
1

Exception Handling in Nios II

Witawas Srisa-an
CSCE351-Operating System Kernels

Interrupts

• use for communication between
software and hardware peripherals
– hardware asserts its IRQ to cause an

exception to the normal execution flow
– ISR (interrupt service routine) handles the

interrupt and then return the processor to
its pre-interrupt state when done



2

Exception Handling in Nios II

• When an interrupt occurs
– saves the status register
– disables hardware interrupts
– saves the next execution address in ea
– transfers control to the handler

Hardware Abstraction Layer
(HAL)

• lightweight runtime
environment
– provides simple

device driver
interface

– allow access to
devices with
common C library
functions

• Nios II BSP



3

HAL Services

• Integration with C standard library
• Device drivers
• HAL API
• System initialization
• Device initialization

Interfacing with HAL

• Application developers
– using HAL API or C standard library
– do not consider the underlying hardware

• Device driver developers
– making drivers for low-level hardware
– interface newly written drivers with HAL



4

Generic Devices in HAL

• Character-mode devices
• Timer devices
• File subsystems
• Ethernet devices
• DMA devices
• Flash memory devices

Exception Handling in HAL

• Top level exception handler
– creates private stack
– stores register values onto the stack
– determines the type of exception and

invoke the right SW or HW handler
• Software exception handler
• Hardware interrupt handler

– ISRs for peripherals



5

Exception Handling in HAL

Exception Handling in HAL

• check estatus to see if hardware
interrupt is enabled
– if yes, check to see if the interrupt is

hardware by checking ipending
• if yes, corresponding ISR is called

– if no, call the software exception handler
• hardware interrupts have higher priority

than software exceptions



6

Exception Handling in HAL

• Upon returning from exceptions, the
top-level handler
– restores the stack pointer
– restores the registers from the stack
– exits by issuing an eret instruction

Exception Handling in HAL

• HW Handlers
– 32 hardware

interrupts (0 to 31,
with 0 as highest
priority)

• priority is HAL
specific and not
NIOS II



7

Exception Handling in HAL

• SW handlers
– used for unimplemented instructions

• e.g. running multiplication on NIOS II with no
multipliers

– traps
• break instruction

Project Discussion


