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Reminder

• Homework on Gaussian Filter is due 
on Wednesday before 11:59 pm

• if you are having difficulties reading the 
provided image file, be sure to read the 
help page on fopen in the Stretch IDE

• Any questions about malloc?
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Hardware Trends
• Proliferation of complex 

embedded systems

• powerful processors

• feature-rich (e.g. Cell, 
Stretch, ARM)

• advanced runtime 
support

• similar features 
found in processors 
for desktop and 
server systems (e.g. 
MMU, multi-core, 
fast bus, etc.)
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Hardware Trends

• We are reaping the 
major benefit of 
Moore’s law

• old processors don’t 
go away

• powerful enough 
for day-to-day 
applications

• very low cost
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Software Trends

• Complex software 
systems 

• why not? The 
hardware can 
handle it!

• Avionic Software for 
Boeing ScanEagle 
UAV > 300,000 line 
of code
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Software Trends

• Feature-rich runtime 
support

• full-fledged desktop/
server operating 
systems in 
embedded devices

• capability to run 
more complex 
software systems on 
these machines
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Software Trends
• Leverage mobile/

embedded devices to 
provide services

• Telesensing from 
Lucent

• prevent Sudden 
Infant Death 
Syndrome, detect 
sleep apnea, etc.

• Full-fledged web 
browsers, calendars, 
file servers, etc.
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Software Trends

• Assume heterogeneous platforms

• the billionth handset shipped in 2006

• build for portability

• build for generic input/output devices

• about 20+ operating systems for these 
devices

• build to interface with underlying runtime 
support features
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Software Trends

• Summary

• large software systems now and larger 
in the future

• more software reuse?

• assume heterogeneous platforms

• must be portable

• providing similar runtime features to 
much more complex systems
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Enabling Technologies

• Modern programming languages (e.g. 
Java, C#, VB.NET)

• Object-oriented paradigm

• promote code reuse

• Virtual Machine (VM) based systems

• achieve portability but require complex 
runtime support

• now available in many embedded devices
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Virtual Machines

“A virtual machine is 
software that creates a 
virtualized environment 
between the computer 
platform and its operating 
system, so that the end 
user can operate software 
on an abstract machine.”
                        

Wikipedia
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Java Virtual Machines

“A Java Virtual Machine 
(JVM) is virtual machine 
that interprets and 
executes Java bytecode. 
This code is most often 
generated by Java 
language compilers...”

Wikipedia                       
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Java Virtual Machines

• We’ll look at the ones developed 
mainly by Sun Microsystems

• HotSpot

• CLDC HotSpot

• KVM (Kilo Virtual Machine)

• second most used VM in the world
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Trivia: What is the most used VM 
developed by Sun?
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Java Virtual Machines

• KVM vs. HotSpot

• KVM is interpretation based

• maximum portability

• HotSpot combines interpretation and 
dynamic compilation

• platform dependent
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Sidebar: Dynamic 
Compilation

• Interpreter is a big while loop with 
many case statements

• each bytecode is translated to a 
predefine C/C+ function (e.g. new 
operator)

• Dynamic compiler takes each method 
and generates native code

• can be optimized or non-optimized
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Sidebar: Dynamic 
Compilation

• Compilation strategies

• always compile (e.g. .NET Compact 
Framework, Jikes RVM)

• only compile frequently used methods

• Code size

• a compiled method can be 6 to 8 times 
larger than its bytecode representation
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Sidebar: Dynamic 
Compilation

• Storage

• these compiled methods are stored in a 
dynamic memory region

• separate code-cache or intermingled with 
objects in the heap

• Management strategies

• flush when full, GC, etc.
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Java Virtual Machines

• KVM vs. HotSpot

• KVM uses simple mark-sweep-compact 
garbage collection

• simple but long execution pauses

• HotSpot uses generational garbage 
collection

• more complex with higher runtime 
overhead, but shorter pauses

19

19



Sidebar: Garbage 
Collection

“Garbage Collection (GC) 
is a form of automatic 
memory management. The 
garbage collector attempts 
to reclaim garbage, or 
memory used by objects 
that will never again be 
accessed or mutated by the 
application.”

Wikipedia
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Sidebar: Garbage 
Collection

• Copying collector

• split the heap in 
half, only one half 
is used each time

• when the half is 
full, migrate 
surviving objects 
to the other half 
then allocate new 
objects from there
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Sidebar: Garbage 
Collection

• Mark-sweep collector

• collect the entire 
heap each time

• when the heap is 
full, identify live 
objects (marking), 
then free dead 
objects (sweeping)
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Sidebar: Garbage 
Collection

• Mark-sweep-compact 
collector

• collect the entire 
heap each time

• similar to mark-
sweep collector 
except that heap is 
compacted after 
sweeping

A B E G

HEAP

ROOT 
SET

Free List
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Java Virtual Machines
• But typical JVMs are not ready for 

deployment in realtime embedded 
systems

• lacking real-time support

• unpredictable execution of operations

• no support for real-time threads

• no priority inversion avoidance

• unbounded garbage collection
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These topics will be the focus of the 
next few lectures
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