
Emulation: Interpretation
Witawas Srisa-an

CSCE496/896: Embedded Systems Design and

Credits

• Most of the material for this lecture is from
“Virtual Machines: Versatile Platforms for
Systems and Processes”, Smith and Nair, 2005

Emulation

“the process of implementing the interface and
functionality of one system or subsystem on a
system or subsystem having a different
interface and functionality...”

Instruction Set Emulation

• An essential function of a virtual machine

• the source instruction set (e.g. a program
compiled for IA32)

• the target instruction set (e.g. but runs on PPC)

Forms of Emulation

• Interpretation

• done in software on
instruction at a time

Fetch an
instruction

Analyzing it
Perform

the required
Operation

Forms of Emulation

• Binary translation

• amortized the fetch and analysis costs by

• translating a block of source instructions to target
instructions

• saving the translated code for repeated use

Forms of Emulation

Tr
an

sl
at

io
n

co
st

Execution costlow

high

high

Binary
translation Interpretation

Interpretation

• Resources

• each instruction is
viewed as an element
in an array

• basic resources
similar to a real
processor

code

data

stack

...

PC
R0
R1
...

Interpreter

Source Memory
State

Source Context
Block

CR0

Interpretation

while (!halt && !interrupt) {
inst = code[PC];
opcode = extract(inst,31,6);
switch (opcode) {

case LUI: LUI(inst);
case LW: LW(inst);
...

}
}

LUI(inst) {
RT = extract(inst,25,5);
IMM = extract(inst,15,16);
if (RT == 0) {

interrupt = 1;
return;

}
reg[RT] = IMM << 16;
PC = PC + 4;

}

LW(inst) {
...

}

Decode and dispatch (MIPS instruction set)

Interpretation

• Decode and dispatch

• one source instruction can mean many target
instructions

• many branch instructions which may not be
pipeline-friendly

Interpretation

while (!halt && !interrupt) {
inst = code[PC];
opcode = extract(inst,31,6);
switch (opcode) {

case LUI: LUI(inst);
case LW: LW(inst);
...

}
}

LUI(inst) {
RT = extract(inst,25,5);
IMM = extract(inst,15,16);
if (RT == 0) {

interrupt = 1;
return;

}
reg[RT] = IMM << 16;
PC = PC + 4;

}

LW(inst) {
...

}

Decode and dispatch (MIPS instruction set)

Interpretation
• Threaded interpretation

LUI:
RT = extract(inst,25,5);
IMM = extract(inst,15,16);
if (RT == 0) {

interrupt = 1;
return;

}
reg[RT] = IMM << 16;
PC = PC + 4;
if (halt || interrupt) goto exit;
inst = code[PC];
opcode = extract(inst,31,6);
routine = dispatch[opcode];
goto *routine;

...

Interpretation

Decode and dispatch Threaded interpretation

From Virtual Machines by Smith and Nair, 2005

Dispatch table

Interpretation

• Threaded Interpretation

• Now, the dispatch table is a bottleneck

• The same instruction can be interpreted multiple
times and each time, many extractions are needed

• why not save the extracted information?

Interpretation

• Predecoding

• decode an instruction and store the info in an
intermediate form

• reuse this intermediate form each time the
instruction is emulated

Interpretation

Predecoding (MIPS instruction set)

Source Code Intermediate Code

Interpretation

0x1000: LW R1, 8(R2)
0x1004: ADD R3, R3, R1
0x1008: SW R3, 0(R4)
...

Predecoding example (MIPS instruction set)

135

1 82

032

3 031

142

3 004

0x10000: LW

0x10008: ADD

0x10010: SW

Interpretation

struct instruction {
unsigned int op;
unsigned char dest;
unsigned char src1;
unsigned short src2;

} code [CODE_SIZE]

Predecoding example (MIPS instruction set)

LUI:
RT = code[TPC].dest;
IMM = code[TPC].src2;
if (RT == 0) {

interrupt = 1;
return;

}
reg[RT] = IMM << 16;
SPC = SPC + 4;
TPC = TPC + 1;
if (halt || interrupt) goto exit;
inst = code[PC];
opcode = code[TPC].op;
routine = dispatch[opcode];
goto *routine;

...

Interpretation

• Threaded Interpretation

• The dispatch table is a bottleneck

• The same instruction can be interpreted multiple
times and each time, many extractions are needed

• why not save the extracted information?

Interpretation

• Direct threaded interpretation

• instead of encoding opcode, why not encode the
actual address of the interpreter routine?

Interpretation

0x1000: LW R1, 8(R2)
0x1004: ADD R3, R3, R1
0x1008: SW R3, 0(R4)
...

Direct threaded example (MIPS instruction set)

001048d0

1 82

00104800

3 031

00104910

3 004

0x10000: LW

0x10008: ADD

0x10010: SW

Interpretation

struct instruction {
unsigned int addr;
unsigned char dest;
unsigned char src1;
unsigned short src2;

} code [CODE_SIZE]

Direct threaded example (MIPS instruction set)

LUI:
RT = code[TPC].dest;
IMM = code[TPC].src2;
if (RT == 0) {

interrupt = 1;
return;

}
reg[RT] = IMM << 16;
SPC = SPC + 4;
TPC = TPC + 1;
if (halt || interrupt) goto exit;
inst = code[PC];
routine = code[TPC].addr;
goto *routine;

...

Summary

• We have discussed the basic interpretation
techniques

• decode and dispatch causes many branches

• threaded interpretation eliminates the dispatch
loop but creates a dispatch table

• predecoding eliminates redundant extractions

• direct threaded eliminates redundant extractions
and the dispatch table

