
1

1

Memory Allocation Overview

Witawas Srisa-an
CSCE496/896: Embedded Systems Design and
Implementation
(Getting Ready for the Final Assignment-part 1)

2

 

Motivation
 It has been said in 1998 that …

 Java spends [Arm98]
 20% in dynamic memory management
 19% in synchronization
 60% in interpretation
 1% in native method

 That was almost 6 years ago, nowadays
 Much faster collector
 JIT instead of interpretation
 Thin-lock for lightweight synchronization

 How did they do it?



2

3

 

Dynamic Memory Management

 Agenda
 The basic information about DMM
 Various Dynamic Memory Management

Algorithms [WJN 95]
 Cost of dynamic memory management in O-O

languages [DDZ 93, QSSC 02]
 Memory management for servers
 Memory management for embedded systems

4

 

Why DMM?

 Major source of expense
 38% in C++
 20% in Java
 X% in .NET

 Non-real-time
 May not be thread-safe
 Fragmentation



3

5

 

Dynamic Memory Management (DMM)

 Heap versus stack allocation
 Stack allocation is used for data where the

lifespan is the same as the method
 Objects created when entering a method and

destroyed when the method return
 Heap allocation is used when data can outlive

the method that created them
 An object is created in the heap; the reference to

it is stored in the stack

6

 

DMM

 In C++, programmers can choose to have
their objects created on either stack or in
the heap

 In Java and .Net, all objects are created in
the heap



4

7

 

DMM
 Let’s do a simple exercise

 Available from:
~witty/share/csce496/lecture1/example1.c

 Spend a few minutes to look at the code in
groups of 3
 What do you expect to see at print statement 1 –

6 if select is 0? What if select is 1?
 Let’s execute the code

 Issue a.out 0
 Issue a.out 1

8

 

DMM

 Notice that malloc is used to allocate
objects
 Is the result as expected?
 Explain print statement 2 and 3
 What about statement 3 and 4?
 Did we create garbage? How?



5

9

 

DMM

 Uncollected garbage results in memory
leaks

 From our exercise, when the application
exits, do leaks go away?

10

 

DMM Analogy
 Assuming you’ve just bought 1000 acres

and plan to develop the land
 Define each lot as half acres
 Assume you have sold some lots
 If somebody drop you off in the middle of this

undeveloped land, can you tell whether the lot
you are standing in has been sold?
 What if you have built a road and assigned

address to each lot?



6

11

 

DMM Analogy
 Analogy continue

 What if you have paper record of every address at your
office, can you find out whether the lot has been sold?

 Dynamic memory management is the same, it is a matter of
bookkeeping
 How fast can you create just the right size?
 How do you organized the free space?
 How soon can you look for a free space of certain size?
 How soon can you free the space?
 How soon can you merge the adjacent freed neighbors back

together?

12

 

DMM

…
null8

…
null16

…
null24

…
null512

.

.

.

…

Link-list structures to represent heap status
Heap memory

One common approach for heap management



7

13

 

Memory Allocator

``It has been proven that for any possible allocation 
algorithm, there will always be the possibility that 
some application program will allocate and deallocate 
blocks in some fashion that defeats the 
allocator's strategy."

Paul R. Wilson et al.

14

 

Memory Allocator Should …
Maximize compatibility

 Easily linked to all sorts of application
 POSIX compliance

Maximize portability
 Doesn’t rely on system specific features
 Provide optional support for useful features on some

systems
Minimize space usage

 Efficiently implemented



8

15

 

Memory Allocator Should …
Minimize time

 As fast as possible in average case
Maximize Tunability

 User should be able to fine tune the allocator
Maximize locality

 Allocate chunks that are used together near each others
Maximize debugging feature
Minimize anomalies

 Perform well across wide range of applications

16

 

What Must an Allocator Do?

 Keep track of which parts of memory are in
use and which are free
 Minimize wasted space without undue time

cost
 Negligible time managing memory and waste

negligible space
 Cannot control the number or size of live

blocks
 Cannot compact memory



9

17

 

What Must an Allocator Do?

 Respond immediately to a request for
space
 Once a free block is chosen, it is inviolable

until freed
 Thus, it is an on-line algorithm

 Respond in strict sequence, immediately, and
decisions are not irrevocable

18

 

Designing Issues
 Alignment – word alignment causes more memory

usage but allow easy scanning and searching
 How much space should be sacrificed for speed

 The fastest way to free is not to free at all
 Is it acceptable?

 How much speed should be sacrificed for space
 Best-fit everything

 Is it acceptable?



10

19

 

Allocation Overhead
 Splitting and Coalescing are the two major

overheads for malloc
 Splitting -- break larger block into smaller

chunks
 Coalescing -- combine free neighboring blocks

into a larger contiguous chunk
 Should be avoid as much as possible

20

 

Allocation Holes

 Two types of fragmentation—internal and
external
 Internal because wasted memory is inside an

allocated block rather than being recorded as a
free block

 External arises when free blocks of memory
are available but can’t be used to hold objects



11

21

 

Internal Fragmentation

 Assuming you have decided to
 Split a 4K page into fixed size chunk
 Each chunk is 32 bytes (8 bytes headers, 24

bytes payload)
 If a program request 18 bytes, the allocator will

give a 32-byte chunk. Thus, 6 bytes are
wasted.

22

 

External Fragmentation

8 8 8 8

chunks of 8-byte payload are all occupied

a b c d



12

23

 

External Fragmentation

8 8 8 8

b and d are freed

a b c d

free list

24

 

External Fragmentation

8 8 8 8

16 bytes is requested by the user’s program
Cannot satisfy the request using b and d since they are not contiguous.

a b c d

free list



13

25

 

Fragmentation
 Can be disastrous

 There are no algorithms for ensuring efficient
memory usage (none is possible)

 For any allocation algorithm, an application
may force it into severe fragmentation
 Plenty of proofs that any allocator will be bad for

some applications
 “There are regularities in program behavior

that allocators exploit”

26

 

Strategy, Policy, and Mechanism

 Strategy considers regularities in program
behaviors and determines a range of
acceptable policies as to where to allocate
blocks

 Mechanism is a set of algorithms and data
structures they use.



14

27

 

Strategy and Policy
 Ideal strategy—”put block where they won’t cause

fragmentation later”
Real strategies—heuristically approximate the

ideal based on assume regularities
 Doug Lea’s—capitalize on reuse, classified blocks by bin

for easy look up. Spend more space to gain speed for
coalescing (header and footer)

Policies determines exactly where in memory
blocks will be allocated
 Doug Lea’s—prioritize (freebies, coalescing, splitting,

system calls)

28

 

Policy consideration…

 Memory reuse
 When to coalesce, when to split
 What kind of fits
 What to do when the fitting is poor



15

29

 

Mechanisms

 Header fields and alignment
 free() does not require size to be passed as

argument; thus, size is often stored on the
header

 Bit to indicate whether a block is in use or not
 Status of the neighbor may be recorded as well
 Often use 1 or 2 machine words

 Can be quite costly if the object size is small

30

 

Mechanisms

 Boundary tags
 Each block has header and footer fields

 Size and block status is recorded in the header
and footer

 Doug Lea’s malloc follows this approach
 Footer field can coexist with the payload

 During allocation, footer information is not needed
 When the block is free, we then need the size field so

that it can be used to locate the header for coalescing

 Bit-maps



16

31

Common Algorithms

32

 

Sequential Fits

 Best fit
 Strategy—minimize the amount of wasted

space
 Ensure small fragments

 Can backfire if fragments are too small and unusable

 Problem—Exhaustive search
 Scale poorly (why?)
 Worst-case performance is poor



17

33

 

Sequential Fits (cont.)
 First fit

 Strategy—minimize search time by
Taking the first block that is big enough to satisfy the request

 Splitting is commonly needed
 Problem—Larger blocks at the beginning are split first resulting

in splinters
Search time can grow large due to splinters
Scale poorly in system with large objects and many different-

sized free blocks accumulate
 Policy—where to put free blocks

Head of the free list
Address ordered (commonly used due to less fragmentation)

34

 

Sequential Fits (cont.)

 Next fit
 Strategy—go one step beyond first fit to reduce

average search time
 Eliminate splinters by using roving pointers

 Problem—roving pointer cycles through
memory
 Can result in bad cache locality
 Can affect program locality



18

35

 

Segregate Free Lists

 In simplest form, uses an array of free lists
 Strategy—give best fit without linear search
 Policies

 Simple segregated storage—one page contains
only one size (used in Kaffe JVM [kaffe])
 No header per object (why?)
 Fast but can suffer from external fragmentation (no

splitting or coalescing is allowed)

36

 

Segregated Free Lists (cont.)
 Policies (cont.)

 Segregated fit—array of free lists. Each list
contains free blocks within a size class
 If there is not a free block in the size class list

 Go to larger list and try to split
 Smaller blocks are preferred over larger block (similar

to best fit)
 Coalescing can result in longer search time

 e.g. coalesce then split again
 Doug Lea’s 2.5 uses this scheme for objects larger

than 512 (what about objects smaller than 512 bytes)



19

37

 

Segregate Free Lists (cont.)

 Three general categories of segregate fits
 Exact lists—conceptually a separate free list

fore each possible block size
 Strict size class with rounding—round up so

that the requested size fits the predefined
classes

 Size classes with range lists—list can contain
blocks of slightly different sizes

38

 

Buddy Systems
Split the heap into two areas

 Then those two areas are further split into smaller areas
and so on

For each allowable size, a separate free list is
maintained as an array of free lists

Coalecsing is peculiar
 A free block may only be merged with its buddy (unique

neighbor at the same level in the binary hierarchical
division)



20

39

 

Buddy Systems (cont.)
 Strategy—fast allocation (segregated fit)

and coalesing
 Problem—high external fragmentation

(coarse grain class sizes)
 Binary buddy
 Fibonaci buddy
 Weighted buddy
 Double buddy

40

 

Doug Lea’s Malloc

 Widely used in many systems
 Linux
 Many flavors of Unix
 Sun’s JDK, Kaffe’s VM

 Arguably the most used malloc in the world



21

41

 

Basic Design
 Doug Lea uses delay coalescing

 Freed objects are returned to a free list
 New allocations start from here

 Check the last 2 freed (or preallocated) objects
 Check dirty bins
 Going through the free list. If one fit pick it, other

wise return to dirty bin
 Look for the remainder of last split
 Go through clean list in the bin
 If exact size can’t be found split

42

 

Reference
[Arm98] E. Armstrong. HotSpot: A new breed of virtual machine. JavaWorld: IDG's magazine

for the Java community, March 1998. http://www.javaworld.com/javaworld/jw-03-
1998/jw-03hotspot p.html.

[DDZ94] D. L. Detlefs, Al Dosser and B. Zorn, `Memory allocation costs in large C and C++
programs', Software Practice and Experience, 24(6), 527--542 (1994). workshop

[WJN95] P. R. Wilson et al. Dynamic storage allocation: A survey and critical review. Proc.
Int'l on Memory Management. Kinross, Scotland, UK, Sep. 1995.

[Lea] Doug Lea, “A Memory Allocator” available from
http://gee.cs.oswego.edu/dl/html/malloc.html

[Kernighan88] Brian W. Kernighan and Dennis M. Ritchie, “The C programming language”,
Prentice Hall Press, 1988.


