Emulation: Binary
Translation

Interpretation

—— Mapping a source binary instruction to an equivalent HLL

code

— e.0. binary instructions

1145 a
— J0a

p
p

10 instructions

1a instructions

o C functions

or 1 1A-32 instruction

or 1 micro-OP instruction

Binary Translation

—— Mapping each source binary instruction to its own
customized target code

— hinary to binary
— lower ratio between source and target instructions

— 4.4 Alpha instructions per 1 1A-32 instruction

— 2.1 Alpha instructions per 1 micro-OP instruction

— more efficient with opportunities for optimizations

inary Translation

Binary
e Translator
Direct Threaded Binary

Interpretation Translation

Binary Translation

IA32:

addl 4 (%eax),%edx
movl %edx,4(%eax)
add %eax, 4

Binary Translation

1A-32 to MIPS

Assume

rl points to IA32 register
file

r2 points to IA32 memory
image

r3 contains IA32 PC value

IA32:

addl 4 (%eax), %edx
movl %edx, 4 (%eax)
add %eax, 4

MIPS:

; addl 4 (%eax), %edx

lw r4,0(rl)

addi r5,r4,4
add r5,r2,r5
1w r5,0(r5)

lw r4,12(rl)
add r5,r5,r4
sw r5,12(rl)
addi r3,r3,3

MIPS:

; movl %edx, 4 (%eax)

lw r4,0(rl)
addi r5,r4,4
lw r4,12(rl)
add r5,r2,r5
sw r4,0(r5)
addi r3,r3,3

; add %eax,4
lw r4,0(rl)
addi r4,r4,4
sw r4,0(rl)
addi r3,r3,3

3 IA-32 instructions to 18 MIPS instructions

Binary Translation

State Mapping

Source ISA

Register File
\

Memory

Image

_ J

Target ISA

PC

R

R2

Rn

T

Binary Translation

1A-32 to MIPS

Assume

rl points to IA32 register
file

r2 points to IA32 memory
image

r3 contains IA32 PC value
r4 holds register %eax

r7 holds register %edx

IA32:

addl 4 (%eax), %edx
movl 3%edx, 4 (%eax)
add %eax, 4

MIPS:

addi rl6,r4,4
add rl7,r2,rl6
1w rl17,0(rl7)
add r7,rl7,xr7
addi rl6,r4,4
add rl7,r2,rl6
sw r7,0(rl7)
addi r4,r4,4
addi r3,r3,9

J IA-32 instructions to 9 MIPS instructions

Binary Translation

1A-32 to MIPS

Assume

rl points to IA32 register
file

r2 points to IA32 memory
image

r3 contains IA32 PC value

r4 holds register %eax

r7 holds register %edx

IA32:

addl 4 (%eax), %edx
mov]l 3%edx, 4 (%eax)
add %eax, 4

MIPS:

addi rl6,r4,4
add rl7,r2,rl6
1w r18,0(rl7)
add r7,r18,r7
sw r7,0(rl7)
addi r4,r4,4
addi r3,r3,9

J IA-32 instructions to / MIPS instructions

Binary Translation

——— Static translation - translate the entire executable source to
executable target

—— Dynamic translation - translate only a short sequence at
fime

translated code is cached

frequently used code can be dynamically recompiled

Binary Translation

—— Code-Discovery problem

— static precoding of the entire program is nearly impossible
— e.g. jr R1 what is the content of R1?

— where is the starting point of an instruction in CISC?

Binary Translation

—— (Code-Location problem

— inconsistency between the SPC address and TPC address

: 0 add r16,r2,r11
movl %eax,4(%esp) lwr4, 4(r16)
imp “%eax ir ré |

