all releases, of the number of times files i and j were changed together as part of an 

MR. We accumulate the data across releases as files that are changed together in an MR provide 
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mounting evidence of the existence of a logical dependency. The longer the period of time con-

sidered, the more changes take place, increasing accuracy of the identified logical dependencies.  

Although the association between MRs and changes in the code was enforced by processes and 

tools, there are other sources of potential errors that might impact the quality of the data repre-

sented in the logical dependency matrix. For instance, a developer could commit a single change 

to two files where one contained a fix to one MR and the second file had an unrelated change to 

a second MR. We performed a number of analyses to assess the quality of our MR-related data 

and minimize measurement error. We compared the revisions of the changes associated with the 

modification requests and we did not find evidence of such type of behavior. We also grouped 

version control commits that might have been associated with modification requests that were 

marked as duplicates under a single MR. Finally, we examined random samples of modification 

requests to determine if developers have work patterns that could impact the quality of our data 

such as the example described above. For instance, during the data collection process of project 

A, one of the authors and a senior developer from the project examined a random sample of 90 

modification requests. None of the commits contained changes to the code that were not associ-

ated with the task represented in the modification requests.     

Two file-level measures were extracted from the logical dependency matrix – Number of Logi-

cal Dependencies and Clustering of Logical Dependencies. The Number of Logical Dependen-

cies measure for file i was computed as the number of non-zero cells on column i of the matrix.2 

Since the logical dependencies matrix is symmetric, this measure is equivalent to the degree of a 

node in undirected graph, excluding self-loops. The difference in the nature of the technical de-

pendencies captured by the syntactic and logical approaches is evidenced by the limited overlap 

between those two types of dependencies. In project A, 74.3% of the syntactic dependencies 
 

2 The diagonal of the matrix indicates the number of times a single file was modified and can be disregarded from further analysis. 
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were not identified as logical relationships between a pair of source of files while in project B 

such difference was 97.3%. 

Herbsleb and colleagues [26] argued that the density of dependencies increases the likelihood 

of coordination breakdowns. Building on that argument, we constructed a second measure from 

the logical dependency matrix that we called Clustering of Logical Dependencies.  Unlike the 

Number of Logical Dependencies, this measure captures the degree to which the files that have 

logical dependencies to the focal file have logical interdependencies among themselves.  For-

mally and in graph theoretic terms, the Clustering of Logical Dependencies measure for file i is 

computed as the density of connections among the direct neighbors of file i. This measure is 

equivalent to Watts’s [47] local clustering measure and it is mathematically represented by equa-

tion 2 where ki is the number of files or “neighbors” that a particular file i is connected to 

through logical dependencies and ejk is a link between files j and k which are neighbors of file i. 

The values of this measure range from 0 to 1. 
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4) Work Dependencies 

We constructed two different measures of work dependencies – Workflow Dependencies and 

Coordination Requirements. Workflow Dependencies capture the temporal aspects of the devel-

opment effort while Coordination Requirements capture the intra-developer coordination re-

quirements. 

Workflow Dependencies: As described previously, both projects used MR-tracking systems to 

assess the progress of development tasks. Each modification request followed a set of states from 

creation until closure. Those transitions represent a MR workflow where particular members of 
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the development organization had work-related responsibilities associated with such MR at some 

point in time during its lifecycle. Such workflow constitutes the traditional view of work de-

pendencies were individuals are sequentially interdependent on a temporal basis [45]. More spe-

cifically, two developers i and j are said to be interdependent if the MR was transferred from de-

veloper i to developer j at some point between the creation and closure of the MR. For instance, 

suppose a MR requires changes to two subsystems with the changes to the second relying on 

changes to the first. Developer i completes the work on subsystem one and then he/she transfers 

the development task to developer j to finish the work on the subsystem two.  

Grouping the workflow information of all the MRs associated with a particular release of the 

products, we constructed a developer-to-developer matrix where a cell cij represents the number 

of work dependencies developer i has on developer j. The information in such a matrix captures 

the web of workflow-related dependencies in which each developer was embedded during a par-

ticular release of the product. Such developer-to-developer relationships can be examined 

through the lenses of social network analysis which provides the relevant theoretical background 

and methodological framework [30, 46]. A traditional result in the social network literature is 

that individuals centrally located in the network (i.e., have, on average, a larger number of rela-

tionships to other individuals) tend to be more influential because they control the flow of infor-

mation [5, 30]. On the negative side, a high number of linkages requires a significant effort on 

the part of those individuals in order to maintain the relationships [5, 30]. This latter point is par-

ticularly important in the context of the workflow dependencies because it argues that centrally 

located developers are more likely to be overloaded because of the effort associated with manag-

ing the work dependencies, increasing the likelihood for communication break downs and thus 

the quality of software produced could be expected to diminish. 
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Degree centrality [19] is a traditional measure used in the social network literature to identify 

central individuals based on the number of ties to other actors in the network. Formally, degree 

centrality is defined as DC(ni,M) = d(ni), where d(ni) is the number of connections of node ni in 

matrix M. The values of this measure range from 0 to n-1 where 0 indicates the node is an isolate 

(i.e., not connected to any other node) and n-1 indicates that the node i has a ties to all other n-1 

nodes. Building on the theoretical argument outlined in the previous paragraph and on the con-

cept of degree centrality, the Workflow Dependencies measure was constructed as follows. For 

each file i, we identified the developer j that worked on the file and was linked to the greatest 

number of individuals in the developer-to-developer workflow network for each release. That is, 

the developer exhibiting the highest degree centrality. As discussed earlier, such individuals are 

the more likely to introduce an error due to higher levels of effort they face in managing a higher 

number of work dependencies. Equation 3 formally describes the Workflow Dependencies meas-

ure. We also considered the average of the number of linked developers over the set of develop-

ers that worked on each file. However, this measure was highly correlated with our other inde-

pendent measures and thus excluded from further analysis.  

)3(}}{|),({max)( iji fchangedthatdevelopersjWDdevDCfWD ∈=  

 

Coordination Requirements: Workflow dependencies relate developers through the temporal 

evolution of modification requests and the developers’ involvement in those MR. There are addi-

tional work-related dependencies that emerge as development work is done in different parts of a 

system. For instance, two developers could work on two different modification requests involv-

ing files that are syntactically or logically interdependent. In this case, modifications made by 

each developer could impact the other’s work. These types of work-related dependencies are 



 

 

17

more subtle in nature and require more effort on the part of the developers to identify and man-

age. Cataldo and colleagues [6] proposed a framework for examining the relationship between 

the technical dependencies of a software system and the structure of the development work to 

construct such system. Coordination requirements, an outcome of that framework, represent a 

developer-by-developer matrix (CR) where each cell CR ij represents the extent to which devel-

oper i needs to coordinate with developer j given the assignments of development tasks and 

technical dependencies of the software system. More formally, Cataldo and colleagues [6] de-

fined the CR matrix as follows: 

CR = TA * TD * TA
T          (4) 

where, TA is the Task Assignments matrix, TD is the Task Dependencies matrix and TA
T is the 

transpose of the Task Assignments matrix. In the context of our study, the TA and TD matrices 

were constructed using data from the MR reports and the version control system in the following 

way. A MR report provides the “developer i modified file j” relationship. We grouped such in-

formation across all modification requests in a particular release to construct the Task Assign-

ment matrix which is a developer-to-file matrix. The Task Dependency matrix was a file-to-file 

matrix and it was constructed using the same approach described in the computation of the logi-

cal dependencies measures. In other words, each cell cij of the Task Dependency matrix repre-

sents the number of times a particular pair of source code files changed together as part of the 

work associated with the MRs. Following the theoretical argument and the process presented in 

the previous section (description of workflow dependencies), the Coordination Requirements 

measure captures for each file i, the degree centrality of the most central developer in the CR ma-

trix (a developer-to-developer matrix) that worked on the file i. Equation 5 formally describes 

the Coordination Requirements measure. 
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)5(}}{|),({max)( iRji fchangedthatdevelopersjCdevDCfCR ∈=  

5) Additional Control Factors 

The objective of this study is to examine the relative impact that important conceptual factors 

such as technical and work dependencies have on failure. In order to account for the effects of 

potentially confounding influences however, our analysis must include factors that past research 

has found to be associated with failures. Numerous measures have been used to predict failures 

[14, 18, 23, 35, 36, 48]. As suggested by Graves and colleagues [23], such measures can be clas-

sified as either process or product measures. Process measures such as number of changes, num-

ber of deltas, and age of the code (i.e., churn metrics) have been shown to be very good predic-

tors of failures [23, 35]. Accordingly, we control for the Number of MRs, which is the number of 

times the file was changed as part of a past defect or feature development. We also control for 

the Average Number of Lines Changed in a file as part of MRs. 

In contrast, product measures such as code size and complexity measures have produced 

somewhat contradictory results as predictors of software failures. Some researchers have found a 

positive relationship between lines of code and failures [4, 23], while others have found a nega-

tive relationship [3]. Our collective experience regarding the relationship between product meas-

ures and software defects has been that such measures are associated with increased software 

failure. Thus, we expect that product measures will be positively associated with software de-

fects.  We measure size of the file (LOC) as the number of non-blank non-comment lines of 

code. 

V. PRELIMINARY ANALYSIS 

Our four dependency measures (syntactic, logical, workflow and coordination requirements) 

capture different characteristics of the technical and work-related dependencies that emerge in 
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the development of software systems. Table I presents a comparative summary of our depend-

ency measures. Syntactic and Workflow dependencies are explicit in nature, therefore, easier to 

identify and manage by developers or other relevant stakeholders in software development pro-

jects. On the other hand, the Logical and Coordination Requirement dependency measures cap-

ture less explicit, more subtle relationships among software artifacts and developers, respec-

tively. The implicit nature of those dependencies makes identification and management of such 

relationship more challenging. In sum, our measures assess explicit and implicit dependencies 

that emerge in the technical and work-related dimensions of software projects.   

 
TABLE I 

COMPARATIVE SUMMARY OF DEPENDENCY MEASURES 
 Dimension Identifiability Manageability 
Syntactic Dependencies Technical Captures explicit relationships between 

source code files. 
A host of tools can aid developers in the 
management of this type of dependen-
cies. 

Logical Dependencies Technical Captures semantic or implicit relation-
ships between source code files, in addi-
tion to some explicit relationships. 

Dependence on historical data, attributes 
of the tools (e.g. version control system) 
and consistent processes over time lim-
its the developers’ ability to manage this 
type of dependency.  

Workflow Dependencies Work / Social Captures explicit relationships among 
project members based on workflows 
and/or processes 

Traditional tools (e.g. ClearQuest or 
Bugzilla) facilitate significantly the 
management of these dependencies. 

Coordination Requirement 
Dependencies. 

Work / Social Captures less explicit relationships 
among project members based on their 
past contributions to the development 
effort and the technical dependencies of 
the system under development. 

Dependence on historical data, attributes 
of the tools (e.g. version control system) 
and consistent processes over time limit 
the developers’ ability to manage this 
type of dependency. 

 

Table II summarizes the descriptive statistics of all the measures described in the previous sec-

tions. Due to a moderate degree of skewness, we applied a log-transformation to each of the in-

dependent variables. Table III reports the pair-wise correlations of all our measures. Overall, the 

pair-wise correlations are relatively similar across projects indicating that the phenomena re-

flected by these measures may be common in both projects. There are, however, several high 

correlations that deserve attention. For instance, the Number of MRs (past changes) variable is 

highly correlated with LOC, Average Lines Changed and our measure of logical dependencies, 
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particularly in project B. In addition, the syntactic dependencies measures are also highly corre-

lated among themselves and with other measures such as LOC and Number of MRs. We com-

puted variance inflation factors and tolerances to further examine potential issues due to multi-

collinearity among our independent variables. A tolerance close to 1 indicates little multicollin-

earity, whereas a value close to 0 suggests that multicollinearity may be a significant threat. 

Variance inflation factor (VIF) is defined as the reciprocal of the tolerance. 

 
TABLE II 

DESCRIPTIVE STATISTICS 
Project A: Distributed System 

 Mean SD Min Max Skew Kurtosis 
File Buggyness      0.49     0.500   0        1    0.011      1.001 
LOC 481.9 836.1   0 17853    4.931    47.24 
Avg. Lines Changed   10.85   32.67   0    738    8.512  108.9 
In-Data Syntactic Dep.     4.57   58.94   0  1741  24.40  647.6 
Out-Data Syntactic Dep.     8.90     9.243   0      53    0.792      3.050 
In-Functional Syntactic Dep.   20.36   71.49   0    951    5.701    42.78 
Out-Functional Syntactic Dep.   25.96   68.42   0    543    5.241    32.57 
Num. Logical Dep.     87.27   99.54   0    836    1.856      7.584 
Clustering Logical Dep.     0.72     0.316   0        1   -1.024      3.011 
Workflow  Dep.   22.53   12.76   0     44   -0.013      1.878 
Coordination Req.     0.14     0.121   0     0.62    2.655    11.91 

Project B: Embedded System 
 Mean SD Min Max Skew Kurtosis 

File Buggyness     0.14        0.35   0         1    2.026      5.105 
LOC 750.8 2874.3   0 65542  18.24  389.6 
Avg. Lines Changed   19.18     52.53   0     987    9.617  135.7 
In-Data Syntactic Dep.   10.61     85.60   0   1805  16.18  287.1 
Out-Data Syntactic Dep.     7.85     14.41   0     173 207.9    27.07 
In-Functional Syntactic Dep.     9.17     29.09   0     612   11.11  180.4 
Out-Functional Syntactic Dep.   15.84     29.08   0     238    3.396    18.01 
Num. Logical Dep.   38.61     41.61   0     370    3.152    18.61 
Clustering Logical Dep.     0.52       0.19   0       0.69   -1.241      4.010 
Workflow  Dep.   28.41     15.60   1      72    0.253      2.461 
Coordination Req.     0.85       0.14   0        1   -2.956    15.29 
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TABLE III 
PAIR-WISE CORRELATIONS (* P < 0.01) FOR LAST RELEASE IN EACH DATASET 

Project A: Distributed System 
 1 2 3 4 5 6 

1.FileBugyness -      
2.LOC (log)  0.28* -     
3.Number MRs (log)  0.37*  0.24* -    
4.Avg. Lines Changed (log)  0.18*  0.27*  0.30* -   
5.In-Data Dep. (log)  0.06*  0.01  0.08*  0.03 -  
6.Out-Data Dep. (log)  0.18*  0.47*  0.19*  0.19* -0.26* - 
7.In-Functional Dep. (log)  0.04*  0.27*  0.09*  0.09* -0.10*  0.37* 
8.Out-Functional Dep. (log)  0.11*  0.43*  0.15*  0.16* -0.24*  0.78* 
9.Num Logical Dep. (log)  0.49*  0.33*  0.45*  0.16*  0.04*  0.23* 
10.Clustering Logical Dep. (log) -0.32* -0.21* -0.29* -0.13* -0.06* -0.17* 
11.Workflow Dep. (log)  0.33*  0.06*  0.33*  0.12*  0.02  0.07* 
12.Coordination Req.  Dep. (log)  0.04* -0.06* -0.15* -0.06* -0.01 -0.03 

 7 8 9 10 11 12 
8.Out-Functional Dep. (log)   0.44* -     
9.Num Logical Dep. (log)  0.06*  0.19* -    
10.Clustering Logical Dep. (log) -0.10* -0.14* -0.05* -   
11.Workflow Dep. (log) -0.07* -0.03  0.31* -0.12* -  
12.Coordination Req.  Dep. (log) -0.07* -0.05*  0.02  0.12*  0.15* - 

Project B: Embedded System 
 1 2 3 4 5 6 

1.FileBugyness -      
2.LOC (log)  0.28* -     
3.Number MRs (log)  0.55*  0.41* -    
4.Avg. Lines Changed (log)  0.19*  0.42*  0.35* -   
5.In-Data Dep. (log)  0.22*  0.33*  0.26*  0.19* -  
6.Out-Data Dep. (log)  0.26*  0.60*  0.34*  0.35*  0.49* - 
7.In-Functional Dep. (log)  0.19*  0.36*  0.25*  0.19*  0.47*  0.54* 
8.Out-Functional Dep. (log)  0.28*  0.59*  0.38*  0.39*  0.43*  0.88* 
9.Num Logical Dep. (log)  0.29*  0.26*  0.62*  0.25*  0.13*  0.20* 
10.Clustering Logical Dep. (log) -0.28* -0.15* -0.34* -0.10* -0.17* -0.21* 
11.Workflow Dep. (log)  0.26*  0.09*  0.38*  0.01  0.19*  0.10* 
12.Coordination Req.  Dep. (log)  0.17* -0.03  0.26* -0.05  0.14*  0.02 

 7 8 9 10 11 12 
8.Out-Functional Dep. (log)  0.52* -     
9.Num Logical Dep. (log)  0.12*  0.22* -    
10.Clustering Logical Dep. (log) -0.19* -0.20*  0.17* -   
11.Workflow Dep. (log)  0.08  0.10*  0.29* -0.18* -  
12.Coordination Req.  Dep. (log)  0.07  0.04  0.24* -0.12*  0.75* - 

 

Table IV reports the variance inflation factor and tolerance associated with each of our meas-

ures. We start our multicollinearity diagnostic with model I that contains all our independent 
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measures. We observe that for both projects A and B, the measures Out-Data Syntactic Depend-

encies and Out-Functional Syntactic Dependencies have a VIF significantly higher (or a toler-

ance significantly lower) than the other measures. We removed those two variables and the re-

computed VIF and tolerances values for the remaining measures are reported in model II in Ta-

ble IV. We observe that Number of MRs has a lower tolerance than the rest of the measures, par-

ticularly in project B’s data. Consequently, we removed it and the resulting VIFs and tolerances 

are reported in model III. In this case, the data for project A does not show signs of multicollin-

earity, with the tolerances of all measures above 0.70.  

 
TABLE IV 

COLLINEARITY DIAGNOSTICS 
Project A: Distributed System 

 Model I 
VIF (Tolerance) 

Model II 
VIF (Tolerance) 

Model III 
VIF (Tolerance) 

Number of MRs (log) 1.59 (0.6289) 1.59 (0.6297) --- 
LOC (log) 1.53 (0.6530) 1.32 (0.7564) 1.32 (0.7564) 
Avg. Lines Changed (log) 1.16 (0.8596) 1.16 (0.8625) 1.11 (0.9035) 
In-Data Dep. (log) 1.13 (0.8867) 1.02 (0.9793) 1.02 (0.9825) 
Out-Data Dep. (log) 2.85 (0.3503) --- --- 
In-Functional Dep. (log) 1.26 (0.7916) 1.11 (0.9007) 1.11 (0.9031) 
Out-Functional Dep. (log) 2.79 (0.3587) --- --- 
Num Logical Dep. (log) 1.47 (0.6825) 1.45 (0.6880) 1.26 (0.7950) 
Clustering Logical Dep. (log) 1.16 (0.8584) 1.16 (0.8628) 1.09 (0.9152) 
Workflow Dep. (log) 1.26 (0.7921) 1.24 (0.8040) 1.18 (0.8487) 
Coordination Req.  Dep. (log) 1.09 (0.9213) 1.08 (0.9218) 1.05 (0.9523) 

Project B: Embedded System 
 Model I 

VIF (Tolerance) 
Model II 

VIF (Tolerance) 
Model III 

VIF (Tolerance) 
Number of MRs (log) 2.82 (0.3547) 2.80 (0.3573) --- 
LOC (log) 1.83 (0.5467) 1.49 (0.6689) 1.45 (0.6897) 
Avg. Lines Changed (log) 1.34 (0.7469) 1.30 (0.7687) 1.28 (0.7826) 
In-Data Dep. (log) 1.47 (0.6787) 1.38 (0.7244) 1.38 (0.7260) 
Out-Data Dep. (log) 4.91 (0.2038) --- --- 
In-Functional Dep. (log) 1.58 (0.6344) 1.39 (0.7181) 1.39 (0.7184) 
Out-Functional Dep. (log) 4.75 (0.2105) --- --- 
Num Logical Dep. (log) 2.32 (0.4316) 2.31 (0.4321) 1.33 (0.7528) 
Clustering Logical Dep. (log) 1.61 (0.6223) 1.60 (0.6251) 1.19 (0.8435) 
Workflow Dep. (log) 2.56 (0.3913) 2.55 (0.3927) 2.50 (0.4003) 
Coordination Req.  Dep. (log) 2.38 (0.4201) 2.37 (0.4228) 2.36 (0.4230) 

 

On the other hand, in project B, the low tolerance values for the two measures of work de-

pendencies suggest some potential multicollinearity problems. Removing the Coordination Re-

quirement Dependencies measure from model III results in an improvement of the VIF associ-



 

 

23

ated with Workflow dependencies down to 1.20 (tolerance = 0.8304). In addition, the tolerances 

of all remaining variables increased with the minimum value being 0.7028 for the LOC measure. 

In section VI, we revisit this issue when discussing the results from our regression analyses. 

VI. RESULTS 

We approached the analysis in two stages. In the first stage, we focused on examining the rela-

tive impact of each dependency type on failure proneness of source code files. The data corre-

sponding to the last release from each project was used in this analysis. In the second stage, we 

verified the consistency of the initial results by conducting a number of confirmatory analyses 

for each project. These analyses included re-estimating our logistic regression models for each 

release as well as estimating a single longitudinal model comprising all releases. The detailed 

results of each stage are discussed in turn. 

A. The Impact of Dependencies 

We constructed several logistic regression models to examine the relative impact of each class 

of independent variable on the failure proneness of a software system using the data from the last 

release of each project. Following a standard hierarchical modeling approach, we started our 

analysis with a baseline model that contains only the traditional predictors. In subsequent mod-

els, we added the measures for syntactic, logical and work dependencies described in the previ-

ous sections. We assessed the goodness-of-fit of the model to evaluate the impact of each class 

of dependency measures on failure. For each statistical model, we report the χ2 of the model, the 

percentage of deviance explained by the model as well as the statistical significance of the dif-

ference between a model that adds new factors and the previous model without the new meas-

ures.  Deviance is defined as -2 times the log-likelihood of the model. The percentage of the de-

viance explained is a ratio of the deviance of the null model (containing only the intercept), and 
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the deviance of the final model. Model parameters were estimated, as is customary in logistic 

regression, using a maximum-likelihood method.  In order to simplify the interpretation of the 

results, we report the odds ratios associated with each measure instead of reporting the regression 

coefficients. Odds ratios larger than 1 indicate a positive relationship between the independent 

and dependent variables whereas an odds ratio less than 1 indicates a negative relationship. For 

example, an odds ratio of two for a binary factor doubles the probability of a file having a cus-

tomer reported defect when the remaining factors in the model are at their lowest values. The 

presented odds ratio is the exponent of the logistic regression coefficient. 

Table V and VI report the odds ratios of the various logistic regression models using the data 

from project A and project B, respectively. In both tables, model I includes the LOC and Avg. 

Lines Changed measures. As discussed in section V, the Number of MRs measure (a proxy for 

past changes) was not included in the analyses due to multicollinearity concerns. Model I, in ta-

bles V and VI, shows that LOC is positively associated with failure proneness. These results 

agree with those found by Briand and colleagues [4], in contrast with earlier findings [3, 34]. 

Avg. Lines Changed is also positively related to failure proneness in both projects, indicating that 

the more modifications to a file, the higher the likelihood of encountering a field defect associ-

ated with that file. Specifically, a unit change in the log-transformed Avg. Lines Changed meas-

ure (or a change from 1 to 2.7 lines per MR in untransformed units), increases the odds of a field 

defect by 20% for project A (Table V – Model I) and 25% in the case of project B (Table VI – 

Model I). 
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TABLE V 

ODDS RATIOS FROM LOGISTIC REGRESSION ON PROJECT A (DISTRIBUTED SYSTEM) DATA 
 Model I Model II Model III Model IV Model V 
LOC (log)  1.392**  1.418**  1.119**  1.142**  1.150** 
Avg. Lines Changed (log)  1.203**  1.200**  1.138**  1.114**  1.126** 
In-Data Dep. (log)   1.166**  1.103*  1.105*  1.112* 
In-Functional Dep. (log)   0.949*  0.953+  0.982  0.989 
Num Logical Dep. (log)    2.277**  2.079**  2.108** 
Clustering Logical Dep. (log)    0.009**  0.012**  0.009** 
Workflow Dep. (log)     2.011**  1.905** 
Coordination Req.  Dep. (log)      2.801** 

Model χ2 (p-value) 
388.87    

(p < 0.01) 
412.21 

(p < 0.01) 
1621.31    

(p < 0.01) 
1737.52    

(p < 0.01) 
1763.18    

(p < 0.01) 

Deviance Explained 7.1% 7.5% 29.5% 31.6% 32.1% 

Model Comparison χ2 (p-value) 
-- 23.34    

(p < 0.01) 
1209.10    

(p < 0.01) 
116.21    

(p < 0.01) 
25.67    

(p < 0.01) 

(+ p < 0.10; * p < 0.05; ** p < 0.01) 
 

Model II introduces the syntactic dependency measures Inflow Data and Inflow Functional. 

The results of the logistic regression show that the impact of data syntactic dependencies are on-

ly marginally significant, which can be seen more clearly as the other factors are included in the 

regression model (see models III, IV and V in tables V and VI). In the case of project A, data 

syntactic dependencies are statistically significant across the various models and with the ex-

pected direction in their impact on failure proneness. On the other hand, the impact of the func-

tional syntactic dependencies measure, unexpectedly, has the opposite direction. However, once 

the models include logical and work dependencies, the functional syntactic dependency measure 

no longer has statistical significance indicating that this type of syntactic relationship does not 

impact failure proneness. This latter pattern is also reflected in the data for project B where both 

syntactic dependency measures become irrelevant once the logical and work dependency meas-

ures enter the models (see table VI, models III, IV and V). Given the limited impact of the syn-

tactic dependencies on failure proneness it is not surprising to see a relatively modest improve-

ment in the explanatory power of model II over model I (e.g. in project A deviance improves 
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from 7.1% to 7.5%). We do note however, that while improvement in the explanatory power is 

modest, the addition of the syntactic dependency measures does provide a statistically significant 

improvement in model fit as indicated by the model comparison χ2 (project A: 23.34 – p < 0.01; 

project B: 14.41 – p < 0.01). 

 
TABLE VI 

ODDS RATIOS FROM LOGISTIC REGRESSION ON PROJECT B (EMBEDDED SYSTEM) DATA 
 Model I Model II Model III Model IV Model V 
LOC (log)  1.800**  1.638**  1.497**  1.493**  1.499** 
Avg. Lines Changed (log)  1.247**  1.253**  1.115  1.178  1.184 
In-Data Dep. (log)   1.207*  1.124  1.046  1.142 
In-Functional Dep. (log)   1.131  1.013  1.002  0.996 
Num Logical Dep. (log)    2.303**  1.822**  1.803** 
Clustering Logical Dep. (log)    0.005**  0.013**  0.014** 
Workflow Dep. (log)     6.527**  4.899** 
Coordination Req.  Dep. (log)     37.616 

Model χ2 (p-value) 
86.01 

(p < 0.01) 
100.42 

(p < 0.01) 
218.13 

(p < 0.01) 
239.27 

(p < 0.01) 
240.02 

(p < 0.01) 

Deviance Explained 11.8% 13.8% 30.1% 32.9% 33.0% 

Model Comparison χ2 (p-value) -- 
14.41    

(p < 0.01) 
117.71    

(p < 0.01) 
21.14    

(p < 0.01) 
0.75    

(p=0.387) 

(+ p < 0.10; * p < 0.05; ** p < 0.01) 
 

Model III also considers the logical dependency measures. As Table V and VI show, the odds 

ratios associated with each of the logical dependency measures in the logistic regression are 

greater than one, indicating that higher numbers of logical dependencies are related to an in-

crease in the likelihood of failure. In particular, a unit increase in the log-transformed Number of 

Logical Dependencies measure, increases the odds of a failure 2.272 times higher for project A 

(Table V – Model III) and 2.277 times higher for project B (Table VI – Model III).  The analyses 

reported in section V showed relatively low levels of correlation between syntactic and logical 

dependency measures. Thus, the results reported in Tables V and VI suggest the effect of logical 

dependencies on failure proneness is complementary and significantly more important than the 

impact of syntactic dependencies. In addition, the levels of explained deviance for model III in 

both projects clearly shows that the contribution of the logical dependencies measures to the ex-
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planatory power of the model is much higher than the impact of the syntactic dependencies 

measure.  

The results reported in Model III in Tables V and VI also indicate that increases in the Cluster-

ing of Logical Dependencies significantly reduce the likelihood of failures.  This result may sug-

gest that the clustering is a symptom of good, consistent modular design.  Alternatively, it may 

be that as clusters of consistently interrelated files emerge, developers become more cognizant of 

such relationships and know where to look to make sure that changes to one part of the system 

do not introduce problems elsewhere.  

In both Tables V and VI, model IV includes the first of our work dependency measures – 

workflow dependencies. The results are consistent across both projects. Higher numbers of 

workflow dependencies increase the likelihood that source code files contain field defects. In 

particular, a unit increase in the log-transformed number of Workflow Dependencies measure, 

increases the odds of a failure 2.011 times higher for project A (Table V – Model IV) and 6.527 

times higher for project B (Table VI – Model IV).   Model V shows the impact of the second 

work dependency measure – coordination requirements. In project A, the impact of the Coordi-

nation Requirement measure is statistically significant and with an odds ratio of 2.801, its impact 

is higher than the impact of the Workflow Dependencies. On the other hand, in project B, its ef-

fect is not statistically significant. As discussed in section V, there is high collinearity between 

the two work dependency measures in project B’s data (Table III: correlation is 0.75; Table IV: 

VIFs > 2), consequently, the regression results were expected.  

In this paper, we set out to examine the relative impact of syntactic, logical and work-related 

classes of dependencies on failure proneness. The results presented in this section showed that all 

types of dependencies affect failures in a software system. More importantly, their role is com-
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plementary suggesting the various types of dependencies capture different relevant aspects of the 

technical properties of a software system as well as elements of the software development proc-

ess. Logical and work dependencies have a significantly higher impact on failure proneness as 

their associated odds ratios indicate. For instance, a unit increase in the log-transformed meas-

ures of Number of Logical Dependencies and Workflow dependencies increase the odds of post-

release defects 2 times more than syntactic dependencies in the case of project A and 2 times and 

6 times, respectively, for the case of project B.  

B. Stability Analysis 

In the previous section, we showed that the different types of dependencies affected failure 

proneness in the last release of each project. It is also critical to examine whether our results are 

robust across the various releases of the products covered by our data. Accordingly, we ran the 

same logistic regression models on the data from the first three releases from project A and the 

additional five releases from project B. Table VII reports the odd ratios for all the measures from 

the logistic regression using the data from project A. Table VIII reports the odd ratios for the 

measures from the logistic regression using the data from project B. As discussed in the previous 

section, we did not include the Coordination Requirement Dependencies measures in the analy-

sis of project B because of the high correlation of that measure with the Workflow Dependencies 

measure. We observe that the results are mostly consistent with those reported in the previous 

section for both project A and B.  However, there is one exception. The results for the measure 

of Workflow Dependencies are not consistent across releases in the data from project A. One 

possible explanation is the changing nature of the development work associated with each re-

lease. For instance, release 1 of project A was in fact the first release of the product. The devel-

opment effort associated with subsequent releases involved an increasing amount of work related 
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to fixing defects reported against previous releases and a decreasing amount of development ef-

fort on new features. In the case of project B, the impact of the Workflow Dependencies measure 

is consistent across all five releases. However, the coefficient for release 1 is not statistically sig-

nificant.   

 
TABLE VII 

IMPACT OF DEPENDENCIES ACROSS RELEASES IN PROJECT A 
 Release 1 Release 2 Release 3 
LOC (log)  1.211**  1.087**  1.201** 
Avg. Lines Changed (log)  1.122**  1.083*  1.048 
In-Data Dep. (log)  1.243**  1.207*  1.125* 
In-Functional Dep. (log)  0.985  1.041  1.013 
Num Logical Dep. (log)  1.411**  1.949**  1.806** 
Clustering Logical Dep. (log)  0.064**  0.023**  0.017** 
Workflow Dep. (log)  1.287**  0.850**  1.448** 
Coordination Req.  Dep. (log)  1.007 10.852**  3.901** 

Model χ2 (p-value) 
514.53 

(p < 0.01) 
821.61 

(p < 0.01) 
1121.96 

(p < 0.01) 

Deviance Explained 13.7% 191% 22.2% 

(+ p < 0.10; * p < 0.05; ** p < 0.01) 
 

The results reported in Tables VII and VIII showed overall consistent effects of our predictors 

across the different releases covered by our data. However, the development effort associated 

with each release might have a temporal relationship. For instance, the technical or work de-

pendencies from release 2 could influence the measures from release 3. More formally, the vari-

ous measures associated with each of the releases could exhibit autocorrelation. Therefore, we 

ran an additional confirmatory analysis using a longitudinal (random effects) model that consid-

ers the data from all releases in each project simultaneously.  Using this procedure, we accounted 

for any potential temporal factors that might affect the estimation of the coefficients that repre-

sent the impact of our measures on failure proneness. Overall, the results of the random effects 

model were consistent with those reported in Tables V, VI, VII and VIII. 
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TABLE VIII 

IMPACT OF DEPENDENCIES ACROSS RELEASES IN PROJECT B 
 Release 1 Release 2 Release 3 Release 4 Release 5 
LOC (log)  1.642*  1.823*  1.713*  1.447**  1.477** 
Avg. Lines Changed (log)  0.984  0.816  0.892  1.116  1.171 
In-Data Dep. (log)  1.126  0.905  0.948  0.981  1.057 
In-Functional Dep. (log)  0.619  1.153  0.978  1.016  1.001 
Num Logical Dep. (log)  3.964**  3.187**  2.166**  1.771**  1.865** 
Clustering Logical Dep. (log)  0.001**  0.007**  0.008**  0.012**  0.013** 
Workflow Dep. (log)  1.101  1.870*  1.711*  3.936**  3.904** 
Coordination Req.  Dep. (log) --- --- --- --- --- 

Model χ2 (p-value) 
103.44 

(p < 0.01) 
150.09 

(p < 0.01) 
159.31 

(p < 0.01) 
201.63 

(p < 0.01) 
213.99 

(p < 0.01) 

Deviance Explained 42.1% 40.5% 29.4% 30.6% 30.8% 

(+ p < 0.10; * p < 0.05; ** p < 0.01) 
 

VII. DISCUSSION 

The observed relative contributions of different types of dependencies on failure proneness in 

two unrelated projects have consequences of both theoretical and practical interest. All three 

types of dependencies are relevant and their impact is complementary showing their independent 

and important role in the development process. These results suggest that quality improvement 

efforts could be tailored to ameliorate the negative effects of particular types of dependencies 

with emphasis on areas that have the largest impact on project quality.  

Past research [4, 29, 40] has shown that source code files with higher number of syntactic de-

pendencies were more prone to failure. Our analyses indicate that such impact is limited. On the 

other hand, our results suggest logical dependencies and work dependencies are significantly 

more important factors impacting the likelihood of source code files to exhibit field defects. In 

addition, this study is the first analysis that highlights the importance of the structure of the logi-

cal relationships – source code files with logical dependencies to other files that are also highly 

interdependent among themselves were less likely to exhibit customer-reported defects. We can 

view these groups of files as a unit where the structure of the technical dependencies in the unit 
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influences its quality. These results suggest a new view of product dependencies with significant 

implications regarding how we think about modularizing the system and how development work 

is organized. The effect of the structure of the network of product dependencies elevates the idea 

of modularity in a system to the level of “clusters” of source code files. These highly inter-

related sets of files become the relevant unit to consider when development tasks and responsi-

bilities are assigned to organizational groups. 

The second significant contribution of this study is the recognition and the assessment of the 

impact the engineers’ social network has on the software development process. Nagappan and 

colleagues [36] have examined the impact on failure proneness of structural properties of the 

formal organization (e.g. organizational chart). However, the informal organization which 

emerges as part of personal relationships is significantly more important for performing tasks in 

organizations [30]. Similarly, Meneely et al. [31] looked at the relationship among developers 

based on a file-touched network that may to some extent reflect social relationships among the 

developers that are more directly captured using workflow measures. Our measures of work de-

pendencies capture the important elements of the informal organization in the context of soft-

ware development tasks. Our results showed that individuals that exhibited a higher number of 

workflow dependencies and coordination requirements were more likely to have defects in the 

files they worked on. These findings suggest the difficulty of needing to receive work from or 

coordinate with multiple people and manage those relationships appropriately in order to perform 

the tasks. 

This study has an additional characteristic worthy of note. The empirical analyses were repli-

cated across two distinct projects from two unrelated companies obtaining consistent results. 

This replication provides us with unusually good external validity that is not easily achieved giv-
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en proprietary concerns, etc.3  We believe this study provides a proof of concept that such analy-

ses are possible, and given the improved external validity, we think such an approach should be 

adopted (wherever logistics permit) as a standard of validity for industry studies. 

A. Threats to Validity and Limitations 

First, it is important to highlight some potential concerns for construct validity, particularly re-

garding work dependencies. Over the years, there have been many efforts to measure task inter-

dependencies in the context of software development. However, most of the approaches have 

focused on stylized representations of work dependencies, particularly in organizational studies 

(e.g. [10, 42]). Our study proposed two measures that capture the fine-grained dependencies that 

exist in software development and emerge over time as technical decisions are implemented. 

Certainly, there might be other potentially superior measures of development work dependen-

cies, however, little is known about how to develop such measures.  

Operationalization of software dependency measures is fraught with difficulties as projects 

produce products for different domains, using different tools and disparate practices making it 

difficult to design measures that capture aspects of the same phenomena across unrelated pro-

jects. Therefore, we felt it was important to replicate the entire measurement and analysis process 

on two unrelated projects each using different sets of tools and practices. Furthermore, we inves-

tigated the stability of the results by analyzing individual releases and using random effects mod-

els to account for potential autocorrelation. 

The work reported in this study has several limitations. First, our analysis cannot claim causal 

effects. For example, even though dependencies in workflow are related to customer reported 

defects, it may be possible that the defects somehow increase the dependencies in the workflow.  

 
3 In our case, it required a strategy in which data extraction was performed on machines inside company firewalls, to ensure that only ano-

nymized data is provided for statistical modeling.   
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Secondly, our results on the role of syntactic dependencies are based on two projects where the 

software was developed in two programming languages (C and C++) that are somewhat similar 

in terms of how technical dependencies are represented. Projects that involve programming lan-

guages with very distinct technical properties might exhibit a different impact of syntactic de-

pendencies on failure proneness. 

B. Applications 

1) Enhancing Dependency Awareness 

We observed that logical dependencies were considerably more relevant than syntactic de-

pendencies in relation to the failure proneness of a software system. They may also be less ap-

parent to developers, since they are not as easily discovered by tracing function calls, value as-

signments, or other things locally visible in the code. 

Tools such as TUKAN [41], Palantir [39] and Ariadne [44] provide visualization and aware-

ness mechanisms to aid developers in coordinating their work. Those tools achieve their goal by 

monitoring concurrent access to software artifacts, such as source code files, and by identifying 

syntactic relationships among source code files. This information is visualized to assist the de-

velopers in resolving potential conflicts in their development tasks. Using the measures proposed 

in this paper, new tools or extensions to those tools could be developed to provide an additional 

view of product dependencies using logical dependencies. These new tools would then be in a 

position to provide complementary product dependency information to the developers which 

could be more valuable in terms of raising awareness among developers about the potential im-

pact of their changes in the software system. Moreover, since logical dependencies might be of 

different types such as implicit relationships (e.g. events), cascading function calls or time-

related relationships, tools could leverage such a categorization to provide more selective aware-
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ness information for particular user needs or work contexts. Secondly, these new tools could also 

provide a more precise view of coordination needs among developers using the work dependen-

cies measures presented in this paper. For instance, the coordination requirements measure goes 

beyond identifying such dependencies, allowing developers to identify those files that have de-

pendencies among themselves when those dependencies are not explicitly determined. It is im-

portant to also highlight that the development of future tools that use logical and coordination 

requirements dependencies is faced with important challenges such as the identification of the 

most relevant subset of dependencies for a particular work context and the presentation of such 

information to improve awareness and limit “play the system” behavior. There are also some mi-

nor but quite relevant process related issues that require attention such as difficulty of maintain-

ing consistent data about modification requests and version control changes over time and auto-

mation of the collection and processing of the data.  

2) Reducing and Coping with Dependencies 

Once developers, architects or other relevant stakeholders become aware of particular patterns 

of technical dependencies, they could be in a position to utilize specific techniques to reduce 

those dependencies, in particular logical relationships. For instance, system re-architecting is a 

promising technique to reduce logical dependencies and in a large system it was demonstrated to 

relate to quality improvements [22].  Other code reorganization techniques that make the struc-

ture of the systems more suitable for geographically distributed software development organiza-

tions could also focus their attention on logical dependencies. Such is the case of the globaliza-

tion by chunking approach [33] that provides a way to select tightly clustered groups of source 

code files (in terms of logical dependencies) that exhibit few logical dependencies with the rest 

of the system. Alternatively, methods to make logical dependencies more explicit by, for exam-
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ple, introducing syntactic dependencies where only logical dependencies exist could be explored 

given the important difference between the role of logical and syntactic dependencies suggested 

by our results. 

In recent years, a number of tools that either implement some of the code re-organization ap-

proaches described in the previous paragraph or provide new mechanisms for coping with tech-

nical dependencies have been proposed. For instance, tools that highlight and filter changes from 

different releases helping to cope with interdependencies between changes in subsequent releases 

have been shown to improve productivity [1]. The results of this study provide valuable informa-

tion to allow this type of tool to focus on those dependencies that are most relevant. 

3) Guiding Future Research 

While it seems clear that logical dependencies play a major role in software failures, we do not 

yet have a clear idea of the precise nature of these dependencies.  Research and practices focused 

on syntactic dependencies, as found in strongly typed languages for example, are likely respon-

sible for weakening the relationship between such dependencies and fault proneness.  We sug-

gest that an emphasis on understanding the precise nature of logical dependencies is a fertile area 

for future research.  Such research could, for example, examine the code that is changed together 

to understand if it represents cascading function calls, or semantic dependencies, platform evolu-

tion, or other types of relationships.  A more detailed understanding of the bases of logical de-

pendencies is an important future direction with implications in research areas such as software 

quality and development tools.  
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