
Software Development for
Embedded Systems

Witawas Srisa-an
CSCE 496: Embedded Systems Design and

Implementation

1

Reminder

• Homework on Gaussian Filter is due
on Wednesday before 11:59 pm

• if you are having difficulties reading the
provided image file, be sure to read the
help page on fopen in the Stretch IDE

• Any questions about malloc?

2

2

Hardware Trends
• Proliferation of complex

embedded systems

• powerful processors

• feature-rich (e.g. Cell,
Stretch, ARM)

• advanced runtime
support

• similar features
found in processors
for desktop and
server systems (e.g.
MMU, multi-core,
fast bus, etc.)

3

3

Hardware Trends

• We are reaping the
major benefit of
Moore’s law

• old processors don’t
go away

• powerful enough
for day-to-day
applications

• very low cost

4

4

Hardware Trends

• We are reaping the
major benefit of
Moore’s law

• old processors don’t
go away

• powerful enough
for day-to-day
applications

• very low cost

4

4

Hardware Trends

• We are reaping the
major benefit of
Moore’s law

• old processors don’t
go away

• powerful enough
for day-to-day
applications

• very low cost

4

4

Hardware Trends

• We are reaping the
major benefit of
Moore’s law

• old processors don’t
go away

• powerful enough
for day-to-day
applications

• very low cost

4

4

Software Trends

• Complex software
systems

• why not? The
hardware can
handle it!

• Avionic Software for
Boeing ScanEagle
UAV > 300,000 line
of code

5

5

Software Trends

• Feature-rich runtime
support

• full-fledged desktop/
server operating
systems in
embedded devices

• capability to run
more complex
software systems on
these machines

6

6

Software Trends
• Leverage mobile/

embedded devices to
provide services

• Telesensing from
Lucent

• prevent Sudden
Infant Death
Syndrome, detect
sleep apnea, etc.

• Full-fledged web
browsers, calendars,
file servers, etc.

7

7

Software Trends

• Assume heterogeneous platforms

• the billionth handset shipped in 2006

• build for portability

• build for generic input/output devices

• about 20+ operating systems for these
devices

• build to interface with underlying runtime
support features

8

8

Software Trends

• Summary

• large software systems now and larger
in the future

• more software reuse?

• assume heterogeneous platforms

• must be portable

• providing similar runtime features to
much more complex systems

9

9

Enabling Technologies

• Modern programming languages (e.g.
Java, C#, VB.NET)

• Object-oriented paradigm

• promote code reuse

• Virtual Machine (VM) based systems

• achieve portability but require complex
runtime support

• now available in many embedded devices

10

10

Virtual Machines

“A virtual machine is
software that creates a
virtualized environment
between the computer
platform and its operating
system, so that the end
user can operate software
on an abstract machine.”

Wikipedia

11

11

http://en.wikipedia.org/wiki/Software
http://en.wikipedia.org/wiki/Software
http://en.wikipedia.org/wiki/Virtualization
http://en.wikipedia.org/wiki/Virtualization
http://en.wikipedia.org/wiki/System_platform
http://en.wikipedia.org/wiki/System_platform
http://en.wikipedia.org/wiki/System_platform
http://en.wikipedia.org/wiki/System_platform
http://en.wikipedia.org/wiki/End_user_%28computer_science%29
http://en.wikipedia.org/wiki/End_user_%28computer_science%29
http://en.wikipedia.org/wiki/End_user_%28computer_science%29
http://en.wikipedia.org/wiki/End_user_%28computer_science%29

Java Virtual Machines

“A Java Virtual Machine
(JVM) is virtual machine
that interprets and
executes Java bytecode.
This code is most often
generated by Java
language compilers...”

Wikipedia

12

12

http://en.wikipedia.org/wiki/Virtual_machine
http://en.wikipedia.org/wiki/Virtual_machine
http://en.wikipedia.org/wiki/Java_bytecode
http://en.wikipedia.org/wiki/Java_bytecode
http://en.wikipedia.org/wiki/Java_%28programming_language%29
http://en.wikipedia.org/wiki/Java_%28programming_language%29
http://en.wikipedia.org/wiki/Java_%28programming_language%29
http://en.wikipedia.org/wiki/Java_%28programming_language%29
http://en.wikipedia.org/wiki/Compiler
http://en.wikipedia.org/wiki/Compiler

Java Virtual Machines

• We’ll look at the ones developed
mainly by Sun Microsystems

• HotSpot

• CLDC HotSpot

• KVM (Kilo Virtual Machine)

• second most used VM in the world

13

13

Java Virtual Machines

• We’ll look at the ones developed
mainly by Sun Microsystems

• HotSpot

• CLDC HotSpot

• KVM (Kilo Virtual Machine)

• second most used VM in the world

14

Trivia: What is the most used VM
developed by Sun?

14

Java Virtual Machines

• KVM vs. HotSpot

• KVM is interpretation based

• maximum portability

• HotSpot combines interpretation and
dynamic compilation

• platform dependent

15

15

Sidebar: Dynamic
Compilation

• Interpreter is a big while loop with
many case statements

• each bytecode is translated to a
predefine C/C+ function (e.g. new
operator)

• Dynamic compiler takes each method
and generates native code

• can be optimized or non-optimized

16

16

Sidebar: Dynamic
Compilation

• Compilation strategies

• always compile (e.g. .NET Compact
Framework, Jikes RVM)

• only compile frequently used methods

• Code size

• a compiled method can be 6 to 8 times
larger than its bytecode representation

17

17

Sidebar: Dynamic
Compilation

• Storage

• these compiled methods are stored in a
dynamic memory region

• separate code-cache or intermingled with
objects in the heap

• Management strategies

• flush when full, GC, etc.

18

18

Java Virtual Machines

• KVM vs. HotSpot

• KVM uses simple mark-sweep-compact
garbage collection

• simple but long execution pauses

• HotSpot uses generational garbage
collection

• more complex with higher runtime
overhead, but shorter pauses

19

19

Sidebar: Garbage
Collection

“Garbage Collection (GC)
is a form of automatic
memory management. The
garbage collector attempts
to reclaim garbage, or
memory used by objects
that will never again be
accessed or mutated by the
application.”

Wikipedia
20

20

http://en.wikipedia.org/wiki/Memory_management
http://en.wikipedia.org/wiki/Memory_management
http://en.wikipedia.org/wiki/Garbage_%28computer_science%29
http://en.wikipedia.org/wiki/Garbage_%28computer_science%29
http://en.wikipedia.org/wiki/Object_%28computer_science%29
http://en.wikipedia.org/wiki/Object_%28computer_science%29
http://en.wikipedia.org/wiki/Application_software
http://en.wikipedia.org/wiki/Application_software

Sidebar: Garbage
Collection

• Copying collector

• split the heap in
half, only one half
is used each time

• when the half is
full, migrate
surviving objects
to the other half
then allocate new
objects from there

A

B
C

D

TO

FROM

ROOT SET

21

21

Sidebar: Garbage
Collection

• Copying collector

• split the heap in
half, only one half
is used each time

• when the half is
full, migrate
surviving objects
to the other half
then allocate new
objects from there

A

B
C

D

FROM

TO

ROOT SET

21

21

Sidebar: Garbage
Collection

• Copying collector

• split the heap in
half, only one half
is used each time

• when the half is
full, migrate
surviving objects
to the other half
then allocate new
objects from there

A

B
C

D

A

FROM

TO

ROOT SET

21

21

Sidebar: Garbage
Collection

• Copying collector

• split the heap in
half, only one half
is used each time

• when the half is
full, migrate
surviving objects
to the other half
then allocate new
objects from there

A

B
C

D

A B

FROM

TO

ROOT SET

21

21

Sidebar: Garbage
Collection

• Copying collector

• split the heap in
half, only one half
is used each time

• when the half is
full, migrate
surviving objects
to the other half
then allocate new
objects from there

A

B
C

D

A B C

FROM

TO

ROOT SET

21

21

Sidebar: Garbage
Collection

• Copying collector

• split the heap in
half, only one half
is used each time

• when the half is
full, migrate
surviving objects
to the other half
then allocate new
objects from there

A

B
C

D

A B DC

FROM

TO

ROOT SET

21

21

Sidebar: Garbage
Collection

• Copying collector

• split the heap in
half, only one half
is used each time

• when the half is
full, migrate
surviving objects
to the other half
then allocate new
objects from there

A

B
C

D

A B DC

FROM

TO

ROOT SET

21

21

Sidebar: Garbage
Collection

• Mark-sweep collector

• collect the entire
heap each time

• when the heap is
full, identify live
objects (marking),
then free dead
objects (sweeping)

A B C D E F G

ROOT
SET

HEAP

22

22

Sidebar: Garbage
Collection

• Mark-sweep collector

• collect the entire
heap each time

• when the heap is
full, identify live
objects (marking),
then free dead
objects (sweeping)

A B C D E F G

ROOT
SET

HEAP

22

22

Sidebar: Garbage
Collection

• Mark-sweep collector

• collect the entire
heap each time

• when the heap is
full, identify live
objects (marking),
then free dead
objects (sweeping)

A B C D E F G

ROOT
SET

HEAP

22

22

Sidebar: Garbage
Collection

• Mark-sweep collector

• collect the entire
heap each time

• when the heap is
full, identify live
objects (marking),
then free dead
objects (sweeping)

A B C D E F G

ROOT
SET

HEAP

22

22

Sidebar: Garbage
Collection

• Mark-sweep collector

• collect the entire
heap each time

• when the heap is
full, identify live
objects (marking),
then free dead
objects (sweeping)

A B C D E F G

ROOT
SET

HEAP

22

22

Sidebar: Garbage
Collection

• Mark-sweep collector

• collect the entire
heap each time

• when the heap is
full, identify live
objects (marking),
then free dead
objects (sweeping)

A B E G

HEAP

ROOT
SET

Free List

23

23

Sidebar: Garbage
Collection

• Mark-sweep-compact
collector

• collect the entire
heap each time

• similar to mark-
sweep collector
except that heap is
compacted after
sweeping

A B E G

HEAP

ROOT
SET

Free List

24

24

Java Virtual Machines
• But typical JVMs are not ready for

deployment in realtime embedded
systems

• lacking real-time support

• unpredictable execution of operations

• no support for real-time threads

• no priority inversion avoidance

• unbounded garbage collection

25

25

Java Virtual Machines
• But typical JVMs are not ready for

deployment in realtime embedded
systems

• lacking real-time support

• unpredictable execution of operations

• no support for real-time threads

• no priority inversion avoidance

• unbounded garbage collection

26

These topics will be the focus of the
next few lectures

26

