Introduction to the Altera SOPC Builder
Using VHDL Design

This tutorial presents an introduction to Altera’s SOPC Builder software, which is used to implement a system
that uses the Nios II processor on an Altera FPGA device. The system development flow is illustrated by giving
step-by-step instructions for using the SOPC Builder in conjuction with the Quartus® II software to implement a
simple system.

The last step in the development process involves configuring the designed circuit in an actual FPGA device,
and running an application program. To show how this is done, it is assumed that the user has access to the Altera
DE?2 Development and Education board connected to a computer that has Quartus II and Nios® II software
installed.

The screen captures in the tutorial were obtained using the Quartus II version 5.1; if other versions of the
software are used, some of the images may be slightly different.

Contents:

Nios II System

Altera’s SOPC Builder

Integration of the Nios II System into a Quartus II Project
Running the Application Program

Altera’s Nios II is a soft processor, defined in a hardware description language, which can be implemented
in Altera’s FPGA devices by using the Quatrtus® II CAD system. To implement a useful system it is necessary
to add other funcional units such as memories, input/output interfaces, timers, and communications interfaces.
To facilitate the implementation of such systems, it is useful to have computer-aided-design (CAD) software for
implementing a system-on-a-programmable-chip (SOPC). Altera’s SOPC Builder is the software needed for this
task.

This tutorial provides a basic introduction to Altera’s SOPC Builder, which will allow the reader to quickly
implement a simple Nios II system on the Altera DE2 board. For a fuller treatment of the SOPC Builder, the
reader can consult the Nios II Hardware Development Tutorial. A complete description of the SOPC Builder can
be found in the Quartus II Handbook Volume 4: SOPC Builder. These documents are available on the Altera web
site.

1 Nios II System

A Nios II system can be implemented on the DE2 board as shown in Figure 1.

Host computer

USB-Blaster

interface
b Cyclone II
JTAG D JTAG UART :
Nios II processor M . FPGA chip
module interface
Avalon switch fabric
. Flash .
On-chip SRAM SDRAM memo Parallel I/O Serial /0
memory interface interface . Y interface interface
interface
SRAM SDRAM Flash Parallel Serial
. . memory I/0O port I/O port
chip chip . . .
chip lines lines

Figure 1. A Nios II system implemented on the DE2 board.

The Nios II processor and the interfaces needed to connect to other chips on the DE2 board are implemented
in the Cyclone II FPGA chip. These components are interconnected by means of the interconnection network
called the Avalon Switch Fabric. The memory blocks in the Cyclone II device can be used to provide an on-chip
memory for the Nios II processor. The SRAM, SDRAM and Flash memory chips on the DE2 board are accessed
through the appropriate interfaces. Parallel and serial input/output interfaces provide typical I/O ports used in
computer systems. A special JTAG UART interface is used to connect to the circuitry that provides a Universal
Serial Bus (USB) link to the host computer to which the DE2 board is connected. This circuitry and the associated
software is called the USB-Blaster. Another module, called the JTAG Debug module, is provided to allow the host
computer to control the Nios II system. It makes it possible to perform operations such as downloading programs
into memory, starting and stopping execution, setting breakpoints, and collecting real-time execution trace data.

Since all parts of the Nios II system implemented on the FPGA chip are defined by using a hardware descrip-
tion language, a knowledgeable user could write such code to implement any part of the system. This would be
an onnerous and time consuming task. Instead, one can use the SOPC Builder to implement a desired system
simply by choosing the required components and specifying the parameters needed to make each component fit
the overall requirements of the system. In this tutorial, we will illustrate the capability of the SOPC Builder by
designing a very simple system. The same approach is used to design large systems.

Host computer

USB-Blaster
Reset_n Clock interface

| |

Cyclone II
JTAG Debug JTAG UART FPGA chip

module interface

Nios II processor

Avalon switch fabric

On-chi Switches LEDs
memorg parallel input parallel output
interface interface
oo ' DK Y

SW7 SWO0 LEDG7 LEDGO

Figure 2. A simple example of a Nios II system.

Our example system is given in Figure 2. The system realizes a trivial task. Eight toggle switches on the DE2
board, SW7 — 0, are used to turn on or off the eight green LEDs, L EDG7 — 0. The switches are connected to the
Nios II system by means of a parallel I/O interface configured to act as an input port. The LEDs are driven by the
signals from another parallel I/O interface configured to act as an output port. To achieve the desired operation, the
eight-bit pattern corresponding to the state of the switches has to be sent to the output port to activate the LEDs.
This will be done by having the Nios II processor execute a program stored in the on-chip memory. Continuous
operation is required, such that as the switches are toggled the lights change accordingly.

We will use the SOPC Builder to design the hardware depicted in Figure 2. Next, we will assign the Cyclone II
pins to realize the connections between the parallel interfaces and the switches and LEDs which act as I/O devices.
Then, we will configure the FPGA to implement the designed system. Finally, we will use the software tool called
the Nios Il Debug Client to assemble, download and execute a Nios II program that performs the desired task.

Doing this tutorial, the reader will learn about:

e Using the SOPC Builder to design a Nios II-based system
o Integrating the designed Nios II system into a Quartus II project
e Implementing the designed system on the DE2 board

e Running an application program on the Nios II processor

2 Altera’s SOPC Builder

The SOPC Builder is a tool used in conjuction with the Quartus II CAD software. It allows the user to easily
create a system based on the Nios II processor, by simply selecting the desired functional units and specifying
their parameters. To implement the system in Figure 2, we have to instantiate the following functional units:

e Nios II processor, which is referred to as a Central Processing Unit (CPU)

e On-chip memory, which consists of the memory blocks in the Cyclone II chip; we will specify a 4-Kbyte
memory arranged in 32-bit words

e Two parallel I/O interfaces
e JTAG UART interface for communication with the host computer
To define the desired system, start the Quartus II software and perform the following steps:

1. Create a new Quartus II project for your system. As shown in Figure 3, we stored our project in a directory
called sopc_builder_tutorial, and we assigned the name lights to both the project and its top-level design
entity. You can choose a different directory or project name, but be aware that the SOPC Builder software
does not permit the use of spaces in file names. For example, an attempt to use a directory name sopc
builder tutorial would lead to an error. In your project, choose the EP2C35F672C6 chip as the target device,
because this is the FPGA on the DE2 board.

2. Select Tools > SOPC Builder, which leads to the pop-up box in Figure 4. Enter nios_system as the system
name; this will be the name of the system that the SOPC Builder will generate. Choose VHDL as the target
HDL, in which the system module will be specified. Click OK to reach the window in Figure 5.

New Project Wizard: Directory, Name, Top-Level Entity [page 1 of 5] @

‘what iz the working directory for this project?

|D:\sopc_builder_tutorial

what iz the name of this project?

lights [-

Wwhat iz the name of the top-level design entity for thiz project? Thiz name iz case senzitive
and must exactly match the entity name in the design file.

lights [-

| Usze Existing Project Settings ...

| Mest > | Finizh | Cancel

Figure 3. Create a new project.

1% Create New Syst...

Target HOL
() Verilog (%) YHOL

Cancel

Figure 4. Create a new Nios II system.

3. Figure 5 displays the System Contents tab of the SOPC Builder, which is used to add components to the
system and configure the selected components to meet the design requirements. The available components
are listed on the left side of the window. Before choosing our components, examine the area in the figure
labeled Target. A drop-down list is provided that allows some available Altera boards to be selected. It is
not necessary to select a board, and since the DE2 board is not included in the list leave the selection as
Unspecified board. Next, check the setting for the Device Family and ensure that Cyclone Il is selected.

4. The Nios II processor runs under the control of a clock. For this tutorial we will make use of the 50-MHz
clock that is provided on the DE2 board. As shown in Figure 5, it is possible to specify the names and
frequency of clock signals in the SOPC Builder display. If not already included in this list, specify a clock
named clk with the source designated as External and the frequency set to 50.0 MHz.

1 pltera SOPC Builder - nios_system

File Module System ‘iew Tools Help

Syskem Generation

| K5 Altera SOPC Builder o
g H Create Mewy Componert..
Avalon Components

Mioz Il Proces=sar - Atera
-~Bridges

L@ fvalon Tristate Bridy
ommunication

@ JTAG LART

@ =PI(3Wire Serial)

@ UART (RS-232 serial
-2 D16550 UART with 1

- DIZCM 12C Bus Interts
<O DIZCSE 12C Bus Inter

2 DSPI Serial Periphera
<O HIB5505 UART -- C2
<O HE250 -- CAST, Inc.

- High Performance Gi @

£ i >

A1 fesil ahla ™

|ep [®

@ Check

| Use | Madule Name

- Target
Board: .Unspecw-l’.le;:l E.oara.

Device Family: |Cyclone I %

Description

Clock

Source MHz Fipeline
i |k |External |50.0 (K3
: [1 [O
Input Clock Base En

(71 Dane checking for updates,

Figure 5. The System Contents tab window.

5. Next, specify the processor as follows:

e On the left side of the window in Figure 5 select Avalon Components > Nios Il Processor - Altera

Corporation and click Add, which leads to the window in Figure 6.

¥ Altera Nios Il - cpu_0

Select a Mios | core:

RISC
32-hit

Nios II

Selector Guide
Family: Cyclone I

f 50 MHz

systam:

|©Nios 1I/e

Nios IT Core | Caches & Tightly Coupled Memaries | JTAG Debug Madule | Custom Instructions

ONios II/s | ONios IT/f
RISC RISC
32-hik 32-hik

Instruction Cache
Branch Prediction
Hardware Multiply
Hardware Divide

Performance at 50 MHz Up ta 5 DMIPS
Logic Usage &00-700 LEs
Mermory Usage Twio Maks

Up ko 26 DMIPS
1200-1400 LE=
Two M4Ks + cache

Instruction Cache

Branch Prediction

Hardware Mulkiply

Hardware Divide

Barrel Shifter

Data Cache

Dynamic Branch Prediction
Up ko 56 DMIPS

1400-1500 LEs

Three M4Ks + cache

Cancel

[Mext > | [Finish |

X

Figure 6. Create a Nios II processor.

e Choose Nios II/e which is the simplest version of the processor. Click Finish to return to the window
in Figure 5, which now shows the Nios II processor specified as indicated in Figure 7. There may be
some warnings or error messages displayed in the SOPC Builder Messages window (at the bottom of
the screen), because some parameters have not yet been specified. Ignore these messages as we will
provide the necessary data later. Observe also that a new tab called Nios II More “cpu_0” Settings
appears, which allows further configuration of the processor - we will not use it.

L® Aliera SOPC Builder - nios_system

File Module System View Tools Help
System Contents | Nios I More "rpu_0" Settings | System Generation
| 5 Atera SOPC Buider ~ Targl
‘b5 Create Mew Component.. i Clack Source MHz Pipeline
Avalon Companents Board: Unspechizd Bosrd vk [Fxtemal 500 | O
Dievice Family: '.Cyc.\one o ¢ i —_ l ‘ | O
Lo @ Myalon Tristate Bridy
~Communication |
. JTAG UART Use Macule Mame Diescription Input Clock L Baze Enl | IR
@ SPI (3 Wire Serial) | Eepu 0 Nicss | Processor - Atera Corporation clk |
@ UART (RS-232 serial instruction_master iMaler port | |
O 016550 UART with 1 data_mazter iMaster port . RQ Di IRQ 31i<J
o0 DI2CM 12C Bus Interfe ftag_debug_module (Slave port | 0x00000000, OxDO0D0FFF|
fo O DI2CSE 12C Bus Inter
O DSP Serial Periphera
Lo H16550S UART -- C2
Lo HE2S0 -- CAST, Inc.
& o High Performance Git 4
e >
11 furail shla Pamnanants
@ || &) O
-m @ i 4 Move Up I l * Move Down
132l cpu_0: Exception Address must be at least 0x20 bytes higher than the Reset Address, ~
() cpu_0: Unspecified Reset Address, Exception Address
e 0 The vmm b mddems mminbe el sbile emenmins Cume ki m2F GimAnFimed cmde v s s e e i
P >
[| Fre [(nee = |

Figure 7. The defined processor.

6. To specify the on-chip memory perform the following:

Select Avalon Components > Memory > On-Chip Memory (RAM or ROM) and click Add

In the On-Chip Memory Configuration Wizard window, shown in Figure 8, set the memory width to
32 bits and the total memory size to 4 Kbytes

Do not change the other default settings

Click Finish, which returns to the System Contents tab as indicated in Figure 9

On-chip Memory - onchip_memory_0

Memary Type
() ROM (read-only)

[[] Dual-Port Access

Size

Memory Width: 32+ hits

Total Memory Size: 4 Kbytes »

Read Latency

Slave sl |1 w

Mon-Default Memory Initialization

[] Enable Man-Default Intialization File
e

Memory will be initialized from onchip_memory_0.hex
[i) Aukomatically choosing M4k blacks (the only available block bype)

Cancel Finish

Figure 8. Define the on-chip memory.

1 pltera SOPC Builder - nios_system
File Module System ‘iew Tools Help

System Contents | Njos I More "cpu 0" Settings | System Generation |

@ Cypress CYTC1380C A |

Target =
EPCS Serial Flash Co A . Clock Source MHz Fipeling
Flash Mermory (Cormr Board; ‘ynspgcwfledrBroarrd | ok [External 50,0 | =]
IDT71Y416 SRam — oadd | | | i
Device Family: |Cyclone I+
@ SDRAM Cortrollsr
-2 AMD 291800 Flash :
- DOR SORAM Contrall Use hdaciule Mame Description Input Clock Baze End IR
- DDR2 SDRAM Contro Elcpu_t M= | Processor - Afera Corporation|clk I | |
£ DTT1V016 SRAM for instruction_master |Master port |
e} Legacy SORAM Cont data_master IMaster port I IRG 0| IRG 31i
Microcontrollers . jftag_debug_module (Slave port | 0000007 FF|
Other | | onchip_memory_0 {On-Chip Metmaory (ARl or ROM) |tk | 0x00001000) Ox00001FFF|

@ CompactFlash Interfa
Db 2

Interval timer

Maillao @

| i >

A1 fesil ahla ™

lep [®
l @Chack 4 Move Up] l W Move Down

(7] cpu_0; defaulting Reset Address, Exception Address to onchip_memory_0
cpu_i: The reset address points to volatile memory, Execution of undefined cods may oocur upon reset,
1) Done checking for updates,

Exit P [Next =] [Generate I

Figure 9. The on-chip memory is included.

7. Specify the input parallel I/O interface as follows:

e Select Avalon Components > Other > PIO (Parallel I/O) and click Add to reach the PIO Config-
uration Wizard in Figure 10

o Specify the width of the port to be 8 bits and choose the direction of the port to be Input, as shown in
the figure

e Click Finish to return to the System Contents tab as given in Figure 11

1% Avalon PIO - pio_0 K

Basic Settings | Input Options | Simulation

Wwidth
3 | bits
PIC wicth must be hetween 1 and 32 hits

Direction

() Bidirectional (tri-state) ports

@®

() Both input and autput parts

() Output parts anly

Cancel Mext = Finish

Figure 10. Define a parallel input interface.

1 pltera SOPC Builder - nios_system

File Module System ‘iew Tools Help
System Contents | Njos 11 More "cpu_ 0" Settings | System Generation |
LD IDTTYOIE SRAM for & Target
Lo Legacy SDRAM Cont L | Clock Source MHz Pipeline
icrocontrollers Board: | Unspecified Board | ok [External 50,0 =]
Device Family: |Cydone T+ | | ‘ L O
CompactFlash Interfa Cleeza il il v eions
Db,
Interval timer y
Use Module Natme Description Input Clock Baze Enil IR
Eepu_0 IMios Il Processor - Alters Corporationiclk I | |
instruction_master |Master port i
PLL | o L data_master IMaster port I IRG 0| IRG 31i
System ID Peripheral | . jftag_debug_module |Slave port | 0x00000000 DxDDDDD?FFl
O DA Contraller -- Eur onchip_memory_0 On-Chip Memary (RAK or ROM) clk | Ox00001000 0x00001 FFF|
1 pio_0 IPIC (Paralel 10 clk: | 0x00000800] Ox0ODDDECF|
Peripherals
%
l @ i 4 Move Up] l W Move Down
(7] cpu_0; defaulting Reset Address, Exception Address to onchip_memory_0
cpu_i: The reset address points to volatile memory, Execution of undefined cods may oocur upon reset,
1) Done checking for updates,
Exit [Mext =] [Generate I

Figure 11. The parallel input interface is included.

8. In the same way, specify the output parallel I/O interface:

e Select Avalon Components > Other > PIO (Parallel I/O) and click Add to reach the PIO Config-
uration Wizard again

e Specify the width of the port to be 8 bits and choose the direction of the port to be Output
e Click Finish to return to the System Contents tab

9. We wish to connect to a host computer and provide a means for communication between the Nios II system

and the host computer. This can be accomplished by instantiating the JTAG UART interface as follows:

e Select Avalon Components > Communication > JTAG UART and click Add to reach the JTAG
UART Configuration Wizard in Figure 12
e Do not change the default settings

e Click Finish to return to the System Contents tab

I8 JTAG UART - jtag uvart 0

‘Write FIFO { data from Awvalon o ITAG)

Depth: |64 w IR Threshold: 3

[] Construct using registers instead of memary blacks

Read FIFO | data from ITAG to Avalon)

Depth: |64 w IR Threshold: 3

[] Construct using registers instead of memary blacks

Cancel Mext = Finish

Figure 12. Define the JTAG UART interface.

10. The complete system is depicted in Figure 13. Note that the SOPC Builder automatically chooses names for

11.

the various components. The names are not necessarily descriptive enough to be easily associated with the
target design, but they can be changed. In Figure 2, we use the names Switches and LEDs for the parallel
input and output interfaces, respectively. These names can be used in the implemented system. Right-click
on the pio_0 name and then select Rename. Change the name to Switches. Similarly, change pio_1 to
LED:s.

The base and end addresses of the various components in the designed system can be assigned by the user,
but they can also be assigned automatically by the SOPC Builder. We will choose the latter possibility. So,
select the command (using the menus at the top of the SOPC Builder window) System > Auto-Assign
Base Addresses, which produces the assignment shown in Figure 14.

10

1 pltera SOPC Builder - nios_system

File Module System ‘iew Tools Help

System Contents | Njos I More "cpu 0" Settings | System Generation |

| 3 Altera SOPC Buider ~ o
_i Create Mew Component.. i Clock Source MHz Fipeline
Board; ynspgcwfied Boaltd | ;c\k [External 50,0 | =]
@ NMiog Il Processor - Atera - —— - chick taadda | | |
Bridges Device Family: | Cyclone 1T *| © 0 I b
@ Swalon Tristate Bridg
Use Module Natme Description Input Clock Baze Enil IR
| Eecpu_0 iNiDS Il Processor - Altera Corporation'clk |
instruction_master iMaster port
data_master iMaster port IRG 0| IRG 31i

O DI2CM 12C Bus Interfs ftan_debug_module iSIavE port 0x00000000 DxDDDDD?FFl
O DIZCSE 12C Bus Irter onchip_memory_0 [On-Chip hemary (RAM or ROM) clk 0x00001000 000001 FFFi
© DSP| Serial Periphera Switches Fio (Paraliel 110) clk UX00000800) 0X0IO000SCF|
O HIB550% UART - C2 LEDs FIC (Parallel 110 clk 0x00000810 0x0000081F|
© HE250 - CAST, Inc. jtag_uart_0 WTAG UART clk 000000827 [0

£ E O High Performance Gt 4

| i >
11 fuemil ahla
| &p |
l @ i 4 Move Up] l W Move Down
(7] cpu_0; defaulting Reset Address, Exception Address to onchip_memory_0

cpu_i: The reset address points to volatile memory, Execution of undefined cods may oocur upon reset,
1) Done checking for updates,

Exit P [Next = J [Generate I

Figure 13. The complete system.

1 pltera SOPC Builder - nios_system

File Module System ‘iew Tools Help

System Contents | Njos I More "cpu 0" Settings | System Generation |

| £ Akera SOPC Buider A o
kS Create New Component.. i Clack Source MHz Fipeling
valon Components Board: | Unspecified Board 2l |k |External 50,0 | H
@ NMiog Il Processor - Atera ; P : aadda | | |]
Bridges Device Family: | Cyclone 1T *| © y I F
@ Swalon Tristate Bridg
ommunication 5|
Use Module Natme Description Input Clock Baze Enil IR
SPI (3 Wire Serial) | Ecpu_0 ios Il Processor - Aftera Corporation|cik |
@ UART (RS-232 serial instruction_master iMaster port ‘
D16550 UART with 1 data_mazter iMaSter port RGO IRG 31i
O DI2ZCM 12C Bus Interfe jtag_debug_module iSIavE part 0x00001000, 000001 'f'FFl
DIZCSE 12C Bus Inter onchip_memory_0 iOn-Chip hetnary (RAM ar ROM) clk 0x00000000 DxDDUDDFFFi
DiSPI Serial Periphera Switches FIC (Paraliel 110 clk 0x00001800 000001 SEIFl
H1B550% UART -- CA LEDs PIC (Parallel W clk 0x00004810 00000181 Fi Al
O HE250 -- CAST, Inc. jtag_uart_0 WTAG LART clk 0x00001820) 0x00001827|] 0

B High Performance Gii ..
| i >

&1 il shla Famnnnanks

lep [®
@ Check

1[5 cpu_D; defaulting Reset Address, Exception Address to onchip_memory_0

cpu_i: The reset address points to volatile memory, Execution of undefined cods may oocur upon reset,
1) Done checking for updates,

4 Move Up] l W Move Down

Exit P [Next = J [Generate I

Figure 14. The final specification.

12. Having specified all components needed to implement the desired system, it can now be generated. Select
the System Generation tab, which leads to the window in Figure 15. Turn off Simulation - Create
simulator project files, because in this tutorial we will not deal with the simulation of hardware. Click

11

Generate on the bottom of the SOPC Builder window. The generation process produces the messages
displayed in the figure. When the message “SUCCESS: SYSTEM GENERATION COMPLETED" appears,
click Exit. This returns to the main Quartus II window.

1% Altera SOPC Builder - nios_system
File Module System View Tools Help

System Contents | Nios I More "cpu_0" Settings |

Options

I Run nios 11 10E

HOL. Generate system module logic in YHDL.

[] Simulation. Create simulatar project files.,

B T i e ey
Info: Altera or its authorized distributors. Please refer to the
Info: applicable agreement for further details.
Info: Processing started: Mon May 08 16:04:02 2006
Info: Command: quartus _sh -t nios sysStem Setup gquartus.tcol
Info: Evaluation of Tel script nios_system sSetup guartus.tol was successful
Info: Quartus II 3hell was successful. 0 errors, 0 warnings
Info: Processing ended: Mon May 05 16:04:02 2006
Info: Elapsed time: 00:00:00
_# 2006.05.058 16:04:02 (%) Completed generation for system: nios system.
2Z006.05.08 16:04:02 (*) THE FOLLOWING SYSTEM ITEMS HAVE BEEN GEMNERATED:
SOPC Builder database : D:fsopc_builder_tutorialfnios_system.ptf
System HDL Model : D:fsopc_builder_tutorialfnios_system.vhd
System Generation Script D:fsopc_builder_tutorialfnios_systenLgeneration_script

2006.05.08 16:04:02 (*] SUCCESS: IYSTEM GENERATION COMPLETED.

|Press 'Exit' to exit. o
£ >

\[i] cpu_0was generated as plain-text HOL.
\[i] cpu_0: defaulking Reset Address, Exception Address to onchip_memory 0

cpu_0: The reset address points to volatils memary, Execution of undefined code may occur upan reset,
\[7) Dane checking for updates.

I Exit] I < Prev] l Re-Generate

Figure 15. Generation of the system.

Changes to the designed system are easily made at any time by reopening the SOPC Builder tool. Any com-
ponent in the System Contents tab of the SOPC Builder can be selected and deleted, or a new component can be
added and the system regenerated.

3 Integration of the Nios II System into a Quartus II Project
To complete the hardware design, we have to perform the following:

o Instantiate the module generated by the SOPC Builder into the Quartus II project
o Assign the FPGA pins
e Compile the designed circuit

e Program and configure the Cyclone II device on the DE2 board

12

3.1 Instantiation of the Module Generated by the SOPC Builder

The instantiation of the generated module depends on the design entry method chosen for the overall Quartus 11
project. We have chosen to use VHDL, but the approach is similar for both Verilog and schematic entry methods.

Normally, the Nios II module is likely to be a part of a larger design. However, in the case of our simple
example there is no other circuitry needed. All we need to do is instantiate the Nios II system in our top-level
VHDL file, and connect inputs and outputs of the parallel I/O ports, as well as the clock and reset inputs, to the
appropriate pins on the Cyclone II device.

The VHDL entity generated by the SOPC Builder is in the file nios_system.vhd in the directory of the project.
Note that the name of the VHDL entity is the same as the system name specified when first using the SOPC Builder.
The VHDL code is quite large. Figure 16 depicts the portion of the code that defines the port signals for the entity
nios_system. The 8-bit vector that is the input to the parallel port Switches is called in_port_to_the_Switches.
The 8-bit output vector is called out_port_from_the_LEDs. The clock and reset signals are called clk and reset_n,
respectively. Note that the reset signal is added automatically by the SOPC Builder; it is called resez_n because it
is active low.

€2 nios_system.vhd

Entity nios_system is
port |
—— 1) glokhal signals:
Zignal clk : IN 3TD LOGIC:
Signal reset_n : IN 3TD_LOGIC:

-- the_ LED=s
Zignal out_port from the LEDs : OUT 3TD LOGIC VECTOR (7 DOWNTO O);

-- the_Zwitches
Zignal in port_to_the Switches : IN 3TD _LOGIC VECTOR (7 DOWNTO O)
Vi

end entity nios system;

Figure 16. A part of the generated VHDL entity.

Figure 17 shows a top-level VHDL entity that instantiates the Nios II system. This entity is named lights,
because this is the name we specified in Figure 3 for the top-level design entity in our Quartus II project. Note that
the input and output ports of the entity use the pin names for the 50-MHz clock, CLOCK_50, pushbutton switches,
KEY, toggle switches, SW, and green LEDs, LEDG, that are specified in the DE2 User Manual. Type this code
into a file called lights.vhd. Add this file and all the *.vhd files produced by the SOPC Builder to your Quartus
II project. Also, add the necessary pin assignments on the DE2 board to your project. The procedure for making
pin assignments is described in the tutorial Quartus II Introduction Using VHDL Design. Note that an easy way
of making the pin assignments when we use the same pin names as in the DE2 User Manual is to import the
assignments given in the file called DE2_pin_assignments.csv in the directory DE2_tutorials\design_files, which
is included on the CD-ROM that accompanies the DE2 board and can also be found on Altera’s DE2 web pages.

Since the system we are designing needs to operate at a 50-MHz clock frequency, add the needed timing as-
signment in your Quartus II project. The tutorial Timing Considerations with VHDL-Based Designs shows how
this is done.

13

Having made the necessary settings compile the code. You may see some warning messages associated with
the Nios II system, such as some signals being unused or having wrong bit-lengths of vectors; these warnings can
be ignored.

—— Implements a simple Nios II system for the DE2 board.

—— Inputs: SW7—0 are parallel port inputs to the Nios II system

—— CLOCK_50 is the system clock

—— KEYO is the active-low system reset

—— Outputs: LEDG7-0 are parallel port outputs from the Nios II system
LIBRARY ieee;

USE ieee.std_logic_1164.all;

USE ieee.std_logic_arith.all;

USE ieee.std_logic_unsigned.all;

ENTITY lights IS
PORT (

SW : IN STD_LOGIC_VECTOR(7 DOWNTO 0);
KEY : IN STD_LOGIC_VECTOR(0 DOWNTO 0);
CLOCK_50 : IN STD_LOGIC;
LEDG : OUT STD_LOGIC_VECTOR(7 DOWNTO 0)
)

END lights;

ARCHITECTURE Structure OF lights IS
COMPONENT nios_system
PORT (
clk : IN STD_LOGIC;
reset_n : IN STD_LOGIC;

out_port_from_the_LEDs: OUT STD_LOGIC_VECTOR (7 DOWNTO 0)
in_port_to_the_Switches : IN STD_LOGIC_VECTOR (7 DOWNTO 0)

); -
END COMPONENT;

BEGIN

—— Instantiate the Nios II system entity generated by the SOPC Builder
NioslI: nios_system PORT MAP (CLOCK_50, KEY(0), LEDG, SW);

END Structure;

Figure 17. Instantiating the Nios II system.

3.2 Programming and Configuration

Program and configure the Cyclone II FPGA in the JTAG programming mode as follows:
1.

Select Tools > Programmer to reach the window in Figure 18.

14

k)

Connect the DE2 board to the host computer by means of a USB cable plugged into the USB-Blaster port.
Turn on the power to the DE2 board. Ensure that the RUN/PROG switch is in the RUN position.

If not already chosen by default, select JTAG in the Mode box. Also, if the USB-Blaster is not chosen by
default, press the Hardware Setup... button and select the USB-Blaster in the window that pops up.

The configuration file lights.sof should be listed in the window. If the file is not already listed, then click
Add File and select it.

5. Click the box under Program/Configure to select this action.

6. At this point the window settings should appear as indicated in Figure 18. Press Start to configure the
FPGA.

| lights.cdf

éa Hardware Setup... USE-Blaster [USE-0] Mode: [JTAG | Progress: 0%

™ Enable realtime ISP ta allow background prograrring (for MAK, || devices)

Wb Start

*E'ﬂ Auto Detect
¥ Delete

B Add File...
li= Change File...
2 Add Device...

||« >

Figure 18. The Programmer window.

4 Running the Application Program

Having configured the required hardware in the FPGA device, it is now necessary to create and execute an appli-
cation program that performs the desired operation. This can be done by writing the required program either in
the Nios II assembly language or in a high-level language such as C. We will illustrate both approaches.

A parallel I/O interface generated by the SOPC Builder is accessible by means of registers in the interface.
Depending on how the PIO is configured, there may be as many as four registers. One of these registers is called
the Data register. In a PIO configured as an input interface, the data read from the Data register is the data
currently present on the PIO input lines. In a PIO configured as an output interface, the data written (by the Nios
II processor) into the Data register drives the PIO output lines. If a PIO is configured as a bidirectional interface,
then the PIO inputs and outputs use the same physical lines. In this case there is a Data Direction register included,
which determines the direction of the input/output transfer. In our unidirectional PIOs, it is only necessary to have
the Data register. The addresses assigned by the SOPC Builder are 0x00001800 for the Data register in the PIO
called Switches and 0x00001810 for the Data register in the PIO called LEDs, as indicated in Figure 14.

You can find a full description of the PIO interface by opening the SOPC Builder window in Figure 14 and
right-clicking on the module name of a PIO (either Switches or LEDs). Then, in the pop-up box select Data
Sheet to open the document PIO Core with Avalon Interface which gives a full description of the interface. To
use this facility you need to be connected to the Internet.

4.1 Using a Nios II Assembly Language Program

Figure 19 gives a Nios II assembly-language program that implements our trivial task. The program loads the
addresses of the Data registers in the two PIOs into processor registers 2 and r3. It then has an infinite loop that
merely transfers the data from the input PIO, Switches, to the output PIO, LEDs.

15

.Anclude "nios_macros.s"

.equ Switches, 0x00001800
.equ LEDs, 0x00001810

.global _start
_start:
movia 12, Switches
movia 13, LEDs
loop: ldbio r4,0(r2)
stbio r4, 0(r3)
br loop

Figure 19. Assembly language code to control the lights.

The program includes the assembler directive
.include "nios_macros.s"

which informs the Assembler to use the Nios II macros that specify how the movia pseudoinstructions can be
assembled.

The directive
.global _start

indicates to the Assembler that the label _start is accessible outside the assembled object file. This label is the
default label we use to indicate to the Linker program the beginning of the application program.

For a detailed explanation of the Nios II assembly language instructions see the tutorial Introduction to the
Altera Nios II Soft Processor.

Enter this code into a file lights.s and place the file into a working directory. We placed the file into the
directory sopc_builder_tutorial\app_software. The program has to be assembled and converted into an S-Record
file, lights.srec, suitable for downloading into the implemented Nios II system.

Altera provides the monitor software, called Altera Debug Client, for use with the DE2 board. This software
provides a simple means for compiling, assembling and downloading of programs into a Nios II system imple-
mented on a DE2 board. It also makes it possible for the user to perform debugging tasks. A description of this
software is available in the Altera Debug Client tutorial.

Open the Altera Debug Client, which leads to the window in Figure 20. This software needs to know the
characteristics of the designed Nios II system, which are given in the ptf file nios_system.ptf. Click the Nios Il >
Configure system... menu item to display the Nios II System Configuration window, shown in Figure 21, and
perform the following steps:

1. Select the USB-Blaster cable from the Cable drop-down list, which is used with DE2 board.

2. Click Browse... to display a file selection window and choose the nios_system.ptf file. Note that this file is
in the design directory sopc_builder_tutorial.

3. Click Load.

4. The Altera Debug Client also needs to know where to load the application program. In our case, this is the
memory block in the FPGA device. The SOPC Builder assigned the name onchip_memory_0 to this block.
As shown in Figure 21, the Debug Client has already selected the correct memory device.

5. Having provided the necessary information, click OK to confirm the system configuration.

16

Next, the source file lights.s needs to be specified. Click the Nios Il > Configure program... menu item to
display the Nios II Program Configuration window in Figure 22 and perform the following steps:

1. Click Add... to display a file selection window and choose the lights.s file. Note that this file is in the
directory sopc_builder_tutorial\app_software.

2. Click OK to confirm the program configuration.

Next, to assemble and download the light.s program, click the Actions > Compile & Load menu item. The
Altera Debug Client will invoke an assembler program, followed by a linker program. The commands used to
invoke these programs, and the output they produce, can be viewed in the Info & Errors window of the Debug
Client window. After the program has been downloaded onto the board, the program is displayed in the Disas-
sembly window of the Debug Client as illustrated in Figure 23. Observe that movia is a pseudoinstruction which
is implemented as two separate instructions.

Click the Actions > Continue menu item to execute the program. With the program running, you can now
test the design by turning the switches, SW7 to SW0 on and off; the LEDs should respond accordingly.

The Debug Client allows a number of useful functions to be performed in a simple manner. They include:
e single stepping through the program
e examining the contents of processor registers
e examining the contents of the memory
e setting breakpoints for debugging purposes
o disassembling the downloaded program

A description of this software and all of its features is available in the Alfera Debug Client tutorial.

17

Monitor Mios I Actions Windows Help

A E BB A m b

Disassembly - Registers

X
| a

Reg

e
ZEYO
rl
ri
jusc]
rd
s
L6
7
rd
r9
rlo
rll
rla
rl3
rld
rls
rla
rl7

rl8
[«] L] rlg

Disassernbly / EBreakpaints }'r Memary }r Watches ,'r Trace / rz0

[«]

Value
0x00000000
0x00000000
0x000o0000
0x000o0000
0x000o0000
0x000o0000
0x000o0000
0x000o0000
0x000o0000
Ox0oo0ooooo
Ox0oo0ooooo
Ox0oo0ooooo
Ox0oo0ooooo
Ox0oo0ooooo
Ox0oo0ooooo
Ox0oo0ooooo
Ox0oo0ooooo
Ox0oo0ooooo
Ox0oo0ooooo
Ox0oo0ooooo
Ox0oo0ooooo
0x00000000

Terminal = Info & Errors

=

Figure 20. The Altera Debug Client window on startup.

7 Nios 1l System Configuration [‘57

Cable

UsE-Blaster [LISEB-0] || Refresh |

System description file {PTF)

‘D:15opc_bulIder_tutorlal\n\os_system.ptf | | Browse. .. |

.text section

Memoary device: |onchip_memory_0,l’sl (0h - FFfh) '|

Start offset in device (hex): | D|

.data section

Memory device: |0nchipfmemoryj,l’sl (oh - FFfR) V|

Start offset in device (hesx): | D|

Terminal device

jtag_uark_0

Figure 21. The Nios II System Configuration window.

18

#* Mios |l Program Configuration E]

Program type

|Assembly -

Files
First source file is used to determing ELF and SREC file name.

[:ysopc_builder_tutorialapp_softwarellights.s Add...

Remove

Dowr

Options

Start symbal: |_start

Figure 22. The Nios II Program Configuration window.

#* Altera Debug Client - D:\sope_builder_tutoriallapp_softwarellights.srec [Paused]

Monitor Mios I Actions Windows Help
HE EB¢+EB mlk
Disassembly — ¥ | Registers —
.equ LEDs, 0x00801810 z Reg Walue
pe 0x00000000 | =
GFUNC _start ZErO0 0x00000000
rl 0x00000000
movia r2, Switches ri Ox00000000
atare: 3 0x00000000
00000000 orhi r2, zero, Ox80 4 0x00000000
00000004 ori 2, 2, Oxl800 £ 0:x00000000 |;
wovia r3, LEDS L6 0x00000000
00000008 orhi 3, zero, 0x80 7l r; Exgggggggg
L= s
oooooooc ori r3, r3, Ox1&10 9 000000000
rlo O0x00000000
X rll O0x00000000
loaop: ldbio £d, Dira) riz 0x00000000
loap: i3 0x00000000
oooooolo ldbio rd, 0{rZ) rl4 0x00000000
stbio rd, 0(r3) rls 0x00000000
oooooonld sthio rd, 0(r3) rla O0x00000000
br loop = rl7 O0x00000000
| ‘l 1 1 1 1 | ¥ —||xld O0x00000000
rlg O0x00000000
Disassernbly / EBreakpaints }'r Memary }r Watches ,'r Trace | rzn Ox00000000 | ™
Terminal — ¥ | Info & Errors -
JTAG TUART link established using cahle "USE-Elaster Verifying 00000000 | 0%)
[USE-0]", dewice 1, instance 0x00 Verified 0K
Comnection established to GDE server at localhost: 239
dymbols loaded.
source code loaded.
WARNING: Could not reset trace. Trace is disabled.

Figure 23. Display of the downloaded program.

4.2 Using a C-Language Program

An application program written in the C language can be handled in the same way as the assembly-language pro-
gram. A C program that implements our simple task is given in Figure 24. Enter this code into a file called lights.c.

19

#define Switches (volatile char *) 0x0001800
#define LEDs (char *) 0x0001810

void main()
{ while (1)

*LEDs = *Switches;
}

Figure 24. C language code to control the lights.

Perform the following steps to use this program:

1. Disconnect from the current debugging session by clicking the Actions > Disconnect menu item.

2. Click the Nios Il > Configure program... menu item to launch the Nios IT Program Configuration window.
3. Select C as the Program Type in the drop-down list.

4. Select the lights.s file and click Remove to remove it from the list of source files.

5. Click Add... and choose the lights.c file.

6. Click OK to confirm the new program configuration.

The steps to compile, load, and run the program are the same as for an assembly language program.

Copyright (©2006 Altera Corporation. All rights reserved. Altera, The Programmable Solutions Company, the
stylized Altera logo, specific device designations, and all other words and logos that are identified as trademarks
and/or service marks are, unless noted otherwise, the trademarks and service marks of Altera Corporation in
the U.S. and other countries. All other product or service names are the property of their respective holders.
Altera products are protected under numerous U.S. and foreign patents and pending applications, mask work
rights, and copyrights. Altera warrants performance of its semiconductor products to current specifications in
accordance with Altera’s standard warranty, but reserves the right to make changes to any products and services at
any time without notice. Altera assumes no responsibility or liability arising out of the application or use of any
information, product, or service described herein except as expressly agreed to in writing by Altera Corporation.
Altera customers are advised to obtain the latest version of device specifications before relying on any published
information and before placing orders for products or services.

This document is being provided on an “as-is” basis and as an accommodation and therefore all warranties, rep-
resentations or guarantees of any kind (whether express, implied or statutory) including, without limitation, war-
ranties of merchantability, non-infringement, or fitness for a particular purpose, are specifically disclaimed.

20

