
Confidential & Proprietary

Last modified: 01/20/2005

Color Space Conversion
Application Note

Version 1.1

C
on

fid
en

tia
l:

C
re

at
ed

 fo
r

W
ita

w
as

 S
ris

a-
an

 @
 U

ni
ve

rs
ity

 o
f N

eb
ra

sk
a

on
 F

eb
ru

ar
y

23
, 2

00
5

Stretch, Inc. — Confidential & Proprietary

© 2004 Stretch, Inc. All rights reserved. The Stretch logo, Stretch, and Ex-
tending the Possibilities are trademarks of Stretch, Inc. All other trademarks
and brand names are the properties of their respective owners.

This preliminary publication is provided “AS IS.” Stretch, Inc. (hereafter
“Stretch”) DOES NOT MAKE ANY WARRANTY OF ANY KIND, EITHER EX-
PRESSED OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IM-
PLIED WARRANTIES OF TITLE, NONINFRINGEMENT,
MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. In-
formation in this document is provided solely to enable system and software
developers to use Stretch S5000 processors. Unless specifically set forth here-
in, there are no express or implied patent, copyright or any other intellectual
property rights or licenses granted hereunder. Stretch does not warrant that
the contents of this publication, whether individually or as one or more
groups, meets your requirements or that the publication is error-free. This
publication could include technical inaccuracies or typographical errors.
Changes may be made to the information herein, and these changes may be
incorporated in new editions of this publication.

Part #: AN-0000-0001-001

C
on

fid
en

tia
l:

C
re

at
ed

 fo
r

W
ita

w
as

 S
ris

a-
an

 @
 U

ni
ve

rs
ity

 o
f N

eb
ra

sk
a

on
 F

eb
ru

ar
y

23
, 2

00
5

Stretch, Inc. — Confidential & Proprietary

Version 1.1 Color Space Conversion Application Note
Last modified: 01/20/2005 iii

Contents

Chapter 1 Color Space Conversion
1.1 Color Space Conversion Application .1-1
1.2 Color Space Conversion Implementation in C .1-2
1.3 Analyze Profile Output .1-3
1.4 Rewrite the Hot Spot for the ISEF. .1-3
1.5 Creating Extension Instruction .1-4
1.6 Analyze Profile Output with Extension Instruction .1-7

Appendix A Source Listings
A.1 rgb2ycc_a.c . A-1
A.2 rgb2ycc_b.c . A-2
A.3 rgb2ycc.xc . A-3
A.4 Makefile. A-4

C
on

fid
en

tia
l:

C
re

at
ed

 fo
r

W
ita

w
as

 S
ris

a-
an

 @
 U

ni
ve

rs
ity

 o
f N

eb
ra

sk
a

on
 F

eb
ru

ar
y

23
, 2

00
5

Stretch, Inc. — Confidential & Proprietary

Contents

Color Space Conversion Application Note Version 1.1
iv Last modified: 01/20/2005

This page intentionally left mostly blank.

C
on

fid
en

tia
l:

C
re

at
ed

 fo
r

W
ita

w
as

 S
ris

a-
an

 @
 U

ni
ve

rs
ity

 o
f N

eb
ra

sk
a

on
 F

eb
ru

ar
y

23
, 2

00
5

Version 1.1 Color Space Conversion Application Note
Last modified: 01/20/2005 1-1

Stretch, Inc. — Confidential & Proprietary

Chapter 1 Color Space Conversion

The six basic development steps for implementing any application on the S5
Engine are:

1. Define the application.

2. Write the application in C/C++.

3. Compile and link the application source files using the Stretch C Compiler
(scc).

4. Run and profile the application.

5. Determine which parts of the application need to be accelerated based on the
profile data.

6. Rewrite the computationally intensive code (hot spots) for the S5 Engine’s
Instruction Set Extension Fabric (ISEF), and repeat steps 2 through 5 until
you are satisfied with the application’s computation performance.

This application note shows you how to use steps 2 through 6 to implement a
Color Space Conversion application on the S5 Engine.

1.1 Color Space Conversion
Application

The color space conversion algorithm is used for converting video data from
one color space (RGB) to another color space (YCbCr) or vice-versa.

The basic equations to convert between 8-bit digital RGB data and 8-bit YCbCr
are

These equation can be implemented in fixed-point arithmetic as follows:

Y 0.299R 0.587G 0.114B+ +=
Cb 0.169R– 0.331G– 0.500B 128+ +=
Cr 0.500R 0.419G– 0.082B– 128+=

Y 77R 150G 29B+ +() 8»=
Cb 43R– 85G– 128B 32768+ +() 8»=
Cr 128R 107G– 21B– 32768+() 8»=

C
on

fid
en

tia
l:

C
re

at
ed

 fo
r

W
ita

w
as

 S
ris

a-
an

 @
 U

ni
ve

rs
ity

 o
f N

eb
ra

sk
a

on
 F

eb
ru

ar
y

23
, 2

00
5

Color Space Conversion Application Note Version 1.1
1-2 Last modified: 01/20/2005

Chapter 1 ■ Color Space Conversion
Color Space Conversion Implementation in C

Stretch, Inc. — Confidential & Proprietary

As seen in the preceding equations, the computations required for implemen-
tation of such an algorithm are composed of multiplication, addition, and shift
operations, all of which are well-suited for the S5 Engine.

1.2 Color Space Conversion
Implementation in C

The preceding fixed-point equations can be implemented in C as follows:

void rgb2ycc (char r, char g, char b, char *y, char *cb,
char *cr)

{
*y = (77*r + 150*g + 29*b) >> 8;
*cb = (-43*r - 85*g + 128*b + 32768) >> 8;
*cr = (128*r - 107*g - 21*b + 32768) >> 8;

}

As observed in the preceding implementation, the rgb2ycc module requires
one set of RGB samples (3 bytes) to generate one set of YCbCr samples (3
bytes). In the preceding code, the arguments r, g, and b represent the input
data, and the three pointers, *y, *cb, and *cr are the addresses of the respec-
tive y, cb, and cr locations. This module can be executed in a loop for a long
set of RGB data as follows:

void rgb2ycc_wrapper(int NP, char *RGB, char *YCC)
{

int i;
for (i = 0; i < 3 * NP; i += 3) {
rgb2ycc(RGB[i], RGB[i+1], RGB[i+2], &YCC[i],

&YCC[i+1], &YCC[i+2]);
}

}

The preceding wrapper function, loops 3 * NP times, which is the total num-
ber of RGB inputs, and generate 3 * NP YCbCr outputs. NP represents the total
number of 3-byte sets of RGB and YCbCr components. For each set of RGB da-
ta, we call the rgb2ycc function. Thus, we will make a total of NP calls to the
rgb2ycc function.

For the complete source listing of the application, refer to Appendix A. In ad-
dition, the file referenced here and the Makefile are available in the
\Examples\kernels distribution directory. You can use these to compile,
run, and profile the Color Space Conversion application.

C
on

fid
en

tia
l:

C
re

at
ed

 fo
r

W
ita

w
as

 S
ris

a-
an

 @
 U

ni
ve

rs
ity

 o
f N

eb
ra

sk
a

on
 F

eb
ru

ar
y

23
, 2

00
5

Version 1.1 Color Space Conversion Application Note
Last modified: 01/20/2005 1-3

Stretch, Inc. — Confidential & Proprietary

Chapter 1 ■ Color Space Conversion
Analyze Profile Output

1.3 Analyze Profile Output

After compiling, linking, running, and profiling the C implementation you
can analyze the output from the profiler to find the hot spots in your code. The
output from the profiler produces a summary of performance statistics collect-
ed by the simulator during execution. Table 1-1 is an excerpt of these perfor-
mance statistics for the C implementation of the Color Space Conversion
application showing those functions that use the highest percentage of cycles.

As you can see in Table 1-1, the rgb2ycc function is called 160 times and takes
7.25% of the total cycles. Also, observe that the rgb2ycc_wrapper function
that calls the rgb2ycc module takes 9293 cycles. Of these cycles, the
rgb2ycc function contributes 5938 cycles. Thus, we see that the rgb2ycc
function is an excellent candidate for execution on the ISEF. By optimizing the
execution of the rgb2ycc function, we inherently reduce the cycles required
by the rgb2ycc_wrapper function.

1.4 Rewrite the Hot Spot for the ISEF

On the S5 Engine, there is a lot of flexibility that allows us to exploit the pattern
of computations for a given algorithm and accordingly map them to Extension
Instructions to achieve maximum performance gain. But before we jump into
this analysis, following are a few important features of the S5 Engine to re-
member when writing programs for it:

■ All data access to and from the ISEFs are through register files located in the
Extension Unit. There are two banks of register files (A and B). Each bank

Table 1-1 Excerpt of performance statistics for C implementation

% Cumulative
cycles

Self
cycles

Number
of calls

Self
cycles/call

Total
cycles/call Function Name

77.34 63348.00 63348.00 ResetH

 7.25 69286.00 5938.00 160 37.11 37.11 rgb2ycc

 5.00 73384.00 4098.00 1 4098.00 17257.63 main

 4.10 76739.00 3355.00 1 3355.00 9293.00 rgb2ycc_wrapper

 1.34 77834.00 1095.00 1 1095.00 3308.63 _vfprintf_r

 0.73 78429.00 595.00 1 595.00 778.50 _malloc_r

 0.43 78783.00 354.00 2 177.00 355.06 __sfvwrite

C
on

fid
en

tia
l:

C
re

at
ed

 fo
r

W
ita

w
as

 S
ris

a-
an

 @
 U

ni
ve

rs
ity

 o
f N

eb
ra

sk
a

on
 F

eb
ru

ar
y

23
, 2

00
5

Color Space Conversion Application Note Version 1.1
1-4 Last modified: 01/20/2005

Chapter 1 ■ Color Space Conversion
Creating Extension Instruction

Stretch, Inc. — Confidential & Proprietary

contains 16 registers, and each register is 128 bits wide. Thus, in total we
have 32 128-bit wide registers (WRs).

■ Each ISEF has three read and two write ports. At any given time, each can
perform a maximum of three 128-bit reads (384-bits) and two 128-bit writes
(256-bits).

■ The Stretch processor and the ISEF run off the same clock source. The tim-
ing between them is skewed by the issue rate (see the SCP Architecture Ref-
erence for details on issue rate). What this means is that we can perform
128-bit registers loads and stores in between consecutive invocations of the
Extension Instruction without under-utilizing the ISEF. In addition,
because Extension Instruction execution is pipelined, there is no need to
wait for an Extension Instruction to finish before the next Extension Instruc-
tion is issued. Thus, if an Extension Instruction does not require the output
generated by the previous instruction, Extension Instructions can be issued
at the issue rate. Eventually, however, some processor cycles will be spent
waiting for the final results from the ISEF execution, which depends on the
ISEF latency times the issue rate.

■ The Stretch processor can read or write to or from the register files for mem-
ory-to-ISEF data transfers. Stretch processor instructions include support
for 8-, 16-, 32-, 64-, and 128-bit loads and stores for the WRs with immediate,
indexed, circular, or bit-reversed addressing. There is also support for bit
and byte puts and gets to or from the WRs, and a 128-bit move instruction
between WR registers.

For anything less than 128-bit loads or stores, the upper bits are zero-pad-
ded.

■ As noted in the Section 1.4.8, “The SCP Instruction Set Extension Fabric
Capability and Capacity” of the SCP Architecture Manual, an Extension
Instruction using many AU or MU elements leaves fewer ISEF resources for
other Extension Instructions in the same ISEF configuration.

We can now show how to leverage the flexibility provided by the ISEF in creat-
ing instruction that maximize the performance of the Color Space Conversion
application.

1.5 Creating Extension Instruction

As we saw in the profile information, the rgb2ycc function is called 160
times and takes about 50% of the total cycles. Thus, it is an appropriate candi-
date for us to represent it as an Extension Instruction.

C
on

fid
en

tia
l:

C
re

at
ed

 fo
r

W
ita

w
as

 S
ris

a-
an

 @
 U

ni
ve

rs
ity

 o
f N

eb
ra

sk
a

on
 F

eb
ru

ar
y

23
, 2

00
5

Version 1.1 Color Space Conversion Application Note
Last modified: 01/20/2005 1-5

Stretch, Inc. — Confidential & Proprietary

Chapter 1 ■ Color Space Conversion
Creating Extension Instruction

The ISEF can have three 128-bit Wide Registers as input operands and two
128-bit Wide Registers as output operands, so typically we would try to pack as
many input data into the Wide Register as can be handled by the ISEF. Thus,
the instruction would typically operate on several inputs and generate several
outputs per invocation. In defining the instruction we either push the ISEF’s
input–output limit or the compute limit.

Also, the Extension Instruction is represented in C; thus creating an Extension
Instruction for the rgb2ycc function is straightforward. We include the C im-
plementation of the rgb2ycc function as the body of the instruction.
Wrapped around it is the prolog and the epilog. The prolog typically consists
of extracting data from the Wide Registers, which act as input operands for the
instruction. The epilog consists of packing the outputs generated by the in-
struction into the Wide Register, which acts as an output operand. The instruc-
tion is defined using a unique typedef that tells the Stretch compiler to
compile the function as an Extension Instruction. The arguments to this func-
tion are representative of the input–output operands for the instruction. In ad-
dition, the Extension Instruction needs to reside in a separate file with a .xc
extension.

Figure 1-1 shows the ISEF function (rgb2ycc()) that defines the Extension
Instruction for the inner loop RGB to YCC conversion computations.
rgb2ycc() is defined in the Stretch C file rgb2ycc.xc. Table 1-2 explains
what each part of the code does.

Figure 1-1 ISEF function rgb2ycc()

#include <stretch.h>

/* Extension instruction converting 5 pixels */
SE_FUNC void rgb2ycc(WR A, WR *B)
{
 se_sint<8> r[5], g[5], b[5];
 se_sint<8> y[5], cb[5], cr[5];
 int i, j;

 /* unpack A to RGB data, does not use any ISEF logic */
 for (i = 0; i < 5; i++) {
 j = i * 3 * 8;
 r[i] = A(j+7, j);
 g[i] = A(j+15, j+8);
 b[i] = A(j+23, j+16);
 }

 /* converting 5 pixels */
 for (i = 0; i < 5; i++) {
 y[i] = (77*r[i] + 150*g[i] + 29*b[i]) >> 8;
 cb[i] = (-43*r[i] - 85*g[i] + 128*b[i] + 32768) >> 8;
 cr[i] = (128*r[i] - 107*g[i] - 21*b[i] + 32768) >> 8;
 }

 /* pack YCbCr to B */
 *B = (cr[4],cb[4],y[4],

 cr[3],cb[3],y[3],
 cr[2],cb[2],y[2],
 cr[1],cb[1],y[1],
 cr[0],cb[0],y[0]);

}

A

E

B
D

C

F

C
on

fid
en

tia
l:

C
re

at
ed

 fo
r

W
ita

w
as

 S
ris

a-
an

 @
 U

ni
ve

rs
ity

 o
f N

eb
ra

sk
a

on
 F

eb
ru

ar
y

23
, 2

00
5

Color Space Conversion Application Note Version 1.1
1-6 Last modified: 01/20/2005

Chapter 1 ■ Color Space Conversion
Creating Extension Instruction

Stretch, Inc. — Confidential & Proprietary

The wrapper function that invokes this instruction is modified as follows:

Table 1-2 Components of the rgb2ycc() function

A This header file defines arbitrary-sized integer types and the usual arithmetic
operations on them. It must be included in all source files that use Stretch-defined
declarations and data types.

B The ISEF function is declared as type SE_FUNC void and named rgb2ycc. All
ISEF functions must be declared as type SE_FUNC void.

C Stretch C lets you define arbitrary-width data types using the se_sint<n> dec-
laration. The term se_sint<> is used for signed quantities, the term
se_uint<n> is used for unsigned quantities, and <n> defines the data type’s
width. Because the width of these data types is arbitrary, <n> can be any value
required for your application, within the physical limitation of the ISEF, of
course.

D The Extension Instruction rgb2ycc is defined to have two arguments: A and B.
They are declared as type WR, which means that they are wide registers. In this
example, A is input and B is an output. The asterisk(*) before B means that B is
an output. In some cases, we can also use B as an input (that is, in–out). In such
cases, we would still declare B in this fashion if the result were to be written out
using B.

E Computation loop. Because the inputs to the conversion of the five pixels are inde-
pendent, the Stretch C compiler (scc) recognizes this and executes the five itera-
tions in parallel.

F The values are packed together and written to the output wide register.

Figure 1-2 Using the Extension Instruction

Table 1-3 Code components

A This is the generated header file from the compilation of rgb2ycc.xc

B Wide Register allocations for the Input and Output samples.

#include "rgb2ycc.h"

void
rgb2ycc_wrapper(signed char *RGB, signed char *ycc)
{
 WR A, B;
 int i;

 WRGET0INIT(0, RGB); /* initialize input stream from RGB */
 WRPUTINIT(0, ycc); /* initialize output stream to ycc */

 /* loop over RGB data, converting 5 pixels at a time */
 for (i = 0; i < NP/5; i++) {

 WRGET0I(&A, 15); /* load 5 RGB pixels to A */

 rgb2ycc(A, &B); /* convert 5 pixels */

 WRPUTI(B, 15); /* store 5 YCbCr pixels from B */
 }

 WRPUTFLUSH(); /* flush output stream */
}

A

C

D

E

G

B

F

C
on

fid
en

tia
l:

C
re

at
ed

 fo
r

W
ita

w
as

 S
ris

a-
an

 @
 U

ni
ve

rs
ity

 o
f N

eb
ra

sk
a

on
 F

eb
ru

ar
y

23
, 2

00
5

Version 1.1 Color Space Conversion Application Note
Last modified: 01/20/2005 1-7

Stretch, Inc. — Confidential & Proprietary

Chapter 1 ■ Color Space Conversion
Analyze Profile Output with Extension Instruction

1.6 Analyze Profile Output with
Extension Instruction

After compiling, linking, running, and profiling the Color Space Conversion
application with the Extension Instruction, we get the performance statistics
shown in Table 2.2.

C The WRGET0INIT() intrinsic is defined to be the WRGET0INIT instruction. We
initialize the input byte stream mechanism with the memory address RGB, with
automatic incrementing adresses.
The WRPUTINIT() intrinsic is defined to be the WRPUTINIT instruction. We ini-
tialize the output byte stream mechanism with the memory address ycc where the
data is to be written, with automatic incrementing addresses.
In addition, the fact that the data pointers are provided during their initialization,
means that the hardware maintains the increment of the pointers internally for
every GET or PUT invocation. Thus, the application need not worry about pointer
management when executing these instructions.

NOTE: WRGET0I() and WRPUTI() are intrinsic functions that have one-to-
one machine instruction counterparts. For example, WRGET0I(&A, 15) is
shown as WRAGET0I <wra>,15 in the disassembly file.

D The WRGET0I instruction provides mechanisms to load 1–16 bytes from an
unaligned memory location into a wide register. Here, we fetch 15 bytes of input
data for every call.

E Invoke the Extension Instruction using function call notation. The calling module
supplies all the required I/O arguments when invoking the instruction. This
instruction performs five pixels of RGB to YCbCr conversion for every call.

NOTE: The SE function rgb2ycc() call is equivalent to the user-created
Extension Instruction se_rgb2ycc <wr>, <wra> in the disassembly file.

F The WRPUTI instruction provides mechanisms to store 1–16 bytes to an unaligned
memory location from a wide register. Here, we store 15 bytes of output for every
call.

G The WRPUTFLUSH instructions flush the output byte stream. They are required
when using WRPUT instructions to write data to memory.

Table 1-3 Code components

Table 1-4 Excerpt of performance statistics for Extension Instruction code (Sheet 1 of 2)

%
Cumulative

cycles
Self

Cycles
Number
of calls

Self
cycles /call

Total
cycles /call Function name

86.46 63348.00 63348.00 ResetH

 5.58 67434.00 4086.00 1 4086.00 8714.63 main

 1.50 68531.00 1097.00 1 1097.00 3305.63 _vfprintf_r

 1.04 69296.00 765.00 1 765.00 765.00 rgb2ycc_wrapper

C
on

fid
en

tia
l:

C
re

at
ed

 fo
r

W
ita

w
as

 S
ris

a-
an

 @
 U

ni
ve

rs
ity

 o
f N

eb
ra

sk
a

on
 F

eb
ru

ar
y

23
, 2

00
5

Color Space Conversion Application Note Version 1.1
1-8 Last modified: 01/20/2005

Chapter 1 ■ Color Space Conversion
Analyze Profile Output with Extension Instruction

Stretch, Inc. — Confidential & Proprietary

As you can see in Table 2.2, the rgb2ycc function no longer exists, and all the
compute cycles fall under the rgb2ycc_wrapper function. Comparing the
cycles for the wrapper function with the C implementation, we see that the
wrapper function with the Extension Instruction takes a total of 765 cycles per
call versus 9293 cycles per call for the C implementation. This results in a 12x
performance gain.

 0.81 69891.00 595.00 1 595.00 778.5 _malloc_r

 0.48 70245.00 354.00 2 177.00 352.56 __sfvwrite

Table 1-4 Excerpt of performance statistics for Extension Instruction code (Sheet 2 of 2)

%
Cumulative

cycles
Self

Cycles
Number
of calls

Self
cycles /call

Total
cycles /call Function name

C
on

fid
en

tia
l:

C
re

at
ed

 fo
r

W
ita

w
as

 S
ris

a-
an

 @
 U

ni
ve

rs
ity

 o
f N

eb
ra

sk
a

on
 F

eb
ru

ar
y

23
, 2

00
5

Version 1.1 Color Space Conversion Application Note
Last modified: 01/20/2005 A-1

Stretch, Inc. — Confidential & Proprietary

Appendix A Source Listings

This appendix contains the C source listing for the Color Space Conversion ap-
plication.

A.1 rgb2ycc_a.c
#include "data.h"

void
rgb2ycc(

signed char r, signed char g, signed char b,
signed char *y, signed char *cb, signed char *cr)

{
*y = (77*r + 150*g + 29*b) >> 8;
*cb = (-43*r - 85*g + 128*b + 32768) >> 8;
*cr = (128*r - 107*g - 21*b + 32768) >> 8;

}
void
rgb2ycc_wrapper(int np, signed char *RGB,

signed char *YCC)
{

int i;

for (i = 0; i < 3 * np; i += 3) {
rgb2ycc(RGB[i], RGB[i+1], RGB[i+2], &YCC[i],

&YCC[i+1], &YCC[i+2]);
}

}

int main()
{

signed char ycc[3 * NP];
int i, err=0;
rgb2ycc_wrapper(NP, RGB, ycc);

for (i = 0; i < 3 * NP; i++) {
err |= YCC[i] != ycc[i];

}

printf("%s\n", err ? "Error" : "Pass");
return err;

}
C

on
fid

en
tia

l:
C

re
at

ed
 fo

r
W

ita
w

as
 S

ris
a-

an
 @

 U
ni

ve
rs

ity
 o

f N
eb

ra
sk

a
on

 F
eb

ru
ar

y
23

, 2
00

5

Color Space Conversion Application Note Version 1.1
A-2 Last modified: 01/20/2005

Appendix A ■ Source Listings
rgb2ycc_b.c

Stretch, Inc. — Confidential & Proprietary

A.2 rgb2ycc_b.c
#include "data.h"
#include "rgb2ycc.h"

#if (!defined(__STRETCH_S5_ISS__) && !defined(__STRETCH_NATIVE__))
#include <s5000/sx-isef.h>
#endif

void
rgb2ycc_wrapper(signed char *RGB, signed char *ycc)
{
 WR A, B;
 int i;

 WRGET0INIT(0, RGB);/* initialize input stream from RGB */
 WRPUTINIT(0, ycc);/* initialize output stream to ycc */

 /* loop over RGB data, converting 5 pixels at a time */
 for (i = 0; i < NP/5; i++) {
 WRGET0I(&A, 15);/* load 5 RGB pixels to A */
 rgb2ycc(A, &B);/* convert 5 pixels */
 WRPUTI(B, 15);/* store 5 YCbCr pixels from B */
 }

 WRPUTFLUSH(); /* flush output stream */
}

int main()
{
 signed char ycc[3 * NP];
 int i, err=0;

#if (!defined(__STRETCH_S5_ISS__) && !defined(__STRETCH_NATIVE__))
 /* Load the ISEF */
 printf("Loading ISEF with bitstream rgb2ycc....\n");
 err = sx_isef_load_by_name_async(sx_isef_a, "rgb2ycc");
 if (err) {
 while (1); // Spin in an endless loop so we can break here and debug
 }
 printf("Done. \n");
#endif

 rgb2ycc_wrapper(RGB, ycc);

 for (i = 0; i < 3 * NP; i++) {
 err |= YCC[i] != ycc[i];
 }
 printf("%s\n", err ? "Error" : "Pass");

 return err;
}

C
on

fid
en

tia
l:

C
re

at
ed

 fo
r

W
ita

w
as

 S
ris

a-
an

 @
 U

ni
ve

rs
ity

 o
f N

eb
ra

sk
a

on
 F

eb
ru

ar
y

23
, 2

00
5

Version 1.1 Color Space Conversion Application Note
Last modified: 01/20/2005 A-3

Stretch, Inc. — Confidential & Proprietary

Appendix A ■ Source Listings
rgb2ycc.xc

A.3 rgb2ycc.xc
#include <stretch.h>

/* Extension instruction converting 5 pixels */
SE_FUNC void rgb2ycc(WR A, WR *B)
{
 se_sint<8> r[5], g[5], b[5];
 se_sint<8> y[5], cb[5], cr[5];
 int i, j;

/* unpack A to RGB data, does not use any ISEF logic */
 for (i = 0; i < 5; i++) {
 j = i * 3 * 8;
 r[i] = A(j+7, j);
 g[i] = A(j+15, j+8);
 b[i] = A(j+23, j+16);
 }

/* converting 5 pixels */
 for (i = 0; i < 5; i++) {
 y[i] = (77*r[i] + 150*g[i] + 29*b[i]) >> 8;
 cb[i] = (-43*r[i] - 85*g[i] + 128*b[i] + 32768) >> 8;
 cr[i] = (128*r[i] - 107*g[i] - 21*b[i] + 32768) >> 8;
 }

/* pack YCbCr to B */
 *B = (cr[4],cb[4],y[4],cr[3],cb[3],y[3],cr[2],cb[2],y[2],cr[1],cb[1],y[1],

cr[0],cb[0],y[0]);
}

C
on

fid
en

tia
l:

C
re

at
ed

 fo
r

W
ita

w
as

 S
ris

a-
an

 @
 U

ni
ve

rs
ity

 o
f N

eb
ra

sk
a

on
 F

eb
ru

ar
y

23
, 2

00
5

Color Space Conversion Application Note Version 1.1
A-4 Last modified: 01/20/2005

Appendix A ■ Source Listings
Makefile

Stretch, Inc. — Confidential & Proprietary

A.4 Makefile
#
#**\
#* *
#* Copyright 2003-2004 Stretch, Inc. All rights reserved. *
#* *
#* THIS SOFTWARE CONTAINS CONFIDENTIAL INFORMATION AND TRADE SECRETS OF *
#* STRETCH, INC. USE, DISCLOSURE, OR REPRODUCTION IS PROHIBITED WITHOUT *
#* THE PRIOR EXPRESS WRITTEN PERMISSION OF STRETCH, INC. *
#* *
#**/
#

OUT_DIR = .

ifndef VER
VER = b
endif

ifdef OPT
O = -O3
else
O = -O0
endif

ifndef TARGET
X = -ms5-native
E = -NATIVE

else#ifndef TARGET

ifeq ($(TARGET),NATIVE)
X = -ms5-native
E = -NATIVE
endif

ifeq ($(TARGET),ISS)
X = -ms5-iss
E = -S5ISS
RUN = st-run
PROF = st-gprof
endif

ifeq ($(TARGET),S5610)
X = -ms5610
E = -S5610
LDFLAGS = -mlsp=s56db-ddr
endif

endif #ifndef TARGET

CFLAGS = -g $(O) $(X)

default:

C
on

fid
en

tia
l:

C
re

at
ed

 fo
r

W
ita

w
as

 S
ris

a-
an

 @
 U

ni
ve

rs
ity

 o
f N

eb
ra

sk
a

on
 F

eb
ru

ar
y

23
, 2

00
5

Version 1.1 Color Space Conversion Application Note
Last modified: 01/20/2005 A-5

Stretch, Inc. — Confidential & Proprietary

Appendix A ■ Source Listings
Makefile

@echo "usage: make [VER=a|b] [OPT] [TARGET=NATIVE|ISS|S5610]
[build|run|profile]"

build: rgb2ycc_(VER)(O)$(E).exe

ifneq ($(TARGET),S5610)
run: rgb2ycc_(VER)(O)$(E).exe

$(RUN) $(OUT_DIR)/$^

ifeq ($(TARGET),ISS)
profile: rgb2ycc_(VER)(O)$(E).exe

$(RUN) --mem_model --profile=gmon.out $(OUT_DIR)/$^
$(PROF) $(OUT_DIR)/$^ > $^.prof

else
profile:

@echo "Profiling not supported for this target"
endif

else
run:

@echo "Please use IDE or st-debug for remote debugging target S5610"

profile:
@echo "Profiling not supported for target S5610"

endif

rgb2ycc_a(O)(E).exe: rgb2ycc_a.c data.h
scc $(LDFLAGS) $(CFLAGS) -o $(OUT_DIR)/rgb2ycc_a$(O)$(E).exe rgb2ycc_a.c

rgb2ycc_b(O)(E).exe: rgb2ycc_b(O)(E).o
scc $(LDFLAGS) $(CFLAGS) -o $(OUT_DIR)/rgb2ycc_b$(O)$(E).exe -Irgb2ycc_b$(E)

rgb2ycc_b.c rgb2ycc.a

rgb2ycc_b(O)(E).o: rgb2ycc_b$(E)/rgb2ycc.h rgb2ycc_b.c data.h
scc $(LDFLAGS) $(CFLAGS) -c -o rgb2ycc_b$(O)$(E).o -I./rgb2ycc_b$(E) rgb2ycc_b.c

rgb2ycc_b$(E)/rgb2ycc.h: rgb2ycc.xc rgb2ycc_b$(E)
scc $(CFLAGS) -stretch-h rgb2ycc_b$(E)/rgb2ycc.h -o rgb2ycc.a rgb2ycc.xc

rgb2ycc_b$(E):
mkdir rgb2ycc_b$(E)

clean_native:
ifeq ($(OS),Windows_NT)

if EXIST rgb2ycc_b-NATIVE. (rmdir /s /q rgb2ycc_b-NATIVE.)
else

if [-d "rgb2ycc_b-NATIVE"]; then\
rm -Rf rgb2ycc_b-NATIVE;\
fi;

endif

clean_iss:
ifeq ($(OS),Windows_NT)

if EXIST rgb2ycc_b-S5ISS. (rmdir /s /q rgb2ycc_b-S5ISS.)
else

if [-d "rgb2ycc_b-S5ISS"]; then\
rm -Rf rgb2ycc_b-S5ISS;\

C
on

fid
en

tia
l:

C
re

at
ed

 fo
r

W
ita

w
as

 S
ris

a-
an

 @
 U

ni
ve

rs
ity

 o
f N

eb
ra

sk
a

on
 F

eb
ru

ar
y

23
, 2

00
5

Color Space Conversion Application Note Version 1.1
A-6 Last modified: 01/20/2005

Appendix A ■ Source Listings
Makefile

Stretch, Inc. — Confidential & Proprietary

fi;
endif

clean_s5610:
ifeq ($(OS),Windows_NT)

if EXIST rgb2ycc_b-S5610. (rmdir /s /q rgb2ycc_b-S5610.)
else

if [-d "rgb2ycc_b-S5610"]; then\
rm -Rf rgb2ycc_b-S5610;\
fi;

endif

clean_other:
$(RM) *.exe *.xr *.o *.a rgb2ycc.h

ifeq ($(OS),Windows_NT)
if EXIST stretch-tdk. (rmdir /s /q stretch-tdk.)

else
if [-d "stretch-tdk"]; then\
rm -Rf stretch-tdk;\
fi;

endif

clean: clean_native clean_iss clean_s5610 clean_other

distclean: clean
$(RM) profiles rgb2ycc.a rgb2ycc.h *.xo *.xr stretch-tdk

C
on

fid
en

tia
l:

C
re

at
ed

 fo
r

W
ita

w
as

 S
ris

a-
an

 @
 U

ni
ve

rs
ity

 o
f N

eb
ra

sk
a

on
 F

eb
ru

ar
y

23
, 2

00
5

This page intentionally left mostly blank.

C
on

fid
en

tia
l:

C
re

at
ed

 fo
r

W
ita

w
as

 S
ris

a-
an

 @
 U

ni
ve

rs
ity

 o
f N

eb
ra

sk
a

on
 F

eb
ru

ar
y

23
, 2

00
5

Stretch, Inc. — Confidential & Proprietary

Part #: AN-0000-0001-001

777 E. Middlefield Road
Mountain View, CA 94043

650-864-2700 Tel
650-623-0150 Fax www.stretchinc.com

C
on

fid
en

tia
l:

C
re

at
ed

 fo
r

W
ita

w
as

 S
ris

a-
an

 @
 U

ni
ve

rs
ity

 o
f N

eb
ra

sk
a

on
 F

eb
ru

ar
y

23
, 2

00
5

	Contents
	Color Space Conversion
	1.1 Color Space Conversion Application
	1.2 Color Space Conversion Implementation in C
	1.3 Analyze Profile Output
	1.4 Rewrite the Hot Spot for the ISEF
	1.5 Creating Extension Instruction
	1.6 Analyze Profile Output with Extension Instruction
	A.1 rgb2ycc_a.c
	A.2 rgb2ycc_b.c
	A.3 rgb2ycc.xc
	A.4 Makefile

