

Software Dependencies, Work Dependencies,
and Their Impact on Failures

Marcelo Cataldo, Robert Bosch LLC

Audris Mockus, Avaya Labs Research

Jeffrey A. Roberts, Duquesne University

 James D. Herbsleb, Carnegie Mellon University

2

Abstract--Prior research has shown that customer reported software faults are often the result of violated dependencies

that are not recognized by developers implementing software. Many types of dependencies and corresponding measures
have been proposed to help address this problem. The objective of this research is to compare the relative performance of
several of these dependency measures as they relate to customer reported defects. Our analysis is based on data collected
from two projects from two independent companies. Combined, our data set encompasses eight years of development
activity involving 154 developers. The principal contribution of this study is the examination of the relative impact that
syntactic, logical and work dependencies have on the failure proneness of a software system. While all dependencies in-
crease the fault proneness, the logical dependencies explained most of the variance in fault proneness, while workflow
dependencies had more impact than syntactic dependencies. These results suggest that practices such as re-architecting,
guided by the network structure of logical dependencies, holds promise for reducing defects.

Index Terms — Distribution / maintenance / enhancement, metrics / measurement, organizational management and co-
ordination, quality analysis and evaluation.

I. INTRODUCTION

It has long been established that many software faults are caused by violated dependencies that

are not recognized by developers designing and implementing a software system [12, 26]. The

failure to recognize these dependencies could stem from technical properties of the dependencies

themselves as well as from the way development work is organized. In other words, two dimen-

sions are at play – technical and organizational.

On the technical side, the software engineering literature has long recognized call and data-

flow syntactic relationships as an important source of error [4, 29, 40]. Research in the software

evolution literature has introduced a new view on technical dependencies among software mod-

ules. Gall and colleagues [21] introduced the idea of “logical” coupling (or dependencies) by

showing that source code files that are changed together can uncover dependencies among those

files that are not explicitly identified by traditional syntactic approaches. Past work has also ex-

amined aspects of the relationship between logical dependencies and failures in software sys-

Software Dependencies, Work Dependencies,
and Their Impact on Failures

Marcelo CATALDO, Audris MOCKUS, Jeffrey A. ROBERTS, and James D. HERBSLEB

3

tems. Eick and colleagues [15] used increases of such logical coupling as an indicator of “code

decay”. Graves and colleagues [23] showed that past changes are good predictors of future

faults, and Mockus and Weiss [32] found that the spread of a change over subsystems and files is

a strong indicator that the change will contain a defect.

Human and organizational factors can also strongly affect how dependencies are handled, po-

tentially affecting the quality of a software system. Research has shown that the level of interde-

pendency between tasks tends to increase the level of communication and coordination activities

among workers [20, 46]. Recent studies suggest however, that the identification and manage-

ment of technical dependencies is a challenge in software development organizations, particu-

larly when those dependencies are semantic rather than syntactic [7, 12, 24, 27]. Appropriate

levels of communication and coordination may not occur, potentially decreasing the quality of a

system [11, 26]. Consequently, it is important to understand how work dependencies (i.e., the

way dependencies are manifested in development tasks) impact failure proneness.

In contrast with research on fault prediction models [35, 36, 48], our work focuses on evaluat-

ing several potential causes of defects, rather than formulating a predictive model. The principal

contribution of this study is the examination of the relative impact that syntactic, logical and

work dependencies have on the failure proneness of software systems. While all these factors

are shown to be related to failures, the strength of the relationships varies dramatically. Under-

standing the relative impact is critical for determining where to focus research, tools, and process

improvement. In addition, we also sought to improve the external validity of the study by repli-

cating the analysis over multiple releases of two distinct projects from two unrelated companies.

The remainder of the paper is organized as follows. The next two sections elaborate on how

syntactic, logical, and work-related dependencies relate to a software system’s failure proneness.

4

Sections 4, 5 and 6 describe the study methodology, preliminary analyses and the results, respec-

tively. We conclude the paper with a discussion of the contributions, limitations, and future

work.

II. SOFTWARE DEPENDENCIES AND FAILURE PRONENESS

The traditional syntactic view of software dependency had its origins in compiler optimiza-

tions, and focused on control and dataflow relationships [28]. This approach extracts relational

information between specific units of analysis such as statements, functions or methods, and

source code files. Dependencies are discovered, typically, by analysis of source code or from an

intermediate representation such as bytecodes or abstract syntax trees. These relationships can be

represented either by a data-related dependency (e.g. a particular data structure modified by a

function and used in another function) or by a functional dependency (e.g. method A calls me-

thod B).

The work by Hutchens and Basili [29] and Selby and Basili [40] represents the first use of de-

pendency data in the context of a system’s propensity for failure. Building on the concepts of

coupling and cohesion proposed by Stevens, Myers and Constantine [43], Hutchens and Basili

[29] presented metrics to assess the structure of a system in terms of data and functional relation-

ships, which were called bindings. The authors used clustering methods to evaluate the modu-

larization of a particular system. Selby and Basili [40] used the data binding measure to relate

system structure to errors and failures. They found that routines and subsystems with lower cou-

pling were less likely to exhibit defects than those with higher levels of coupling. Similar results

have been reported in object-oriented systems. Chidamber and Kemerer [9] proposed a set of

measures that captures different aspects of the system of relationships between classes. Briand

and colleagues [4] found that the measures of coupling proposed by Chidamber and Kemerer

5

were positively associated with failure proneness of classes of objects.

More recently, models focused on the prediction of failure proneness have been explored using

various concepts to organize (or group) software artifacts into various units of analysis. These

organizing concepts include architectural, graph-theoretic, and “concerns” perspectives. Meas-

ures such as network, syntactic dependency, and complexity metrics are used to explore the as-

sociation between the artifact groups and post-release defects. Eaddy and colleagues [14] ex-

plored defects using concerns (i.e., features or requirements) to organize software artifacts for

analysis. Here, the authors found that dispersion of a concern’s implementation (“scatter”) was

associated with software defects. Nagappan and Ball [35] explored software failures using two

architectural levels within Microsoft Windows to establish their unit of analysis. The authors

found that syntactic dependencies and source-code change metrics (“churn”) calculated within

and between components (binaries or DLLs) and higher level application areas (e.g. the Internet

Explorer area) were predictive of post-release failures. Zimmerman and Nagappan [48] applied a

graph theoretic lens to classify and calculate network measures for Windows binaries. In this

work, the authors demonstrated that orthogonal linear combinations of network, syntactic de-

pendency, and complexity metrics could be used to predict post-release defects.

In contrast to the previously discussed research, an alternative view of dependency has been

developed in the software evolution literature. This approach focuses on deducing dependencies

between the source code files of a system that are changed together as part of the software devel-

opment effort and it was first discussed in the literature as “logical coupling” by Gall and col-

leagues [21]. Unlike traditional syntactic dependencies, this approach identifies indirect or se-

mantic relationships between files that are not explicitly deducible from the programming lan-

guage constructs [21]. There are several cases where logical dependencies provide more valuable

6

information than syntactic dependencies. Remote procedure calls (RPCs) represent a simple ex-

ample. Although the syntactic dependency approach would provide the necessary information to

relate a pair of modules, such information would be embedded in a long path of connections

from the RPC caller through the RPC stubs all the way to the RPC server module. On the other

hand, when the module invoking the RPC and the module implementing the RPC server are

changed together a logical dependency is created, showing a direct dependency between the af-

fected source code files. The logical dependency approach is even more valuable in cases such as

publisher-subscriber or event-based systems where the call-graph approach would fail to relate

the interdependent modules since no syntactically visible dependency would exist between, for

instance, a module that generates an event and a module that registers to receive such an event.

Not only does the logical dependency approach have the potential to identify important de-

pendencies not visible in syntactic code analyses, it may also filter out syntactic dependencies

that are unlikely to lead to failures. For example, in the case of basic libraries (e.g. memory man-

agement, printing functionality, etc.) the syntactic dependencies approach would highlight these

highly coupled files. Yet, they tend to be very stable and unlikely to fail despite a high level of

coupling. The logical dependency approach eliminates these problems as the likelihood of

change in files that implement these basic functions is very low, hence, a logical dependency

would not be established.

It is difficult to know if the logical dependency approach actually realizes these potential ad-

vantages. Only limited work has focused on the relationship between logical dependencies and

failure proneness of a system. Mockus and Weiss [32] found that in a large switching software

system, the number of subsystems modified by a change is an excellent predictor of whether the

change contains a fault. Nagappan and Ball [35] found that architecturally based logical coupling

7

metrics are correlated with post-release failure proneness of programs. However, the authors

computed metrics at the level of component and program areas, a coarse-grain approach resulting

in measures too highly correlated to allow the authors to assess each metric’s relative impact on

failure proneness.

In sum, the extant research exploring the relationship between failure proneness of software

with regard to dependencies has focused on a single dependency type (syntactic or logical) and

has not examined the relative contribution of each of these types. One implication of this limita-

tion is that decisions regarding the focus of quality improvement efforts may be misplaced. Ad-

ditionally, research in this area has examined only a single project limiting the external validity

of results. This leads to our first research question:

RQ 1: What is the relative impact of syntactic and logical dependencies on the failure

proneness of a software system?

III. WORK DEPENDENCIES AND FAILURE PRONENESS

The literature on failure proneness has only recently begun to look at the impact of human and

organizational factors on the quality of such systems. The work on coordination in software de-

velopment suggests that identification and management of work dependencies is a major chal-

lenge in software development organizations [12, 24, 27]. Modularization is the traditional ap-

proach used to cope with dependencies in product development. In software engineering, Parnas

[37] was the first to articulate the idea of modular software design introducing the concept of in-

formation hiding. Parnas argued that modules be considered work items, not just a collection of

subprograms. The idea being that development on one module can proceed independently of the

development of another. Baldwin and Clark [2], in the product development literature, argued

that modularization makes complexity manageable, enables parallel work and tolerates uncer-

8

tainty. Like Parnas, Baldwin and Clark argued that a modular design structure leads to an equiva-

lent modular work structure.

The modularization argument assumes a simple and obvious relationship between product

modularization and task modularization – reducing the technical interdependencies among mod-

ules also reduces the interdependencies among the tasks involved in producing those modules.

In addition, the modular design approach assumes that reducing dependencies reduces the need

for work groups to communicate. Unfortunately, there are several problems with these assump-

tions. Recent empirical evidence indicates that the relationship between product structure and

task structure is not as simple as previously assumed [6]. Moreover, promoting minimal commu-

nication between teams responsible for related modules is problematic because it significantly

increases the likelihood of integration problems [13, 24]. Herbsleb and colleagues [26] theorized

that the irreducible inter-dependence among software development tasks can be thought of as a

distributed constrain satisfaction problem (DSCP) where coordination is a solution to the DSCP.

Within that framework, the authors argued that the patterns of task interdependence among the

developers as well as the density of the dependencies in the constraint landscape are important

factors affecting coordination success and, by extension, the quality of a software system and the

productivity of the software development organization.

More recently, Nagappan and colleagues [36], Pinzger and colleagues [38], and Meneely and

colleagues [32] investigated a series of organizational metrics as predictors of failure proneness

in Windows components and other software. All of the above studies share important limitations

with respect to understanding the impact of organizational and social factors in failure proneness.

First, they focus on failure prediction models and contain no analysis of the relative importance

of the measures in predicting software defects. Furthermore, the proposed measures do not spe-

9

cifically capture work dependencies per se but rather they are proxies for numerous phenomena

not necessarily related to the issue of work dependencies. For instance, the measure “number of

unique engineers who have touched a binary'' in [36, pg. 524] could be capturing different

sources of failures such as difficulties stemming from disparities in engineers' experience and

organizational processes rather than capturing issues of coordination [36]. In sum, there is a need

to better understand how the quality of a software system is affected by the ability of the devel-

opers to identify and manage work dependencies. This leads to our second research question:

RQ 2: Do higher levels of work dependencies lead to higher levels of failure proneness of a

software system?

IV. METHODS

We examined our research questions using two large software development projects. One pro-

ject was a complex distributed system produced by a company operating in the computer storage

industry. The data covered a period of approximately three years of development activity and the

first four releases of the product. The company had one hundred and fourteen developers

grouped into eight development teams distributed across three development locations. All the

developers worked full time on the project during the time period covered by our data. The sys-

tem was composed of approximately 5 million lines of code distributed in 7737 source code files

in C language with a small portion of 117 files, in C++ language.

The second project was an embedded software system for a communications device developed

by a major telecommunications company. Forty developers participated in the project over a pe-

riod of five years covering six releases of the product. All but one developer worked in the same

location. The system had more than 1.2 million lines of C and C++ code in 1224 files with 427

files written using in C++. We will refer to the distributed system as “project A” and to the em-

10

bedded system as “project B”.

In both development organizations, every change to the source code was controlled by modifi-

cation requests. A modification request (MR) is a development task that represents a conceptual

change to the software that involves modifications to one or more source code files by one or

more developers [33]. The changes could represent the development of new functionality or the

resolution of a defect encountered by a developer, the quality assurance organization, or reported

by a customer. We refer to latter type of defects as “field” defects. A similar process was associ-

ated with each modification request in both projects. Upon creation, the MR is in new state, it is

then assigned to a particular development team by a group of managers performing the role of a

change control board. Commits to the version control systems were not allowed without modifi-

cation request identifier. This characteristic of the process allowed the organizations to have a

reliable mechanism of associating the modification request reports with the actual changes to the

software code. As soon as all the changes associated with a modification request are completed,

the MR is set to review required state and a reviewer is assigned. Once the review is passed and

the changes are integrated and tested, the modification request is set to closed state. In project A,

we collected data corresponding to a total of 8257 resolved MRs belonging to the first four re-

leases of the product. We collected the data associated with more than 3372 MRs in project B. In

the remainder of this section, we describe the measures and the statistical models used in this re-

search.

A. Descriptions of the Data and Measures
We used three main sources of data in both projects A and B. First, the MR-tracking system

data was used to collect the modification requests included in our analysis. Secondly, the version

control systems provided the data that captured the changes made to the system’s source code.

Finally, the source code itself. Using the above data sources, we constructed our dependent and

11

independent measures that are described in the following paragraphs.

1) Measuring Failure

We chose to investigate failure proneness at the file level. Our dependent variable, File Buggy-

ness, is a binary measure indicating whether a file has been modified in the course of resolving a

field defect. For each file, we determined if it was associated with a field defect in any release of

the product covered by our data. We used the logistic regression model shown in Equation 1 in

order to model the binary dependent variable and assess the effect of syntactic, logical and work

dependencies.

∑

∑

∑

∑

∗
k

kk

n
nn

j
jj

i
ii

ε+MeasureAdditionalφ

+ureenciesMeasWorkDepend*δ

+easureendenciesMLogicalDep*χ

+sMeasureependencieSyntacticD*β=essFileBuggyn

 (1)

2) Syntactic Dependencies

We obtained syntactic dependency information using a modified version of the C-REX tool

[25] to identify programming language tokens and references in each entity of each source code

file.1 For all revisions of both systems, a separate syntactic dependency analysis was performed

for a snapshot of all source code associated with that revision. Each source code snapshot was

created at the end of the quarter in which the release took place. Using the resulting data, we

computed syntactic dependencies between source code files by identifying data, function and

method references crossing the boundary of each source code file. Let Dij represent the number

of data/function/method references that exist from file i to file j. We refer to data references as

data dependencies and function/method references as functional dependencies.

1 We were not able to utilize common object oriented coupling measures as both systems are predominantly written using the C programming

language.

12

Arguably, data and functional syntactic dependencies could impact failure proneness differ-

ently. Functional dependencies provide explicit information about the relationship between a

caller and a callee. On the other hand, data relationships are not quite as obvious, particularly, in

terms of understanding the modification sequences of data objects such as global variables. Such

understanding, typically, requires the usage of a tool such as a debugger. Consequently, we col-

lected four syntactic dependencies measures: inflow and outflow data relationships and inflow

and outflow functional dependencies. Each of those four measures capture the number of syntac-

tic dependencies of such type exhibited by each file i.

3) Logical Dependencies

Logical dependencies relate source code files that are modified together as part of an MR. If an

MR can be implemented by changing only one file, it provides no evidence of any dependencies

among files. However, when an MR requires changes to more than one file, we assume that de-

cisions about the change to one file depend in some way on the decisions made about changes to

the other files involved in the MR. The concept of logical dependencies is equivalent to Gall and

colleagues’ [21] idea of logical coupling.

In both projects, modification requests contained information about the commits made in the

version control system. As described earlier, such information was reliably generated as part of

the submission procedures established in the development organizations. Such data allowed us to

identify the relationship between development tasks and the changes in the source code associ-

ated with such tasks. Using this information, we constructed a logical dependency matrix. The

logical dependency matrix is a symmetric matrix of source code files where Cij represents the

sum, across all releases, of the number of times files i and j were changed together as part of an

MR. We accumulate the data across releases as files that are changed together in an MR provide

13

mounting evidence of the existence of a logical dependency. The longer the period of time con-

sidered, the more changes take place, increasing accuracy of the identified logical dependencies.

Although the association between MRs and changes in the code was enforced by processes and

tools, there are other sources of potential errors that might impact the quality of the data repre-

sented in the logical dependency matrix. For instance, a developer could commit a single change

to two files where one contained a fix to one MR and the second file had an unrelated change to

a second MR. We performed a number of analyses to assess the quality of our MR-related data

and minimize measurement error. We compared the revisions of the changes associated with the

modification requests and we did not find evidence of such type of behavior. We also grouped

version control commits that might have been associated with modification requests that were

marked as duplicates under a single MR. Finally, we examined random samples of modification

requests to determine if developers have work patterns that could impact the quality of our data

such as the example described above. For instance, during the data collection process of project

A, one of the authors and a senior developer from the project examined a random sample of 90

modification requests. None of the commits contained changes to the code that were not associ-

ated with the task represented in the modification requests.

Two file-level measures were extracted from the logical dependency matrix – Number of Logi-

cal Dependencies and Clustering of Logical Dependencies. The Number of Logical Dependen-

cies measure for file i was computed as the number of non-zero cells on column i of the matrix.2

Since the logical dependencies matrix is symmetric, this measure is equivalent to the degree of a

node in undirected graph, excluding self-loops. The difference in the nature of the technical de-

pendencies captured by the syntactic and logical approaches is evidenced by the limited overlap

between those two types of dependencies. In project A, 74.3% of the syntactic dependencies

2 The diagonal of the matrix indicates the number of times a single file was modified and can be disregarded from further analysis.

14

were not identified as logical relationships between a pair of source of files while in project B

such difference was 97.3%.

Herbsleb and colleagues [26] argued that the density of dependencies increases the likelihood

of coordination breakdowns. Building on that argument, we constructed a second measure from

the logical dependency matrix that we called Clustering of Logical Dependencies. Unlike the

Number of Logical Dependencies, this measure captures the degree to which the files that have

logical dependencies to the focal file have logical interdependencies among themselves. For-

mally and in graph theoretic terms, the Clustering of Logical Dependencies measure for file i is

computed as the density of connections among the direct neighbors of file i. This measure is

equivalent to Watts’s [47] local clustering measure and it is mathematically represented by equa-

tion 2 where ki is the number of files or “neighbors” that a particular file i is connected to

through logical dependencies and ejk is a link between files j and k which are neighbors of file i.

The values of this measure range from 0 to 1.

)2(
)1(
|}{|2

)(
−

=
ii

jk
i kk

e
fCLD

4) Work Dependencies

We constructed two different measures of work dependencies – Workflow Dependencies and

Coordination Requirements. Workflow Dependencies capture the temporal aspects of the devel-

opment effort while Coordination Requirements capture the intra-developer coordination re-

quirements.

Workflow Dependencies: As described previously, both projects used MR-tracking systems to

assess the progress of development tasks. Each modification request followed a set of states from

creation until closure. Those transitions represent a MR workflow where particular members of

15

the development organization had work-related responsibilities associated with such MR at some

point in time during its lifecycle. Such workflow constitutes the traditional view of work de-

pendencies were individuals are sequentially interdependent on a temporal basis [45]. More spe-

cifically, two developers i and j are said to be interdependent if the MR was transferred from de-

veloper i to developer j at some point between the creation and closure of the MR. For instance,

suppose a MR requires changes to two subsystems with the changes to the second relying on

changes to the first. Developer i completes the work on subsystem one and then he/she transfers

the development task to developer j to finish the work on the subsystem two.

Grouping the workflow information of all the MRs associated with a particular release of the

products, we constructed a developer-to-developer matrix where a cell cij represents the number

of work dependencies developer i has on developer j. The information in such a matrix captures

the web of workflow-related dependencies in which each developer was embedded during a par-

ticular release of the product. Such developer-to-developer relationships can be examined

through the lenses of social network analysis which provides the relevant theoretical background

and methodological framework [30, 46]. A traditional result in the social network literature is

that individuals centrally located in the network (i.e., have, on average, a larger number of rela-

tionships to other individuals) tend to be more influential because they control the flow of infor-

mation [5, 30]. On the negative side, a high number of linkages requires a significant effort on

the part of those individuals in order to maintain the relationships [5, 30]. This latter point is par-

ticularly important in the context of the workflow dependencies because it argues that centrally

located developers are more likely to be overloaded because of the effort associated with manag-

ing the work dependencies, increasing the likelihood for communication break downs and thus

the quality of software produced could be expected to diminish.

16

Degree centrality [19] is a traditional measure used in the social network literature to identify

central individuals based on the number of ties to other actors in the network. Formally, degree

centrality is defined as DC(ni,M) = d(ni), where d(ni) is the number of connections of node ni in

matrix M. The values of this measure range from 0 to n-1 where 0 indicates the node is an isolate

(i.e., not connected to any other node) and n-1 indicates that the node i has a ties to all other n-1

nodes. Building on the theoretical argument outlined in the previous paragraph and on the con-

cept of degree centrality, the Workflow Dependencies measure was constructed as follows. For

each file i, we identified the developer j that worked on the file and was linked to the greatest

number of individuals in the developer-to-developer workflow network for each release. That is,

the developer exhibiting the highest degree centrality. As discussed earlier, such individuals are

the more likely to introduce an error due to higher levels of effort they face in managing a higher

number of work dependencies. Equation 3 formally describes the Workflow Dependencies meas-

ure. We also considered the average of the number of linked developers over the set of develop-

ers that worked on each file. However, this measure was highly correlated with our other inde-

pendent measures and thus excluded from further analysis.

)3(}}{|),({max)(iji fchangedthatdevelopersjWDdevDCfWD ∈=

Coordination Requirements: Workflow dependencies relate developers through the temporal

evolution of modification requests and the developers’ involvement in those MR. There are addi-

tional work-related dependencies that emerge as development work is done in different parts of a

system. For instance, two developers could work on two different modification requests involv-

ing files that are syntactically or logically interdependent. In this case, modifications made by

each developer could impact the other’s work. These types of work-related dependencies are

17

more subtle in nature and require more effort on the part of the developers to identify and man-

age. Cataldo and colleagues [6] proposed a framework for examining the relationship between

the technical dependencies of a software system and the structure of the development work to

construct such system. Coordination requirements, an outcome of that framework, represent a

developer-by-developer matrix (CR) where each cell CR ij represents the extent to which devel-

oper i needs to coordinate with developer j given the assignments of development tasks and

technical dependencies of the software system. More formally, Cataldo and colleagues [6] de-

fined the CR matrix as follows:

CR = TA * TD * TA
T (4)

where, TA is the Task Assignments matrix, TD is the Task Dependencies matrix and TA
T is the

transpose of the Task Assignments matrix. In the context of our study, the TA and TD matrices

were constructed using data from the MR reports and the version control system in the following

way. A MR report provides the “developer i modified file j” relationship. We grouped such in-

formation across all modification requests in a particular release to construct the Task Assign-

ment matrix which is a developer-to-file matrix. The Task Dependency matrix was a file-to-file

matrix and it was constructed using the same approach described in the computation of the logi-

cal dependencies measures. In other words, each cell cij of the Task Dependency matrix repre-

sents the number of times a particular pair of source code files changed together as part of the

work associated with the MRs. Following the theoretical argument and the process presented in

the previous section (description of workflow dependencies), the Coordination Requirements

measure captures for each file i, the degree centrality of the most central developer in the CR ma-

trix (a developer-to-developer matrix) that worked on the file i. Equation 5 formally describes

the Coordination Requirements measure.

18

)5(}}{|),({max)(iRji fchangedthatdevelopersjCdevDCfCR ∈=

5) Additional Control Factors

The objective of this study is to examine the relative impact that important conceptual factors

such as technical and work dependencies have on failure. In order to account for the effects of

potentially confounding influences however, our analysis must include factors that past research

has found to be associated with failures. Numerous measures have been used to predict failures

[14, 18, 23, 35, 36, 48]. As suggested by Graves and colleagues [23], such measures can be clas-

sified as either process or product measures. Process measures such as number of changes, num-

ber of deltas, and age of the code (i.e., churn metrics) have been shown to be very good predic-

tors of failures [23, 35]. Accordingly, we control for the Number of MRs, which is the number of

times the file was changed as part of a past defect or feature development. We also control for

the Average Number of Lines Changed in a file as part of MRs.

In contrast, product measures such as code size and complexity measures have produced

somewhat contradictory results as predictors of software failures. Some researchers have found a

positive relationship between lines of code and failures [4, 23], while others have found a nega-

tive relationship [3]. Our collective experience regarding the relationship between product meas-

ures and software defects has been that such measures are associated with increased software

failure. Thus, we expect that product measures will be positively associated with software de-

fects. We measure size of the file (LOC) as the number of non-blank non-comment lines of

code.

V. PRELIMINARY ANALYSIS

Our four dependency measures (syntactic, logical, workflow and coordination requirements)

capture different characteristics of the technical and work-related dependencies that emerge in

19

the development of software systems. Table I presents a comparative summary of our depend-

ency measures. Syntactic and Workflow dependencies are explicit in nature, therefore, easier to

identify and manage by developers or other relevant stakeholders in software development pro-

jects. On the other hand, the Logical and Coordination Requirement dependency measures cap-

ture less explicit, more subtle relationships among software artifacts and developers, respec-

tively. The implicit nature of those dependencies makes identification and management of such

relationship more challenging. In sum, our measures assess explicit and implicit dependencies

that emerge in the technical and work-related dimensions of software projects.

TABLE I

COMPARATIVE SUMMARY OF DEPENDENCY MEASURES
 Dimension Identifiability Manageability
Syntactic Dependencies Technical Captures explicit relationships between

source code files.
A host of tools can aid developers in the
management of this type of dependen-
cies.

Logical Dependencies Technical Captures semantic or implicit relation-
ships between source code files, in addi-
tion to some explicit relationships.

Dependence on historical data, attributes
of the tools (e.g. version control system)
and consistent processes over time lim-
its the developers’ ability to manage this
type of dependency.

Workflow Dependencies Work / Social Captures explicit relationships among
project members based on workflows
and/or processes

Traditional tools (e.g. ClearQuest or
Bugzilla) facilitate significantly the
management of these dependencies.

Coordination Requirement
Dependencies.

Work / Social Captures less explicit relationships
among project members based on their
past contributions to the development
effort and the technical dependencies of
the system under development.

Dependence on historical data, attributes
of the tools (e.g. version control system)
and consistent processes over time limit
the developers’ ability to manage this
type of dependency.

Table II summarizes the descriptive statistics of all the measures described in the previous sec-

tions. Due to a moderate degree of skewness, we applied a log-transformation to each of the in-

dependent variables. Table III reports the pair-wise correlations of all our measures. Overall, the

pair-wise correlations are relatively similar across projects indicating that the phenomena re-

flected by these measures may be common in both projects. There are, however, several high

correlations that deserve attention. For instance, the Number of MRs (past changes) variable is

highly correlated with LOC, Average Lines Changed and our measure of logical dependencies,

20

particularly in project B. In addition, the syntactic dependencies measures are also highly corre-

lated among themselves and with other measures such as LOC and Number of MRs. We com-

puted variance inflation factors and tolerances to further examine potential issues due to multi-

collinearity among our independent variables. A tolerance close to 1 indicates little multicollin-

earity, whereas a value close to 0 suggests that multicollinearity may be a significant threat.

Variance inflation factor (VIF) is defined as the reciprocal of the tolerance.

TABLE II

DESCRIPTIVE STATISTICS
Project A: Distributed System

 Mean SD Min Max Skew Kurtosis
File Buggyness 0.49 0.500 0 1 0.011 1.001
LOC 481.9 836.1 0 17853 4.931 47.24
Avg. Lines Changed 10.85 32.67 0 738 8.512 108.9
In-Data Syntactic Dep. 4.57 58.94 0 1741 24.40 647.6
Out-Data Syntactic Dep. 8.90 9.243 0 53 0.792 3.050
In-Functional Syntactic Dep. 20.36 71.49 0 951 5.701 42.78
Out-Functional Syntactic Dep. 25.96 68.42 0 543 5.241 32.57
Num. Logical Dep. 87.27 99.54 0 836 1.856 7.584
Clustering Logical Dep. 0.72 0.316 0 1 -1.024 3.011
Workflow Dep. 22.53 12.76 0 44 -0.013 1.878
Coordination Req. 0.14 0.121 0 0.62 2.655 11.91

Project B: Embedded System
 Mean SD Min Max Skew Kurtosis

File Buggyness 0.14 0.35 0 1 2.026 5.105
LOC 750.8 2874.3 0 65542 18.24 389.6
Avg. Lines Changed 19.18 52.53 0 987 9.617 135.7
In-Data Syntactic Dep. 10.61 85.60 0 1805 16.18 287.1
Out-Data Syntactic Dep. 7.85 14.41 0 173 207.9 27.07
In-Functional Syntactic Dep. 9.17 29.09 0 612 11.11 180.4
Out-Functional Syntactic Dep. 15.84 29.08 0 238 3.396 18.01
Num. Logical Dep. 38.61 41.61 0 370 3.152 18.61
Clustering Logical Dep. 0.52 0.19 0 0.69 -1.241 4.010
Workflow Dep. 28.41 15.60 1 72 0.253 2.461
Coordination Req. 0.85 0.14 0 1 -2.956 15.29

21

TABLE III
PAIR-WISE CORRELATIONS (* P < 0.01) FOR LAST RELEASE IN EACH DATASET

Project A: Distributed System
 1 2 3 4 5 6

1.FileBugyness -
2.LOC (log) 0.28* -
3.Number MRs (log) 0.37* 0.24* -
4.Avg. Lines Changed (log) 0.18* 0.27* 0.30* -
5.In-Data Dep. (log) 0.06* 0.01 0.08* 0.03 -
6.Out-Data Dep. (log) 0.18* 0.47* 0.19* 0.19* -0.26* -
7.In-Functional Dep. (log) 0.04* 0.27* 0.09* 0.09* -0.10* 0.37*
8.Out-Functional Dep. (log) 0.11* 0.43* 0.15* 0.16* -0.24* 0.78*
9.Num Logical Dep. (log) 0.49* 0.33* 0.45* 0.16* 0.04* 0.23*
10.Clustering Logical Dep. (log) -0.32* -0.21* -0.29* -0.13* -0.06* -0.17*
11.Workflow Dep. (log) 0.33* 0.06* 0.33* 0.12* 0.02 0.07*
12.Coordination Req. Dep. (log) 0.04* -0.06* -0.15* -0.06* -0.01 -0.03

 7 8 9 10 11 12
8.Out-Functional Dep. (log) 0.44* -
9.Num Logical Dep. (log) 0.06* 0.19* -
10.Clustering Logical Dep. (log) -0.10* -0.14* -0.05* -
11.Workflow Dep. (log) -0.07* -0.03 0.31* -0.12* -
12.Coordination Req. Dep. (log) -0.07* -0.05* 0.02 0.12* 0.15* -

Project B: Embedded System
 1 2 3 4 5 6

1.FileBugyness -
2.LOC (log) 0.28* -
3.Number MRs (log) 0.55* 0.41* -
4.Avg. Lines Changed (log) 0.19* 0.42* 0.35* -
5.In-Data Dep. (log) 0.22* 0.33* 0.26* 0.19* -
6.Out-Data Dep. (log) 0.26* 0.60* 0.34* 0.35* 0.49* -
7.In-Functional Dep. (log) 0.19* 0.36* 0.25* 0.19* 0.47* 0.54*
8.Out-Functional Dep. (log) 0.28* 0.59* 0.38* 0.39* 0.43* 0.88*
9.Num Logical Dep. (log) 0.29* 0.26* 0.62* 0.25* 0.13* 0.20*
10.Clustering Logical Dep. (log) -0.28* -0.15* -0.34* -0.10* -0.17* -0.21*
11.Workflow Dep. (log) 0.26* 0.09* 0.38* 0.01 0.19* 0.10*
12.Coordination Req. Dep. (log) 0.17* -0.03 0.26* -0.05 0.14* 0.02

 7 8 9 10 11 12
8.Out-Functional Dep. (log) 0.52* -
9.Num Logical Dep. (log) 0.12* 0.22* -
10.Clustering Logical Dep. (log) -0.19* -0.20* 0.17* -
11.Workflow Dep. (log) 0.08 0.10* 0.29* -0.18* -
12.Coordination Req. Dep. (log) 0.07 0.04 0.24* -0.12* 0.75* -

Table IV reports the variance inflation factor and tolerance associated with each of our meas-

ures. We start our multicollinearity diagnostic with model I that contains all our independent

22

measures. We observe that for both projects A and B, the measures Out-Data Syntactic Depend-

encies and Out-Functional Syntactic Dependencies have a VIF significantly higher (or a toler-

ance significantly lower) than the other measures. We removed those two variables and the re-

computed VIF and tolerances values for the remaining measures are reported in model II in Ta-

ble IV. We observe that Number of MRs has a lower tolerance than the rest of the measures, par-

ticularly in project B’s data. Consequently, we removed it and the resulting VIFs and tolerances

are reported in model III. In this case, the data for project A does not show signs of multicollin-

earity, with the tolerances of all measures above 0.70.

TABLE IV

COLLINEARITY DIAGNOSTICS
Project A: Distributed System

 Model I
VIF (Tolerance)

Model II
VIF (Tolerance)

Model III
VIF (Tolerance)

Number of MRs (log) 1.59 (0.6289) 1.59 (0.6297) ---
LOC (log) 1.53 (0.6530) 1.32 (0.7564) 1.32 (0.7564)
Avg. Lines Changed (log) 1.16 (0.8596) 1.16 (0.8625) 1.11 (0.9035)
In-Data Dep. (log) 1.13 (0.8867) 1.02 (0.9793) 1.02 (0.9825)
Out-Data Dep. (log) 2.85 (0.3503) --- ---
In-Functional Dep. (log) 1.26 (0.7916) 1.11 (0.9007) 1.11 (0.9031)
Out-Functional Dep. (log) 2.79 (0.3587) --- ---
Num Logical Dep. (log) 1.47 (0.6825) 1.45 (0.6880) 1.26 (0.7950)
Clustering Logical Dep. (log) 1.16 (0.8584) 1.16 (0.8628) 1.09 (0.9152)
Workflow Dep. (log) 1.26 (0.7921) 1.24 (0.8040) 1.18 (0.8487)
Coordination Req. Dep. (log) 1.09 (0.9213) 1.08 (0.9218) 1.05 (0.9523)

Project B: Embedded System
 Model I

VIF (Tolerance)
Model II

VIF (Tolerance)
Model III

VIF (Tolerance)
Number of MRs (log) 2.82 (0.3547) 2.80 (0.3573) ---
LOC (log) 1.83 (0.5467) 1.49 (0.6689) 1.45 (0.6897)
Avg. Lines Changed (log) 1.34 (0.7469) 1.30 (0.7687) 1.28 (0.7826)
In-Data Dep. (log) 1.47 (0.6787) 1.38 (0.7244) 1.38 (0.7260)
Out-Data Dep. (log) 4.91 (0.2038) --- ---
In-Functional Dep. (log) 1.58 (0.6344) 1.39 (0.7181) 1.39 (0.7184)
Out-Functional Dep. (log) 4.75 (0.2105) --- ---
Num Logical Dep. (log) 2.32 (0.4316) 2.31 (0.4321) 1.33 (0.7528)
Clustering Logical Dep. (log) 1.61 (0.6223) 1.60 (0.6251) 1.19 (0.8435)
Workflow Dep. (log) 2.56 (0.3913) 2.55 (0.3927) 2.50 (0.4003)
Coordination Req. Dep. (log) 2.38 (0.4201) 2.37 (0.4228) 2.36 (0.4230)

On the other hand, in project B, the low tolerance values for the two measures of work de-

pendencies suggest some potential multicollinearity problems. Removing the Coordination Re-

quirement Dependencies measure from model III results in an improvement of the VIF associ-

23

ated with Workflow dependencies down to 1.20 (tolerance = 0.8304). In addition, the tolerances

of all remaining variables increased with the minimum value being 0.7028 for the LOC measure.

In section VI, we revisit this issue when discussing the results from our regression analyses.

VI. RESULTS

We approached the analysis in two stages. In the first stage, we focused on examining the rela-

tive impact of each dependency type on failure proneness of source code files. The data corre-

sponding to the last release from each project was used in this analysis. In the second stage, we

verified the consistency of the initial results by conducting a number of confirmatory analyses

for each project. These analyses included re-estimating our logistic regression models for each

release as well as estimating a single longitudinal model comprising all releases. The detailed

results of each stage are discussed in turn.

A. The Impact of Dependencies

We constructed several logistic regression models to examine the relative impact of each class

of independent variable on the failure proneness of a software system using the data from the last

release of each project. Following a standard hierarchical modeling approach, we started our

analysis with a baseline model that contains only the traditional predictors. In subsequent mod-

els, we added the measures for syntactic, logical and work dependencies described in the previ-

ous sections. We assessed the goodness-of-fit of the model to evaluate the impact of each class

of dependency measures on failure. For each statistical model, we report the χ2 of the model, the

percentage of deviance explained by the model as well as the statistical significance of the dif-

ference between a model that adds new factors and the previous model without the new meas-

ures. Deviance is defined as -2 times the log-likelihood of the model. The percentage of the de-

viance explained is a ratio of the deviance of the null model (containing only the intercept), and

24

the deviance of the final model. Model parameters were estimated, as is customary in logistic

regression, using a maximum-likelihood method. In order to simplify the interpretation of the

results, we report the odds ratios associated with each measure instead of reporting the regression

coefficients. Odds ratios larger than 1 indicate a positive relationship between the independent

and dependent variables whereas an odds ratio less than 1 indicates a negative relationship. For

example, an odds ratio of two for a binary factor doubles the probability of a file having a cus-

tomer reported defect when the remaining factors in the model are at their lowest values. The

presented odds ratio is the exponent of the logistic regression coefficient.

Table V and VI report the odds ratios of the various logistic regression models using the data

from project A and project B, respectively. In both tables, model I includes the LOC and Avg.

Lines Changed measures. As discussed in section V, the Number of MRs measure (a proxy for

past changes) was not included in the analyses due to multicollinearity concerns. Model I, in ta-

bles V and VI, shows that LOC is positively associated with failure proneness. These results

agree with those found by Briand and colleagues [4], in contrast with earlier findings [3, 34].

Avg. Lines Changed is also positively related to failure proneness in both projects, indicating that

the more modifications to a file, the higher the likelihood of encountering a field defect associ-

ated with that file. Specifically, a unit change in the log-transformed Avg. Lines Changed meas-

ure (or a change from 1 to 2.7 lines per MR in untransformed units), increases the odds of a field

defect by 20% for project A (Table V – Model I) and 25% in the case of project B (Table VI –

Model I).

25

TABLE V

ODDS RATIOS FROM LOGISTIC REGRESSION ON PROJECT A (DISTRIBUTED SYSTEM) DATA
 Model I Model II Model III Model IV Model V
LOC (log) 1.392** 1.418** 1.119** 1.142** 1.150**
Avg. Lines Changed (log) 1.203** 1.200** 1.138** 1.114** 1.126**
In-Data Dep. (log) 1.166** 1.103* 1.105* 1.112*
In-Functional Dep. (log) 0.949* 0.953+ 0.982 0.989
Num Logical Dep. (log) 2.277** 2.079** 2.108**
Clustering Logical Dep. (log) 0.009** 0.012** 0.009**
Workflow Dep. (log) 2.011** 1.905**
Coordination Req. Dep. (log) 2.801**

Model χ2 (p-value)
388.87

(p < 0.01)
412.21

(p < 0.01)
1621.31

(p < 0.01)
1737.52

(p < 0.01)
1763.18

(p < 0.01)

Deviance Explained 7.1% 7.5% 29.5% 31.6% 32.1%

Model Comparison χ2 (p-value)
-- 23.34

(p < 0.01)
1209.10

(p < 0.01)
116.21

(p < 0.01)
25.67

(p < 0.01)

(+ p < 0.10; * p < 0.05; ** p < 0.01)

Model II introduces the syntactic dependency measures Inflow Data and Inflow Functional.

The results of the logistic regression show that the impact of data syntactic dependencies are on-

ly marginally significant, which can be seen more clearly as the other factors are included in the

regression model (see models III, IV and V in tables V and VI). In the case of project A, data

syntactic dependencies are statistically significant across the various models and with the ex-

pected direction in their impact on failure proneness. On the other hand, the impact of the func-

tional syntactic dependencies measure, unexpectedly, has the opposite direction. However, once

the models include logical and work dependencies, the functional syntactic dependency measure

no longer has statistical significance indicating that this type of syntactic relationship does not

impact failure proneness. This latter pattern is also reflected in the data for project B where both

syntactic dependency measures become irrelevant once the logical and work dependency meas-

ures enter the models (see table VI, models III, IV and V). Given the limited impact of the syn-

tactic dependencies on failure proneness it is not surprising to see a relatively modest improve-

ment in the explanatory power of model II over model I (e.g. in project A deviance improves

26

from 7.1% to 7.5%). We do note however, that while improvement in the explanatory power is

modest, the addition of the syntactic dependency measures does provide a statistically significant

improvement in model fit as indicated by the model comparison χ2 (project A: 23.34 – p < 0.01;

project B: 14.41 – p < 0.01).

TABLE VI

ODDS RATIOS FROM LOGISTIC REGRESSION ON PROJECT B (EMBEDDED SYSTEM) DATA
 Model I Model II Model III Model IV Model V
LOC (log) 1.800** 1.638** 1.497** 1.493** 1.499**
Avg. Lines Changed (log) 1.247** 1.253** 1.115 1.178 1.184
In-Data Dep. (log) 1.207* 1.124 1.046 1.142
In-Functional Dep. (log) 1.131 1.013 1.002 0.996
Num Logical Dep. (log) 2.303** 1.822** 1.803**
Clustering Logical Dep. (log) 0.005** 0.013** 0.014**
Workflow Dep. (log) 6.527** 4.899**
Coordination Req. Dep. (log) 37.616

Model χ2 (p-value)
86.01

(p < 0.01)
100.42

(p < 0.01)
218.13

(p < 0.01)
239.27

(p < 0.01)
240.02

(p < 0.01)

Deviance Explained 11.8% 13.8% 30.1% 32.9% 33.0%

Model Comparison χ2 (p-value) --
14.41

(p < 0.01)
117.71

(p < 0.01)
21.14

(p < 0.01)
0.75

(p=0.387)

(+ p < 0.10; * p < 0.05; ** p < 0.01)

Model III also considers the logical dependency measures. As Table V and VI show, the odds

ratios associated with each of the logical dependency measures in the logistic regression are

greater than one, indicating that higher numbers of logical dependencies are related to an in-

crease in the likelihood of failure. In particular, a unit increase in the log-transformed Number of

Logical Dependencies measure, increases the odds of a failure 2.272 times higher for project A

(Table V – Model III) and 2.277 times higher for project B (Table VI – Model III). The analyses

reported in section V showed relatively low levels of correlation between syntactic and logical

dependency measures. Thus, the results reported in Tables V and VI suggest the effect of logical

dependencies on failure proneness is complementary and significantly more important than the

impact of syntactic dependencies. In addition, the levels of explained deviance for model III in

both projects clearly shows that the contribution of the logical dependencies measures to the ex-

27

planatory power of the model is much higher than the impact of the syntactic dependencies

measure.

The results reported in Model III in Tables V and VI also indicate that increases in the Cluster-

ing of Logical Dependencies significantly reduce the likelihood of failures. This result may sug-

gest that the clustering is a symptom of good, consistent modular design. Alternatively, it may

be that as clusters of consistently interrelated files emerge, developers become more cognizant of

such relationships and know where to look to make sure that changes to one part of the system

do not introduce problems elsewhere.

In both Tables V and VI, model IV includes the first of our work dependency measures –

workflow dependencies. The results are consistent across both projects. Higher numbers of

workflow dependencies increase the likelihood that source code files contain field defects. In

particular, a unit increase in the log-transformed number of Workflow Dependencies measure,

increases the odds of a failure 2.011 times higher for project A (Table V – Model IV) and 6.527

times higher for project B (Table VI – Model IV). Model V shows the impact of the second

work dependency measure – coordination requirements. In project A, the impact of the Coordi-

nation Requirement measure is statistically significant and with an odds ratio of 2.801, its impact

is higher than the impact of the Workflow Dependencies. On the other hand, in project B, its ef-

fect is not statistically significant. As discussed in section V, there is high collinearity between

the two work dependency measures in project B’s data (Table III: correlation is 0.75; Table IV:

VIFs > 2), consequently, the regression results were expected.

In this paper, we set out to examine the relative impact of syntactic, logical and work-related

classes of dependencies on failure proneness. The results presented in this section showed that all

types of dependencies affect failures in a software system. More importantly, their role is com-

28

plementary suggesting the various types of dependencies capture different relevant aspects of the

technical properties of a software system as well as elements of the software development proc-

ess. Logical and work dependencies have a significantly higher impact on failure proneness as

their associated odds ratios indicate. For instance, a unit increase in the log-transformed meas-

ures of Number of Logical Dependencies and Workflow dependencies increase the odds of post-

release defects 2 times more than syntactic dependencies in the case of project A and 2 times and

6 times, respectively, for the case of project B.

B. Stability Analysis

In the previous section, we showed that the different types of dependencies affected failure

proneness in the last release of each project. It is also critical to examine whether our results are

robust across the various releases of the products covered by our data. Accordingly, we ran the

same logistic regression models on the data from the first three releases from project A and the

additional five releases from project B. Table VII reports the odd ratios for all the measures from

the logistic regression using the data from project A. Table VIII reports the odd ratios for the

measures from the logistic regression using the data from project B. As discussed in the previous

section, we did not include the Coordination Requirement Dependencies measures in the analy-

sis of project B because of the high correlation of that measure with the Workflow Dependencies

measure. We observe that the results are mostly consistent with those reported in the previous

section for both project A and B. However, there is one exception. The results for the measure

of Workflow Dependencies are not consistent across releases in the data from project A. One

possible explanation is the changing nature of the development work associated with each re-

lease. For instance, release 1 of project A was in fact the first release of the product. The devel-

opment effort associated with subsequent releases involved an increasing amount of work related

29

to fixing defects reported against previous releases and a decreasing amount of development ef-

fort on new features. In the case of project B, the impact of the Workflow Dependencies measure

is consistent across all five releases. However, the coefficient for release 1 is not statistically sig-

nificant.

TABLE VII

IMPACT OF DEPENDENCIES ACROSS RELEASES IN PROJECT A
 Release 1 Release 2 Release 3
LOC (log) 1.211** 1.087** 1.201**
Avg. Lines Changed (log) 1.122** 1.083* 1.048
In-Data Dep. (log) 1.243** 1.207* 1.125*
In-Functional Dep. (log) 0.985 1.041 1.013
Num Logical Dep. (log) 1.411** 1.949** 1.806**
Clustering Logical Dep. (log) 0.064** 0.023** 0.017**
Workflow Dep. (log) 1.287** 0.850** 1.448**
Coordination Req. Dep. (log) 1.007 10.852** 3.901**

Model χ2 (p-value)
514.53

(p < 0.01)
821.61

(p < 0.01)
1121.96

(p < 0.01)

Deviance Explained 13.7% 191% 22.2%

(+ p < 0.10; * p < 0.05; ** p < 0.01)

The results reported in Tables VII and VIII showed overall consistent effects of our predictors

across the different releases covered by our data. However, the development effort associated

with each release might have a temporal relationship. For instance, the technical or work de-

pendencies from release 2 could influence the measures from release 3. More formally, the vari-

ous measures associated with each of the releases could exhibit autocorrelation. Therefore, we

ran an additional confirmatory analysis using a longitudinal (random effects) model that consid-

ers the data from all releases in each project simultaneously. Using this procedure, we accounted

for any potential temporal factors that might affect the estimation of the coefficients that repre-

sent the impact of our measures on failure proneness. Overall, the results of the random effects

model were consistent with those reported in Tables V, VI, VII and VIII.

30

TABLE VIII

IMPACT OF DEPENDENCIES ACROSS RELEASES IN PROJECT B
 Release 1 Release 2 Release 3 Release 4 Release 5
LOC (log) 1.642* 1.823* 1.713* 1.447** 1.477**
Avg. Lines Changed (log) 0.984 0.816 0.892 1.116 1.171
In-Data Dep. (log) 1.126 0.905 0.948 0.981 1.057
In-Functional Dep. (log) 0.619 1.153 0.978 1.016 1.001
Num Logical Dep. (log) 3.964** 3.187** 2.166** 1.771** 1.865**
Clustering Logical Dep. (log) 0.001** 0.007** 0.008** 0.012** 0.013**
Workflow Dep. (log) 1.101 1.870* 1.711* 3.936** 3.904**
Coordination Req. Dep. (log) --- --- --- --- ---

Model χ2 (p-value)
103.44

(p < 0.01)
150.09

(p < 0.01)
159.31

(p < 0.01)
201.63

(p < 0.01)
213.99

(p < 0.01)

Deviance Explained 42.1% 40.5% 29.4% 30.6% 30.8%

(+ p < 0.10; * p < 0.05; ** p < 0.01)

VII. DISCUSSION

The observed relative contributions of different types of dependencies on failure proneness in

two unrelated projects have consequences of both theoretical and practical interest. All three

types of dependencies are relevant and their impact is complementary showing their independent

and important role in the development process. These results suggest that quality improvement

efforts could be tailored to ameliorate the negative effects of particular types of dependencies

with emphasis on areas that have the largest impact on project quality.

Past research [4, 29, 40] has shown that source code files with higher number of syntactic de-

pendencies were more prone to failure. Our analyses indicate that such impact is limited. On the

other hand, our results suggest logical dependencies and work dependencies are significantly

more important factors impacting the likelihood of source code files to exhibit field defects. In

addition, this study is the first analysis that highlights the importance of the structure of the logi-

cal relationships – source code files with logical dependencies to other files that are also highly

interdependent among themselves were less likely to exhibit customer-reported defects. We can

view these groups of files as a unit where the structure of the technical dependencies in the unit

31

influences its quality. These results suggest a new view of product dependencies with significant

implications regarding how we think about modularizing the system and how development work

is organized. The effect of the structure of the network of product dependencies elevates the idea

of modularity in a system to the level of “clusters” of source code files. These highly inter-

related sets of files become the relevant unit to consider when development tasks and responsi-

bilities are assigned to organizational groups.

The second significant contribution of this study is the recognition and the assessment of the

impact the engineers’ social network has on the software development process. Nagappan and

colleagues [36] have examined the impact on failure proneness of structural properties of the

formal organization (e.g. organizational chart). However, the informal organization which

emerges as part of personal relationships is significantly more important for performing tasks in

organizations [30]. Similarly, Meneely et al. [31] looked at the relationship among developers

based on a file-touched network that may to some extent reflect social relationships among the

developers that are more directly captured using workflow measures. Our measures of work de-

pendencies capture the important elements of the informal organization in the context of soft-

ware development tasks. Our results showed that individuals that exhibited a higher number of

workflow dependencies and coordination requirements were more likely to have defects in the

files they worked on. These findings suggest the difficulty of needing to receive work from or

coordinate with multiple people and manage those relationships appropriately in order to perform

the tasks.

This study has an additional characteristic worthy of note. The empirical analyses were repli-

cated across two distinct projects from two unrelated companies obtaining consistent results.

This replication provides us with unusually good external validity that is not easily achieved giv-

32

en proprietary concerns, etc.3 We believe this study provides a proof of concept that such analy-

ses are possible, and given the improved external validity, we think such an approach should be

adopted (wherever logistics permit) as a standard of validity for industry studies.

A. Threats to Validity and Limitations

First, it is important to highlight some potential concerns for construct validity, particularly re-

garding work dependencies. Over the years, there have been many efforts to measure task inter-

dependencies in the context of software development. However, most of the approaches have

focused on stylized representations of work dependencies, particularly in organizational studies

(e.g. [10, 42]). Our study proposed two measures that capture the fine-grained dependencies that

exist in software development and emerge over time as technical decisions are implemented.

Certainly, there might be other potentially superior measures of development work dependen-

cies, however, little is known about how to develop such measures.

Operationalization of software dependency measures is fraught with difficulties as projects

produce products for different domains, using different tools and disparate practices making it

difficult to design measures that capture aspects of the same phenomena across unrelated pro-

jects. Therefore, we felt it was important to replicate the entire measurement and analysis process

on two unrelated projects each using different sets of tools and practices. Furthermore, we inves-

tigated the stability of the results by analyzing individual releases and using random effects mod-

els to account for potential autocorrelation.

The work reported in this study has several limitations. First, our analysis cannot claim causal

effects. For example, even though dependencies in workflow are related to customer reported

defects, it may be possible that the defects somehow increase the dependencies in the workflow.

3 In our case, it required a strategy in which data extraction was performed on machines inside company firewalls, to ensure that only ano-

nymized data is provided for statistical modeling.

33

Secondly, our results on the role of syntactic dependencies are based on two projects where the

software was developed in two programming languages (C and C++) that are somewhat similar

in terms of how technical dependencies are represented. Projects that involve programming lan-

guages with very distinct technical properties might exhibit a different impact of syntactic de-

pendencies on failure proneness.

B. Applications

1) Enhancing Dependency Awareness

We observed that logical dependencies were considerably more relevant than syntactic de-

pendencies in relation to the failure proneness of a software system. They may also be less ap-

parent to developers, since they are not as easily discovered by tracing function calls, value as-

signments, or other things locally visible in the code.

Tools such as TUKAN [41], Palantir [39] and Ariadne [44] provide visualization and aware-

ness mechanisms to aid developers in coordinating their work. Those tools achieve their goal by

monitoring concurrent access to software artifacts, such as source code files, and by identifying

syntactic relationships among source code files. This information is visualized to assist the de-

velopers in resolving potential conflicts in their development tasks. Using the measures proposed

in this paper, new tools or extensions to those tools could be developed to provide an additional

view of product dependencies using logical dependencies. These new tools would then be in a

position to provide complementary product dependency information to the developers which

could be more valuable in terms of raising awareness among developers about the potential im-

pact of their changes in the software system. Moreover, since logical dependencies might be of

different types such as implicit relationships (e.g. events), cascading function calls or time-

related relationships, tools could leverage such a categorization to provide more selective aware-

34

ness information for particular user needs or work contexts. Secondly, these new tools could also

provide a more precise view of coordination needs among developers using the work dependen-

cies measures presented in this paper. For instance, the coordination requirements measure goes

beyond identifying such dependencies, allowing developers to identify those files that have de-

pendencies among themselves when those dependencies are not explicitly determined. It is im-

portant to also highlight that the development of future tools that use logical and coordination

requirements dependencies is faced with important challenges such as the identification of the

most relevant subset of dependencies for a particular work context and the presentation of such

information to improve awareness and limit “play the system” behavior. There are also some mi-

nor but quite relevant process related issues that require attention such as difficulty of maintain-

ing consistent data about modification requests and version control changes over time and auto-

mation of the collection and processing of the data.

2) Reducing and Coping with Dependencies

Once developers, architects or other relevant stakeholders become aware of particular patterns

of technical dependencies, they could be in a position to utilize specific techniques to reduce

those dependencies, in particular logical relationships. For instance, system re-architecting is a

promising technique to reduce logical dependencies and in a large system it was demonstrated to

relate to quality improvements [22]. Other code reorganization techniques that make the struc-

ture of the systems more suitable for geographically distributed software development organiza-

tions could also focus their attention on logical dependencies. Such is the case of the globaliza-

tion by chunking approach [33] that provides a way to select tightly clustered groups of source

code files (in terms of logical dependencies) that exhibit few logical dependencies with the rest

of the system. Alternatively, methods to make logical dependencies more explicit by, for exam-

35

ple, introducing syntactic dependencies where only logical dependencies exist could be explored

given the important difference between the role of logical and syntactic dependencies suggested

by our results.

In recent years, a number of tools that either implement some of the code re-organization ap-

proaches described in the previous paragraph or provide new mechanisms for coping with tech-

nical dependencies have been proposed. For instance, tools that highlight and filter changes from

different releases helping to cope with interdependencies between changes in subsequent releases

have been shown to improve productivity [1]. The results of this study provide valuable informa-

tion to allow this type of tool to focus on those dependencies that are most relevant.

3) Guiding Future Research

While it seems clear that logical dependencies play a major role in software failures, we do not

yet have a clear idea of the precise nature of these dependencies. Research and practices focused

on syntactic dependencies, as found in strongly typed languages for example, are likely respon-

sible for weakening the relationship between such dependencies and fault proneness. We sug-

gest that an emphasis on understanding the precise nature of logical dependencies is a fertile area

for future research. Such research could, for example, examine the code that is changed together

to understand if it represents cascading function calls, or semantic dependencies, platform evolu-

tion, or other types of relationships. A more detailed understanding of the bases of logical de-

pendencies is an important future direction with implications in research areas such as software

quality and development tools.

ACKNOWLEDGMENT

We gratefully acknowledge support by the National Science Foundation under Grants IIS-

0414698, IIS-0534656 and IGERT 9972762, the Software Industry Center at Carnegie Mellon

36

University and its sponsors, especially the Alfred P. Sloan Foundation, and the Software Engi-

neering Institute grant for “Improving Architectural Design through Organizational Considera-

tions”. The authors also gratefully thank A. Hassan and R. Holt for providing the source code for

their C-REX tool.

REFERENCES

[1] Atkins, D. Ball, T., Graves, T. and Mockus, A. Using version control data to evaluate the impact of software tools: A case study of the
version editor. IEEE Trans. on Soft. Eng., 28, pp. 625-637, 2002.

[2] Baldwin, C.Y. and Clark, K.B. Design Rules: The Power of Modularity. MIT Press, 2000.

[3] Basili, V.R. and Perricone, B.T. Software Errors and Complexity: An Empirical Investigation. Comm. of the ACM, 12, pp. 42-52, 1984.

[4] Briand, L.C., Wust, J., Daly, J.W. and Porter, D.V. Exploring the Relationships between Design Measures and Software Quality in Object-
Oriented Systems. The Journal of Systems and Software, 51, pp. 245-273, 2000.

[5] Burt, R.S. Structural Holes: The Social Structure of Competition. Harvard University Press, 1992

[6] Cataldo, M., Wagstrom, P, Herbsleb, J.D. and Carley, K.M. Identification of Coordination Requirements: Implications for the Design of
Collaboration and Awareness Tools. In Proceedings of the Conference on Computer Supported Cooperative Work (CSCW’06), 2006, pp.
353-362.

[7] Cataldo, M. Dependencies in Geographically Distributed Software Development: Overcoming the Limits of Modularity. Ph.D. dissertation,
Institute for Software Research, School of Computer Sciences, Carnegie Mellon University, 2007.

[8] Cataldo, M., Bass, M, Herbsleb, J.D. and Bass, L. On Coordination Mechanism in Global Software Development. In Proceedings of the
International Conference on Global Software Engineering (ICGSE ’07), 2007, pp. 71-80.

[9] Chidamber, S.R. and Kemerer, C.F. A Metrics Suite for Object-Oriented Design. IEEE Trans. on Soft. Eng., 20, pp. 476-493, 1994.

[10] Crowston, K.C. Toward a Coordination Cookbook: Recipes for Multi-Agent Action. Ph.D. Dissertation, Sloan School of Management, MIT,
1991.

[11] Curtis, B., Kransner, H. and Iscoe, N. A field study of software design process for large systems. Comm. of ACM, 31, pp. 1268-1287, 1988.

[12] de Souza, C.R.B. On the Relationship between Software Dependencies and Coordination: Field Studies and Tool Support. Ph.D.
dissertation, Donald Bren School of Information and Computer Sciences, University of California, Irvine, 2005.

[13] de Souza, C.R.B., Redmiles, D., Cheng, L., Millen, D. and Patterson, J. How a Good Software Practice Thwarts Collaboration – The
multiple roles of APIs in Software Development. In Proceedings of the Conference on Foundations of Software Engineering (FSE ’04), pp.
221-230, 2004.

[14] Eaddy, M., Zimmermannn, T., Sherwood, K.D., Garg, V., Murphy, G.C., Nagappan, N., Aho, A.V. 2008. Do Crosscutting Concerns Cause
Defects? IEEE Trans. on Soft. Eng., 34, pp. 497-515, 2008.

[15] Eick, S.G., Graves, T.L., Karr, A.F., Mockus, A. and Schuster, P. Visualizing Software Changes. IEEE Trans. on Soft. Eng., 28, pp. 396-
412, 2002.

[16] Eppinger, S.D., Whitney, D.E., Smith, R.P. and Gebala, D.A. A Model-Based Method for Organizing Tasks in Product Development.
Research in Eng. Design, 6, pp. 1-13, 1994.

[17] Faraj, S. and Xiao, Y. Coordination in Fast-Response Organization. Management Science, 52, 8, pp. 1155-1169, 2006

[18] Fenton, N.E. and Neil, M. A Critique of Software Defect Prediction Models. IEEE Trans. on Soft. Eng., 25, pp. 675-689, 1999.

[19] Freeman, L.C. Centrality in Social Networks: I. Conceptual Clarification. Social Networks, 1, pp. 215-239, 1979.

[20] Galbraith, J.R. Designing Complex Organizations. Addison-Wesley Publishing, 1973.

[21] Gall, H. Hajek, K. and Jazayeri, M. Detection of Logical Coupling Based on Product Release History. In Proceedings of the International
Conference on Software Maintenance (ICSM ’98), pp. 190-198, 1998.

[22] Geppert, B., Mockus, A. and Rößler, F. Refactoring for changeability: A way to go? In Proceedings of the 11th International Symposium on
Software Metrics (METRIC ’05), pp. 35-48, 2005.

[23] Graves, T.L., Karr, A.F., Marron, J.S. and Siy, H. Predicting Fault Incidence Using Software Change History, IEEE Trans. on Soft. Eng.,
26, pp. 653-661, 2000.

[24] Grinter, R.E., Herbsleb, J.D. and Perry, D.E. The Geography of Coordination Dealing with Distance in R&D Work. In Proceedings of the
Conference on Supporting Group Work (GROUP ’99), 1999, pp. 306-315.

37

[25] Hassan, A.E. and Holt, R.C. C-REX: An Evolutionary Code Extractor for C. Presented at CSER Meeting, Canada, 2004.

[26] Herbsleb, J.D., Mockus, A. and Roberts, J.A. Collaboration in Software Engineering Projects: A Theory of Coordination. Presented at the
International Conference on Information Systems (ICIS’06), 2006.

[27] Herbsleb, J.D. and Mockus, A. An Empirical Study of Speed and Communication in Globally Distributed Software Development. IEEE
Trans. on Soft. Eng., 29, pp. 481-494, 2003.

[28] Horwitz, S., Reps, T., and Binkley, D. Interprocedural slicing using dependence graphs. ACM Trans. on Programming Languages and
Systems, 22, pp. 26-60, 1990.

[29] Hutchens, D.H. and Basili, V.R. System Structure Analysis: Clustering with Data Bindings. IEEE Trans. on Soft. Eng., 11, pp. 749-757,
1985.

[30] Krackhardt, D. and Brass, J.D. Intra-organizational Networks: The Micro Side. In pp. 207-229, 1992.

[31] Meneely, A., Williams, L., Snipes, W., Osborn, J. Predicting Failures with Developer Networks and Social Network Analysis. In
Proceedings, Foundations of Software Engineering (FSE ’08), 2008.

[32] Mockus, A. and Weiss, D. Predicting risk of software changes. Bell Labs Tech. Journal, 5, pp. 169-180, 2000.

[33] Mockus, A. and Weiss, D. Globalization by chunking: a quantitative approach. IEEE Software, 18, pp. 30-37, 2001.

[34] Moeller, K.H. and Paulish, D. An Empirical Investigation of Software Fault Distribution. In Proceedings of the International Software
Metrics Symposium, IEEE CS Press, pp. 82-90, 1993.

[35] Nagappan, N. and Ball, T. Using Software Dependencies and Churn Metrics to Predict Field Failures: An Empirical Case Study. In
Proceedings of the 1st International Symposium on Empirical Software Engineering and Measurement (ESEM’07), 2007, pp. 363-373.

[36] Nagappan, N., Murphy, B., Basili, V.R. The Influence of Organizational Structure on Software Quality: An Empirical Case Study. In
Proceedings of the International Conference on Software Engineering (ICSE’08), 2008, pp. 521-530.

[37] Parnas, D.L. On the criteria to be used in decomposing systems into modules. Comm. of ACM, 15, pp. 1053-1058, 1972.

[38] Pinzger,M., Nagappan, N., Murphy, B. Can Developer-Module Networks Predict Failures? In Proceedings, Foundations of Software
Engineering (FSE ’08), 2008.

[39] Sarma, A., Noroozi, Z. and van der Hoek, A. Palantir: Raising Awareness among Configuration Management Workspaces. In Proceedings
of the International Conference on Software Engineering (ICSE’03), 2003, pp. 444-453.

[40] Selby, R.W. and Basili, V.R. Analyzing Error-Prone System Structure. IEEE Trans. on Soft. Eng., 17, pp. 141-152, 1991.

[41] Schummer, T. and Haake, J.M. Supporting Distributed Software Development by Modes of Collaboration. In Proceedings of the European
Conference on Computer-Supported Collaborative Work (ECSCW ’01), 2001, pp. 79-89.

[42] Staudenmayer, N. Managing Multiple Interdependencies in Large Scale Software Development Projects. Unpublished Ph.D. Dissertation,
Sloan School of Management, Massachusetts Institute of Technology, 1997.

[43] Stevens, W.P., Myers, G.J. and Constantine, L.L. Structure Design. IBM Systems Journal, 13, pp. 231-256, 1974.

[44] Trainer, E., Quirk, S., de Souza, C. and Redmiles, D. Bridging the Gap between Technical and Social Dependencies with Ariadne. In
Proceedings of Workshop on the Eclipse Technology Exchange, 2005, pp. 26-30.

[45] Thompson, J.D. Organizations in Action: Social Science Bases of Administrative Theory. McGraw-Hill, New York, 1967

[46] von Hippel, E. Task Partitioning: An Innovation Process Variable. Research Policy, 19, pp. 407-418, 1990.

[47] Watts, D.J. Small Worlds: The Dynamics of Networks between Order and Randomness, Princeton University Press, Princeton, NJ, 1994.

[48] Zimmermannn, T. and Nagappan, N. The Predicting Defects using Network Analysis on Dependency Graphs. In Proceedings of the
International Conference on Software Engineering (ICSE’08), 2008, pp. 531-540.

38

AUTHOR BIOGRAPHY

Marcelo Cataldo received MS and PhD degrees in Computation, Organizations and Society from Carnegie
Mellon University in 2007. He also received a BS in Information Systems from Universidad Tecnologica
Nacional (Argentina) in 1996 and a MS in Information Networking from Carnegie Mellon University in 2000.
His research interests are geographically distributed software development with special focus on the
relationship between the software architecture and the organizational structure in large-scale software
development projects. Marcelo Cataldo is a Senior Research Engineer at Robert Bosch’s Research and
Technology Center.

Audris Mockus is interested in quantifying, modeling, and improving software development. He designs data
mining methods to summarize and augment software change data, interactive visualization techniques to
inspect, present, and control the development process, and statistical models and optimization techniques to
understand the relationships among people, organizations, and characteristics of a software product. Audris
Mockus received BS and MS in Applied Mathematics from Moscow Institute of Physics and Technology in
1988. In 1991 he received M.S. and in 1994 he received PhD in Statistics from Carnegie Mellon University. He
works in the Software Technology Research Department of Avaya Labs. Previously he worked in the Software
Production Research Department of Bell Labs.

Jeffrey A. Roberts received the MS and PhD degrees in Information Systems from Carnegie Mellon
University and the MBA degree from the University of Texas at Austin. He is an assistant professor of
Information Systems Management at the Palumbo Donahue School of Business at Duquesne University. His
research interests include software development methodology, open source software, and e-enabled business
process improvement. He is a member of the Association for Information Systems

James D. Herbsleb is a Professor of Computer Science and Director of the Software Industry Center at
Carnegie Mellon University. His research interests lie primarily in the intersection of software engineering and
computer-supported cooperative work, focusing on such areas as geographically-distributed development
teams, open source software development, and more generally on coordination in software engineering. He
holds a JD (1980) and a PhD in psychology (1984) from the University of Nebraska, and an MS in computer
science (1991) from the University of Michigan.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /SyntheticBoldness 1.00
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /Description <<
 /ENU (Use these settings to create PDF documents with higher image resolution for high quality pre-press printing. The PDF documents can be opened with Acrobat and Reader 5.0 and later. These settings require font embedding.)
 /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308030d730ea30d730ec30b9537052377528306e00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /FRA <FEFF004f007000740069006f006e007300200070006f0075007200200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000500044004600200064006f007400e900730020006400270075006e00650020007200e90073006f006c007500740069006f006e002000e9006c0065007600e9006500200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020005500740069006c006900730065007a0020004100630072006f0062006100740020006f00750020005200650061006400650072002c002000760065007200730069006f006e00200035002e00300020006f007500200075006c007400e9007200690065007500720065002c00200070006f007500720020006c006500730020006f00750076007200690072002e0020004c00270069006e0063006f00720070006f0072006100740069006f006e002000640065007300200070006f006c0069006300650073002000650073007400200072006500710075006900730065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d00690074002000650069006e006500720020006800f60068006500720065006e002000420069006c0064006100750066006c00f600730075006e0067002c00200075006d002000650069006e00650020007100750061006c00690074006100740069007600200068006f006300680077006500720074006900670065002000410075007300670061006200650020006600fc0072002000640069006500200044007200750063006b0076006f0072007300740075006600650020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e00200042006500690020006400690065007300650072002000450069006e007300740065006c006c0075006e00670020006900730074002000650069006e00650020005300630068007200690066007400650069006e00620065007400740075006e00670020006500720066006f0072006400650072006c006900630068002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020007300750070006500720069006f0072002000700061007200610020006f006200740065007200200075006d00610020007100750061006c0069006400610064006500200064006500200069006d0070007200650073007300e3006f0020006d0065006c0068006f0072002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e00200045007300740061007300200063006f006e00660069006700750072006100e700f50065007300200072006500710075006500720065006d00200069006e0063006f00720070006f0072006100e700e3006f00200064006500200066006f006e00740065002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f8006a006500720065002000620069006c006c00650064006f0070006c00f80073006e0069006e0067002000740069006c0020007000720065002d00700072006500730073002d007500640073006b007200690076006e0069006e0067002000690020006800f8006a0020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e00200044006900730073006500200069006e0064007300740069006c006c0069006e0067006500720020006b007200e600760065007200200069006e0074006500670072006500720069006e006700200061006600200073006b007200690066007400740079007000650072002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e00200068006f00670065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200076006f006f0072002000610066006400720075006b006b0065006e0020006d0065007400200068006f006700650020006b00770061006c0069007400650069007400200069006e002000650065006e002000700072006500700072006500730073002d006f006d0067006500760069006e0067002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e002000420069006a002000640065007a006500200069006e007300740065006c006c0069006e00670020006d006f006500740065006e00200066006f006e007400730020007a0069006a006e00200069006e006700650073006c006f00740065006e002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006d00610079006f00720020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e00200071007500650020007000650072006d006900740061006e0020006f006200740065006e0065007200200063006f007000690061007300200064006500200070007200650069006d0070007200650073006900f3006e0020006400650020006d00610079006f0072002000630061006c0069006400610064002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e0020004500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007200650071007500690065007200650020006c006100200069006e0063007200750073007400610063006900f3006e0020006400650020006600750065006e007400650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f0069006400610061006e0020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e002000740075006c006f0073007400750073006c00610061007400750020006f006e0020006b006f0072006b006500610020006a00610020006b007500760061006e0020007400610072006b006b007500750073002000730075007500720069002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e0020004e00e4006d00e4002000610073006500740075006b0073006500740020006500640065006c006c00790074007400e4007600e4007400200066006f006e0074007400690065006e002000750070006f00740075007300740061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0061006700670069006f00720065002000700065007200200075006e00610020007100750061006c0069007400e00020006400690020007000720065007300740061006d007000610020006d00690067006c0069006f00720065002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e002000510075006500730074006500200069006d0070006f007300740061007a0069006f006e006900200072006900630068006900650064006f006e006f0020006c002700750073006f00200064006900200066006f006e007400200069006e0063006f00720070006f0072006100740069002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f80079006500720065002000620069006c00640065006f00700070006c00f80073006e0069006e006700200066006f00720020006800f800790020007500740073006b00720069006600740073006b00760061006c00690074006500740020006600f800720020007400720079006b006b002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e00200044006900730073006500200069006e006e007300740069006c006c0069006e00670065006e00650020006b0072006500760065007200200073006b00720069006600740069006e006e00620079006700670069006e0067002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006800f6006700720065002000620069006c0064007500700070006c00f60073006e0069006e00670020006600f60072002000700072006500700072006500730073007500740073006b0072006900660074006500720020006100760020006800f600670020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e00200044006500730073006100200069006e0073007400e4006c006c006e0069006e0067006100720020006b007200e400760065007200200069006e006b006c00750064006500720069006e00670020006100760020007400650063006b0065006e0073006e006900740074002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

