
!"!# $%&'()'&*+%,(-./.0(1-&+-/2' 324'&-($%&5%&-4+%,

6+%*(77($8*4%9(7,*4&804+%,(:*'&(;8+<' ='0'9/'&(#>>?

$8*4%9(7,*4&804+%,(3&0@+4'048&-2(AB5'*

Internal Register File Custom Instruction Port Operation

The readra, readrb, writerc, and a[4..0], b[4..0], and c[4..0]
ports behave similarly to dataa[31..0]. When the start signal is
asserted, the CPU presents the readra, readrb, writerc, a[4..0],
b[4..0], and c[4..0]signals on the rising edge of the CPU clock. All
the ports remain stable throughout the execution of the custom
instructions.

To determine how to handle register file I/O, custom instruction logic
should read the active high readra, readrb, and writerc signals. The
a[4..0], b[4..0], and c[4..0] ports should be used as register file
indexes. When readra or readrb are not asserted, the custom
instruction logic should ignore the corresponding a[4..0]or
b[4..0]port. When writec is not asserted, the CPU ignores the value
driven on the result[31..0] port.

All other custom instructions port operations remain the same.

External Interface Custom Instruction

Figure 1–9 shows that the Nios II processor custom instructions allow
you to add an interface to communicate with logic outside of the
processor’s data path. At system generation, any signals that are not
recognized as custom instruction signals will propagate out to the top
level of the SOPC Builder module where external logic can access the
signals.

Figure 1–9. Custom Instructions Allow the Addition of an External Interface

dataa[31..0]

datab[31..0]

clk

clk_en

reset

start

Optional Interface

done

result[31..0]

