
©1995—99 Morris Chang

CS-471 1

Introduction to VHDL

1. Introduction to Digital System Design with VHDL

 • Advanced Electronic Systems

 • Typical ASIC development Flow

Electronic
Systems

ASIC
Technology

software

Design
Engineers

Tool
Developers

Semiconductor
Vendors

Advanced electronic
systems usually have
hardware and software
components.

Application Specific
Integrated Circuits (ASIC)
technology provides a
higher integration of
hardware components.

Design engineers use
sophisticate CAD tools
and submicron
semiconductor technology
to develop ASICs.

system Design
and partitioning

ASIC Block Diagram
and specification

Logic Design

Logic Simulation

Pre- and Post-Layout
Verification

Prototype ASIC Fab
and Test

Hardware/Software
Tradeoff

Schematic / Netlist
HDL / Logic Synthesis

Functional
Timing

About 40,000 engineers currently use
schematics alone for programmable-logic-
design entry. Most engineers will be switching
to HDL-based tools over the next few years. In
1996, about 12,000 design engineers used
HDLs for at least part of their design, a
number that will swell to about 67,000 by
1999, according to the forcast. (by Dataquest;
Computer Design, Oct. 1996 pp. 69).

©1995—99 Morris Chang

CS-471 2

 • Basic design flow1

 • The common modeling styles in VHDL

 — Structural

 — Dataflow

 — Behavior

 — Mix of the above three

 • Many of the EDA (Electronic Design Automation) vendors are
standardizing on VHDL as input and output from their tools.
These tools include

 — simulation tools,

1. VHDL Analysis and Modeling of digital systems, by Zainalabedin Navabi McGraw-hill 1993

Design Idea

Behavioral Design

Data Path Design

Logic Design

Physical Design

Manufacturing

Chip or Board

Simulation Tools

Behavioral Simulator

Dataflow Simulator

Gate Level Simulator

Device Simulator

Final Testing

Flow Graph, Pseudo code

Bus & Register Structure

Gate Netlist

Transistor List, Layout

Product Sample

©1995—99 Morris Chang

CS-471 3

 — synthesis tools,

 — layout tools,

 — testing tools (BSDL, WAVES)

 • The advantages of using VHDL

 — Industrial standard (IEEE-1076)

 — portability of designs and knowledge

 — hierarchy in design description

 — technology (implementation) independence

 • Current development of VHDL (Project Authorization Req. No.)

 — Shared Variables (1076a)

 — Analog Extensions (1076.1)

 — Math Package (1076.2)

 — Synthesis Package (1076.3)

 — Timing Methodology (1076.4)

 • For more information about VHDL

 — VHDL International User Forum (VIUF)

 — http://www.vhdl.org

1.1 Basic Concepts in VHDL

 • Characteristics

 — VHDL is strongly typed

 — VHDL allows user-defined types

 — VHDL is case insensitive and free format

 — Comments are specified by two consecutive dashes (--)

©1995—99 Morris Chang

CS-471 4

 • Example of a 2-to-1 multiplexer

The block diagram of mux

 • The dataflow description of a 2-to-1 mux

ENTITY mux IS
PORT (a, b, sel: in bit;

 y: out bit);
END mux;

ARCHITECTURE dataflow OF mux IS
BEGIN

 y <= (sel AND a) OR (NOT sel AND b);

END dataflow;

 • One design can have different level’s abstraction.

A
B

Sel

Y

architecture
behav
of
mux
is . . .

ENTITY mux IS ...

architecture
dataflow
of
mux
is . . .

architecture
struct
of
mux
is . . .

©1995—99 Morris Chang

CS-471 5

1.2 Entity

 • Entity contains the input-output ports of the component.

ENTITY component_name IS

PORT();

END component_name;

-- This is a comment

 • Example:
ENTITY mux IS

PORT (a, b, sel: IN BIT;
 y: OUT BIT);
END mux;

 — BIT is a predefined type; it is an enumeration type contain-
ing the character literals ‘0’ and ‘1’.

 — The IN and OUT specify the mode of the port signals. A sig-
nal with mode IN cannot be assigned a value from within
the component. An OUT signal cannot be used on the right
hand side of a signal assignment.

1.3 Architecture Body

The architecture body can be used for the following modeling
styles:

 • As a set of concurrent assignments (to represent dataflow),

 • As a set of interconnected components (to represent structure)

 • As a set of sequential assignment statements (to represent
behavior),

 • Any combination of the above three.

©1995—99 Morris Chang

CS-471 6

1.3.1 Architecture

 • Architecture syntex

ARCHITECTURE dataflow OF mux IS

-- signals, variables declaration

BEGIN

-- statements

. . . .

END dataflow; -- the architecture name dataflow is optional

1.3.2 Dataflow Description in VHDL

 • In a digital system, various forms of hardware structure are used
for the selection and placement of data into buses or registers.
Concurrent signal assignment statements in VHDL can be used
to direct the data flow in hardware.

 • The Concurrent signal assignment statements are:

 — simple signal assignment

 — selected signal assignment

 — conditional signal assignment

1.3.2.1 Simple Signal Assignment

 • example

y <= (sel AND a) OR (NOT sel AND b);

-- y : target signal
-- <= : signal assignment operator

 • The six logical operators are:

AND OR NAND NOR XOR NOT

©1995—99 Morris Chang

CS-471 7

 • Logical operators can be used for operands of the predefined BIT
and BOOLEAN types and the result of the operation will be the
same type as the operands.

 • Relational operators always generate a Boolean result regardless
of the type of operands.

= /= < <= > >=

 • The = (equality) and the /= (inequality) operators are permitted on
any type except file types. The remaining four relational operators
are permitted on any scalar type (e.g. integer or enumerated
type) or discrete array type (i.e. arrays in which element values
belong to a discrete type).

 • When operands are discrete array types, comparison is
performed one element at a time from left to right. Example:

bit_vector’(‘0’,’1’,’1’) < bit_vector’(‘1’,’0’,’1’)

 is true (the first element in the first array aggregate is less than
the first element in the second aggregate.

 • VHDL is strong-typed language. The type of both operands with
binary logical operators (or relational operators) must be the
same type. For the array of BIT/BOOLEAN, both operands must
be of same length.

1.3.2.2 Selected Signal Assignment

 • The selected signal assignment statement is much like a case
statement. However, a selected signal assignment statement is a
concurrent signal while a case statement is a sequential
statement. Note, the process can contain sequential statements
only.

 • Example of a two-to-one multiplexer:

ENTITY mux_df IS
PORT(a, b, sel : in bit;

y : out bit);
END mux_df;

ARCHITECTURE dataflow OF mux_df IS

©1995—99 Morris Chang

CS-471 8

BEGIN
WITH sel SELECT -- create a 2-to-1 multiplexer

y <= a WHEN ‘1’,
 b WHEN ‘0’;

END dataflow;

 • The syntax is :

WITH expression SELECT
target <= waveform WHEN choice,

waveform WHEN choice,
. . .
. . . ;

 • Example of a four-to-one multiplexer:

entity mux2_df is
port(data : in BIT_VECTOR(3 DOWNTO 0);

sel: in INTEGER RANGE 0 TO 3;
f : out bit);

end mux2_df;

architecture dataflow of mux2_df is
begin

with sel select -- create a 4-to-1 multiplexer
f <= data(0) when 0,

 data(1) when 1,
 data(2) when 2,
 data(3) when 3;

end dataflow;

 — The data type of signal sel is integer with range 0 to 3.

 — The BIT_VECTOR is an array of bits which is of type BIT.

 — INTEGER is the only predefined integer type of the lan-
guage.

 — Example of user-defined integer type

TYPE index IS RANGE 0 TO 15;

©1995—99 Morris Chang

CS-471 9

 — Objects declaration using user-defined types:

CONSTANT mux_address : index := 5;

 — Subtype: can be used to define a subset of other types
(note: subtype does not create a new type)

subtype bit_vector16 is bit_vector(15 down to 0);

 • More about BIT_VECTOR

 — BIT_VECTOR is a predefined unconstrained array type (an-
other predefined unconstrained array is STRING). It is de-
fined as

type BIT_VECTOR is array (NATURAL range <>) of BIT;

Note: only the array element type (i.e. BIT) and the array in-
dex type (i.e. NATURAL) are specified (not the array size).
NATURAL : is a subtype of type INTEGER that ranges from
1 to INTEGER’HIGH. BIT: is a enumeration type has the
values of ‘0’ and ‘1’.

 — However, to use an unconstrained array type, the index
range must be specified. For example: data: in
BIT_VECTOR(7 DOWNTO 0);

 — reg_a is (7 downto 0) : an 8 bit bus whose MSB (bit 7) is at
the left end of the bus, and has the binary weight 27 or 128.

 — reg_b is (0 to 7) :

assume that:
reg_a <= “00000001”;
reg_b <= “00000001”;

--
-- reg_a(0) is logic 1 and all other bits are 0
-- reg_b(7) is logic 1 and all other bits are 0

7 6 5 4 3 2 1 0
reg_a

0 1 2 3 4 5 6 7
reg_b

©1995—99 Morris Chang

CS-471 10

 • Decoder

Decoder is another example to use the selected signal
assignment construct. Consider the 3-to-8 decoder:

 The decoder has a 3-bit address input and eight output lines. An
output, i, becomes active (high) when the input address is equal
to i.

-- three-to-one decoder
library ieee;
use ieee.std_logic_1164.all;

entity dcd_3_8 is
port(adr: in std_logic_vector(2 downto 0);

 sel_out: out std_logic_vector(7 downto 0)
);

end dcd_3_8;

architecture dataflow of dcd_3_8 is
begin

-- select is a concurrent stm which can’t be placed in a
-- process

 WITH adr SELECT
sel_out <= “00000001” when “000”,

“00000010” when “001” | “00Z”,
“00000100” when “010” | “0Z0”,
“00001000” when “011” | “0ZZ”,
“00010000” when “100” | “Z00”,
“00100000” when “101” | “Z0Z”,
“01000000” when “110” | “ZZ0”,
“10000000” when “111” | “ZZZ”,
“XXXXXXXX” when OTHERS;

Decodera0
a1
a2

s0
s1
s2
s3
s4
s5
s6
s7

©1995—99 Morris Chang

CS-471 11

-- the ‘X’ is interpreted as 0
-- The open input, ‘Z’, will be treated as logic ‘1’

end dataflow;

 • The last waveform causes all bits of the output to become ‘X’,
which will be interpreted as ‘0’. The use of OTHERS with the last
waveform statement reduces the amount of coding if we were to
list all of the possible values.

 • IEEE Std 1164-1993 defines a standard logic package that allows
nine values to be used to model a signal line. The nine values
include:
type STD_LOGIC is (

‘U’ -- Uninitialized
‘X’ -- Forcing Unknown
‘0’ -- Forcing Low
‘1’ -- Forcing High
‘Z’ -- High Impedance
‘W’ -- Weak Unknown
‘L’ -- Weak Low
‘H’ -- Weak High
‘-’ -- Don’t Care
);

-- This package can be found in \maxplus2\max2vhdl\ieee

 • When a gate’s output is in high-impedance state, it is considered
as the gate were disconnected from the output. A tri-state buffer:

 • The next example adds output enable (OE) to the 3-to-8 decoder.

-- three-to-one decoder
library ieee;
use ieee.std_logic_1164.all;

entity dcd_38_2 is
port(adr: in std_logic_vector(2 downto 0);

oe : in std_logic;
 sel_out: out std_logic_vector(7 downto 0)
);

OE

Din Dout

Din OE Dout

X
0
1

0
1
1

Z
0
1

©1995—99 Morris Chang

CS-471 12

end dcd_38_2;

architecture dataflow of dcd_38_2 is
 signal oe_adr :std_logic_vector(3 downto 0);
begin

oe_adr <= oe & adr;
-- concatenate signal together for SELECT

WITH oe_adr SELECT
sel_out <= “00000001” when “1000”,

“00000010” when “1001” | “100Z”,
“00000100” when “1010” | “10Z0”,
“00001000” when “1011” | “10ZZ”,
“00010000” when “1100” | “1Z00”,
“00100000” when “1101” | “1Z0Z”,
“01000000” when “1110” | “1ZZ0”,
“10000000” when “1111” | “1ZZZ”,
“ZZZZZZZZ” when others;

end dataflow;

 • A bus system can be constructed with tri-state gates.

 • in Maxplus2 6.01, tri-state gates must be described at top level in
the hierarchy of the VHDL description.

1.3.2.3 Conditional Signal Assignment

 • Conditional signal assignment statements list a series of
expressions that are assigned to a target signal after the positive
evaluation of one more Boolean expressions.

entity mux_df2 is
port(a, b, sel : in bit;

y : out bit);
end mux_df2;

bus
controller

device_A device_B

8 8

8 8-bit bus

©1995—99 Morris Chang

CS-471 13

architecture dataflow of mux_df2 is
begin

y <= a when sel = ‘1’ else
 b ;

end dataflow;

 • When a conditional signal assignment statement is executed,
each boolean expression is tested in the order in which it is
written. The value of the expression preceding a WHEN keyword
is assigned to the target signal for the Boolean expression that is
evaluated as true.

 • A Priority Encoder can be implemented through conditional signal
assignment construct.

-- 4-to-2 priority encoder
--
entity enc4_2 is

port(A : in BIT_VECTOR(3 DOWNTO 0);
 Z : out BIT_VECTOR(1 DOWNTO 0);

Active : out bit);
end enc4_2;

A3, A2, A1, A0 Z1, Z0 Active

0000 11 0

XXX1 00 1

XX10 01 1

X100 10 1

1000 11 1

Z0

Z1

Active

A0

A1

A2

A3

©1995—99 Morris Chang

CS-471 14

architecture dataflow of enc4_2 is
begin

Z <= “00” WHEN A(0) = ‘1’ ELSE

 “01” WHEN A(1) = ‘1’ ELSE
 “10” WHEN A(2) = ‘1’ ELSE
 “11”; -- when A(3) = ‘1’ or A = “0000”

Active <= ‘0’ when A = “0000” else ‘1’;
end dataflow;

 • An example of conditional signal assignment with multiple
alternatives:

-- 4-to-1 mux
entity mux2_df is

port(data : in BIT_VECTOR(3 DOWNTO 0);
sel: in INTEGER RANGE 0 TO 3;
f : out bit);

end mux2_df;

architecture dataflow of mux2_df is
begin

f <= data(0) WHEN sel = 0 ELSE

 data(1) WHEN sel = 1 ELSE
 data(2) WHEN sel = 2 ELSE
 data(3);

end dataflow;

 • For a given conditional signal assignment statement, there is an
equivalent process statement that has the same semantic
meaning. Such a process statement has exactly one if statement
and one wait statement (or sensitivity list) within it.

entity mux is
port (a, b, sel: in bit;
 y: out bit);
end mux;

architecture behv of mux is
begin

PROCESS (a, b, sel) -- or

©1995—99 Morris Chang

CS-471 15

 -- WAIT ON a, b, sel;
begin

 IF(sel = ‘0’) THEN
 y <= b;
 ELSIF(sel = ‘1’) THEN
 y <= a;
 END IF;
 END PROCESS;

end behv;

 • The statements appearing inside a process statement are
executed sequentially. The process statements can be used to
describe purely combinatorial logic or sequential logic.

1.3.3 Behavioral Description in VHDL

 • The following example describes the behavior of a clock. This
example may not be synthsizable under current technology.

ARCHITECTURE behavioral OF clock_component IS

BEGIN
PROCESS

VARIABLE periodic: BIT := ‘1’;

BEGIN
IF en = ‘1’ THEN

periodic := NOT periodic;
END IF;

ck <= periodic;

WAIT FOR 1 US;

END PROCESS;
END behavioral;

©1995—99 Morris Chang

CS-471 16

 • The PROCESS statement in VHDL is used for all behavior
descriptions. The syntax is similar to most of the high level
languages. High level looping (e.g. for-loop) and branching (e.g.
if-then-else, case) can be used in processes.

 • The statements appearing inside a process statement are
executed sequentially. A process statement is a concurrent
statement that can appear within an architecture body.

 • It is possible to have more than one process (e.g. two FSMs)
within an architecture body. These processes communicate with
each other using signals that are visible to all the processes.

 • Information can only be transferred between processes via
signals.

 • A process statement, too, has a declarative part (between the
keyword PROCESS and BEGIN), and a statement part (between the
keyword BEGIN and END PROCESS).

 • The list of signals specified within the parenthesis after the
keyword process constitutes a sensitivity list. The process
statement is invoked whenever there is an event on any signal in
the sensitivity list.

process (A, B, enable)
variable . . . : BIT;

begin
. . .

end process;

 Note: EVENT means signal change

VARIABLE periodic: BIT := ‘1’;

 • The keyword VARIABLE declares a local variable (periodic) and
initializes it to ‘1’. Variables cannot be declared globally.

 • The := symbol is used for variables assignments while <= is used
for assignments into signals. Unlike signals, variables have no
direct hardware significance and have no timing associated with
them.

WAIT FOR 1 US;

©1995—99 Morris Chang

CS-471 17

 • In the above example, the WAIT statement causes the execution
of the process to be suspended for 1 microsecond (1 US). When
this time expires, the process executes again (since no sensitivity
list), and complement periodic if en is ‘1’, or holds the old value
of periodic if en is ‘0’.

1.3.3.1 Combinatorial Logic

 • example 1
entity mux is
port (a, b, sel: in bit;
 y: out bit);
end mux;

architecture behv of mux is
begin

process (a, b, sel)
begin

 if(sel = ‘0’) then
 y <= b;
 elsif(sel = ‘1’) then
 y <= a;
 end if;
 end process;

end behv;

 • To ensure that a process is combinatorial, its sensitivity list must
contain all signals that are read in the process.

 • example 2

-- example of counting the number of bits with the value 1
-- Altera VHDL p.24

library ieee;

-- for the predefined package std_logic
use ieee.std_logic_1164.all;

entity proc is
port(d : in std_logic_vector(2 downto 0);

 q : out integer range 0 to 3
);

end proc;

©1995—99 Morris Chang

CS-471 18

ARCHITECTURE proc OF proc IS
BEGIN

process(d)
VARIABLE num_bits : integer;

BEGIN

num_bits := 0; -- variable assignment
FOR i IN d’RANGE LOOP

IF d(i) = ‘1’ THEN
num_bits := num_bits + 1;

END IF;
END LOOP;

q <= num_bits;
END process;

END proc;

--** EQUATIONS **

--d0 : INPUT;
--d1 : INPUT;
--d2 : INPUT;

--% q0 = _LC017 %
-- q0 = LCELL(_EQ001 $ d2);
-- _EQ001 = !d0 & d1
-- # d0 & !d1;

--% q1 = _LC018 %
-- q1 = LCELL(_EQ002 $ d2);
-- _EQ002 = d0 & d1 & !d2
-- # !d0 & !d1 & d2;

 • The d’RANGE : obtains the attribute of the signal d. RANGE is a
predefined attribute that returns information about signals.
The single quote (’) is often read as “tick “.

 • The bounds of the range for an integer type must be constants or
locally static expressions; A locally static expression is an
expression that computes to a constant value at compile time.

©1995—99 Morris Chang

CS-471 19

 • The following example shows the non-constant index in an array
(which is not synthesizable under current technology).

library ieee;
use ieee.std_logic_1164.all;
-- count the number of bits with the value 1
-- this example employs a sequential circuit;
-- This example shows non-constant index error in synthesis

entity pro_reg2 is
port(d : in std_logic_vector(2 downto 0);

 clock : in std_logic;
 q : out integer range 0 to 3

);
end pro_reg2;

entity pro_reg2 is
port(d : in std_logic_vector(2 downto 0);

 clock : in std_logic;
 q : out integer range 0 to 3

);
end pro_reg2;

architecture proc of pro_reg2 is
signal d_tmp : std_logic_vector(2 downto 0);

begin
process

variable num_bits : integer;
variable count : integer;

begin
wait until clock’event and clock = ‘1’;
d_tmp <= d; -- this stm infer the reg.
num_bits := 0;
count := 0; -- can be constant or non-constant
for i in d’range loop -- OK!

if d_tmp(count) = ‘1’ then
num_bits := num_bits + 1;

-- count := count + 1; -- error (non-constant
-- array index)

end if;
 count := count + 1; -- ok! (no register is

-- inferred)
 -- count := count + 2; -- compile error; out of

-- array bounds
end loop;

©1995—99 Morris Chang

CS-471 20

q <= num_bits; -- registers are inferred
end process;

end proc;

1.3.3.2 Sequential Logic

 • Registers can be implemented explicitly with Altera
Macrofunction. This is done through the use of component
instantiation (will be discussed later).

 • A register can also be implemented implicitly with a register
inference.

 • Inferred D flip-flops (register) are created by Wait Statements or
IF THEN ELSE statement which are surrounded by sensitivities to
a clock. By detecting clock edges, the synthesis tool can locate
where to insert flip-flops so that the design is built as the
simulation predicts.

 • Note: the wait statement must be listed at the beginning of the
process statement.

 • Unlike component instantiations, register inferences are
technology independent, When registers are inferred, synthesis
can select them from the library you are currently using.

process
begin

wait until clk = ‘1’;
q <= d;

end process; -- register with active-high clock

 • Register with active-high clock and asynchronous clear. The if
statement is used to prioritize the statements so that the
asynchronous control clr have priority over the clk signal.

process(clk,clr)
begin

if clr = ‘1’ then
q <= ‘0’;

elseif clk’event and clk = ‘1’ then
q <= d;

end if;
end process;

©1995—99 Morris Chang

CS-471 21

 • The process with sensitivity list is assumed to contains an implicit
“wait on sensitivity-list” statement as the last statement in the
process.

 • The process without an explicit sensitivity list, must have at least
one WAIT statement, otherwise, the process will never get
suspended.

 • The process with an explicit sensitivity list, must not contain an
explicit wait statement. Thus, it is an error to have explicit
sensitivity list and a wait statement both present in a process.

process (clk) -- error!
begin

wait until clk = ‘1’;
q <= d;

end process; -- register with active-high clock

 • Examples of the logic with two flip-flops and one 2-to-1 mux

 — No sensitivity list

--dff_mux2.vhd
entity dff_mux2 is

port (reset,clock,din,sel : in std_logic;
dout : out std_logic
);

end dff_mux2;

architecture inference of dff_mux2 is

D
Q

R

D
Q

R

din q_out1

q_out2clock

dout

sel

©1995—99 Morris Chang

CS-471 22

signal q_out1, q_out2: std_logic;
begin

PROCESS -- sensitivity list is not required
begin

WAIT UNTIL (clock’EVENT AND clock = ‘1’);
q_out1 <= din;
q_out2 <= q_out1;

END PROCESS;
dout <= q_out1 when sel = ‘1’ else

q_out2;
end inference;

** EQUATIONS ** synthesis results

clock : INPUT;
din : INPUT;
sel : INPUT;

% dout = _LC017 %
 dout = LCELL(_EQ001 $ GND);
 _EQ001 = q_out1 & sel
 # q_out2 & !sel;

% q_out1 = _LC018 %
q_out1 = DFFE(din $ GND, clock, VCC, VCC, VCC);

% q_out2 = _LC019 %
q_out2 = DFFE(q_out1 $ GND, clock, VCC, VCC, VCC);

 Note: DFFE is a DFF primitive with clock Enable in the Altera
library. DFFE (d, clk, clrn, prn, q, ena). The equivalent
symbol is

D
Q

PRN

CLRN

ENA

©1995—99 Morris Chang

CS-471 23

 — with sensitivity list

-- filename dff_mux3.vhd

entity dff_mux3 is
port (reset,clock,din,sel : in std_logic;

dout : out std_logic
);

end dff_mux3;

architecture inference of dff_mux3 is
signal q_out1, q_out2: std_logic;

begin
process(reset,clock) -- sensitivity list required
begin

if (reset = ‘1’) then
 q_out1 <= ‘0’;
 q_out2 <= ‘0’;
elsif (clock’event and clock = ‘1’) then
 q_out1 <= din;
 q_out2 <= q_out1;
end if;

end process;
dout <= q_out1 when sel = ‘1’ else

q_out2;
end inference;

** EQUATIONS **

clock : INPUT;
din : INPUT;
reset : INPUT;
sel : INPUT;

% dout = _LC017 %
 dout = LCELL(_EQ001 $ GND);
 _EQ001 = q_out1 & sel
 # q_out2 & !sel;

% q_out1 = _LC018 %
q_out1 = DFFE(din $ GND, clock, !reset, VCC, VCC);

% q_out2 = _LC019 %
q_out2 = DFFE(q_out1 $ GND, clock, !reset, VCC, VCC);

©1995—99 Morris Chang

CS-471 24

 — including preset in the sensitivity list

entity dff_mux4 is
port (reset,preset,clock,din,sel : in std_logic;

dout : out std_logic
);

end dff_mux4;

architecture inference of dff_mux4 is
signal q_out1, q_out2: std_logic;

begin
process(preset,reset,clock)
begin

if (reset = ‘1’) then
 q_out1 <= ‘0’;
 q_out2 <= ‘0’;
elsif (preset = ‘1’) then
 q_out1 <= ‘1’;
 q_out2 <= ‘1’;
elsif (clock’event and clock = ‘1’) then
 q_out1 <= din;
 q_out2 <= q_out1;
end if;

end process;
dout <= q_out1 when sel = ‘1’ else

q_out2;
end inference;

** EQUATIONS **

clock : INPUT;
din : INPUT;
preset : INPUT;
reset : INPUT;
sel : INPUT;

% dout = _LC017 %
 dout = LCELL(_EQ001 $ GND);
 _EQ001 = q_out1 & sel
 # q_out2 & !sel;

% q_out1 = _LC018 %
q_out1 = DFFE(din $ GND, clock, !reset, !preset, VCC);

©1995—99 Morris Chang

CS-471 25

% q_out2 = _LC019 %
q_out2 = DFFE(q_out1 $ GND, clock, !reset, !preset,
VCC);

 Latches

 • Latches can be produced when omitting the ELSE statement in the
“IF-THEN-ELSE” construct in a process.

 — For example, a latch is inferred in the following process.

process (en, data_in)
begin

if (en = ‘1’)then
data_out <= data_in;

end if;
end process;

 — A latch is a level sensitive memory device; a flip-flop is an
edge-triggered memory device.

 • For example, a 3-input OR-AND2 function can be written to
contain

 — no latch,

 — one latch

 — two latches

entity orand is
 port(a,b,c : in bit;
 z : out bit
);
end orand;
architecture a of orand is
begin
 orand3: process(a,b,c)
 begin

2. Al Graf, “Harness the power of VHDL for PLD design”, Electronic Design, Sep. 19, 1994

D Q

en

data_in data_out

en
latch

©1995—99 Morris Chang

CS-471 26

 if(c = ‘1’) then
 if (a = ‘1’ or b = ‘1’) then z <= ‘1’;

else z <= ‘0’; -- inner else
 end if;

else z <= ‘0’; -- outer else
 end if;
 end process;
end;

 • in case (b): the VHDL code implied that the last value of signal z
will be saved (in a memory element) until the next occurrence of
the condition (c = 1) that satisfies the IF-THEN statement.

 • in case (c): the output of the OR gate will be changed to 1 when
(a = 1 or b = 1), and the value should be held until the condition is
met again.

 • To avoid inadvertently creating implied latches, the else
statement should always be paired with if statement.

a
b
c z

a

b
c

z

a
b
c z

latch a

b
c

z

a
b

c

z

latch
latch a

b
c

z

omission of the outer else

omission of both else

(a)

(b)

(c)

©1995—99 Morris Chang

CS-471 27

1.3.3.3 Bidirectional Bus with tri-state buffer

 • The data bus of a microprocessor is a bidirectional bus. Such bus
can, for example, fetch data (or instructions) from, or store data
back to, external devices. The following example depicts the use
of tri-state buffer in a bidirectional bus structure.

 • schematic and the corresponding VHDL code

-- bidirectional bus with tri-state buffer
-- Filename : triBuf.vhd
-- (c)1997 Morris Chang
-- Note: During the simulation stage, be sure to set the
-- iobus [input mode] to Z (from SCF) when the ena = ‘1’
-- (since the iobus is driven by the myBuf).
--

LIBRARY IEEE;
USE ieee.std_logic_1164.ALL;

ENTITY triBuf IS
 PORT(iobus : INOUT std_logic;
 i1,i2,ena, clk,reset: IN std_logic;
 o3 : OUT std_logic);
END triBuf;

ARCHITECTURE data OF triBuf IS
 SIGNAL is1 : std_logic;
BEGIN

is1 <= i1 and i2;

MyReg: PROCESS(clk,iobus,reset)
 BEGIN
 IF (reset = ‘1’) then o3 <= ‘0’;

o3
D

clk
iobus

ena myBuf

myReg

is1

i1
i2

©1995—99 Morris Chang

CS-471 28

 elsif (clk = ‘1’ and clk’event) THEN
 o3 <= iobus;
 END IF;
 END PROCESS;

Mybuf: PROCESS(ena,is1,iobus)
 BEGIN
 IF (ena = ‘1’) THEN
 iobus <= is1; else iobus <= ‘Z’;
 END IF;
 END PROCESS;
END data;

 • The tri-state buffer is inferred in the process — Mybuf.

 • During the simulation, there are two channels for the bidirectional pin (i.e.
iobus): one for input mode and one for output mode. As the bidirectional pin
performs output function, the channel for input mode must be set to high
impedance (i.e. Z).

1.3.4 Finite State Machine

 • Finite state machines (FSM) can usually be described using a case statement
in a process. The state information is stored in a signal.

 • The state encoding (e.g. one-hot) can be explicitly defined through PLD
vender-specific attribute (e.g enum_encoding in Altera.)

1.3.4.1 Finite State Machine and Asynchronous Input

 • ASM chart (Algorithmic State Machine Chart)

©1995—99 Morris Chang

CS-471 29

 — States

 — Conditional branch

 — conditional output

state_name

state_X

clock

state
X

W_out

note: W_out is a unconditional output
W_out is a logic value “1” in the state X

din = 1
FT

W_out

©1995—99 Morris Chang

CS-471 30

 • simple example

 — The din must be stable before the clock edge of the next cy-
cle.

 — The VHDL code:

-- a simple FSM to illustrate the asynchronous input din
ENTITY fsm IS

PORT(clock,reset,din : bit;
state0, state1 : out bit

);
END fsm;
ARCHITECTURE a OF fsm IS

--user-defined enumeration type
TYPE state_type IS (s0,s1);
SIGNAL mstate : state_type;

BEGIN
asm: PROCESS(reset,clock,din)
BEGIN

IF reset = ‘1’ THEN
mstate <= s0;

ELSIF clock = ‘1’ AND clock’event THEN
CASE mstate IS

WHEN s0 =>
mstate <= s1;

WHEN s1 =>
if din = ‘1’ then
mstate <= s0;

s0

s1

din = 1
FT

state0

state1

©1995—99 Morris Chang

CS-471 31

end if;
END CASE;

END IF;
END PROCESS;

state0 <= ‘1’ WHEN mstate = s0 ELSE ‘0’;-- concurrent
state1 <= ‘1’ WHEN mstate = s1 ELSE ‘0’;-- concurrent

END a;

 • The state machine is implemented through CASE-WHEN statement
in the process asm . The output signals are decoded from state
variable mstate (through concurrent statements.)

 • The VHDL feature — enumerated types, which allows the data
type used for the state variable (i.e. mstate) to be defined as
alphanumeric elements, makes the code more readable.

 — s0, s1 are enumeration literals.

 — The order of values appearing in an enumeration type dec-
laration defines the lexical order for the values. For example,
(s0 < s1) expression returns a TRUE while (s0 > s1) returns
FALSE.

 — Values of an enumeration type also have a position number
associated with them. The position number of the leftmost
element is 0.

 — The default initial value is the left-most enumeration literals.

 SIGNAL mstate : state_type;

 -- the mstate has initial value as s0

 • How many registers are inferred in this design ?

 • The value of the output state0 becomes 1 as the state machine
is in the s0 state.

 • What if the output-signal assignments were placed inside the
process asm ?

CASE mstate IS
WHEN s0 =>

state0 <= ‘1’;

©1995—99 Morris Chang

CS-471 32

state1 <= ‘0’;
mstate <= s1;

WHEN s1 =>
state0 <= ‘0’;
state1 <= ‘1’;
if din = ‘1’ then
mstate <= s0;
end if;

END CASE;

 — This design will affect the efficiency and the timing.

 — Two more registers are inferred for the control outputs state0 and state1
which are placed within the synchronous process asm. Registers often are
the limiting factor in the design fitting process of the PLD design environ-
ment.

 — The outputs state0 and state1 change value one cycle after the state
transition.

1.3.4.2 Interaction Between Two Processes

 • We will add one more process to the FSM example illustrated in previous
section.

 • Alternatively, the output decoding part can be placed in a separate, independent
combinatorial process which will be run parallel to the process asm.

decoder: process
if(mstate = s0) then

state0 <= ‘1’; state1 <= ‘0’;
else

state0 <= ‘0’; state1 <= ‘1’;
end if;

end process;

 • Information can only be transferred between processes (e.g. asm and decoder)
via signals (e.g. mstate.)

©1995—99 Morris Chang

CS-471 33

1.3.4.3 From ASM chart to VHDL

 • Given an ASM chart as follows,

X,Y

A
F

B

X

WB

F

F

T
T

Y

B,C
00

J

K

NM

L

W

1-

01

ASM Chart

000

001

010

100011

RST

©1995—99 Morris Chang

CS-471 34

 • The expected timing diagram (zero delay)

 • The VHDL code,

J K N M J K L M M K N M

T

F

T

F

T

F

T

F

T

F

T

F

ck

Sample Timing Diagram

©1995—99 Morris Chang

CS-471 35

-- This example show how to translate a given ASM chart to
VHDL
-- The filnname : asm2.vhd
-- Note: the inputs a, b and c are asynchronous input.
-- Author: M. Chang (Illinois Institute of Technology)

entity asm2 is -- Specify the inputs and outputs
port(

clock, reset:IN bit;
a,b,c :IN bit;
x_out,y_out,w_out:OUT bit ;
state :OUT bit_vector(4 downto 0)

-- NOTE: output state variables
);

end asm2;

architecture statemach of asm2 is

type state_type is (j,k,l,m,n);
signal mstate, next_state : state_type;

-- initial state is j
BEGIN

state_register: process(clock,reset)
begin
 if reset = ‘1’ then

mstate <= j;
elsif clock’event and clock = ‘1’ then

mstate <= next_state;
end if;
end process;

state_logic: process(mstate,a,b,c)
begin

x_out<= ‘0’;
y_out <= ‘0’;
w_out <= ‘0’;

 CASE mstate IS
WHEN j =>

next_state<= k;
WHEN k =>

x_out <= ‘1’;
y_out <= ‘1’;
IF a = ‘1’ THEN
 next_state<= l;
ELSIF (a = ‘0’ and b = ‘1’) THEN
 next_state<= n;

w_out <= ‘1’;

©1995—99 Morris Chang

CS-471 36

ELSIF (a = ‘0’ and b = ‘0’) THEN
 next_state<= n;
END IF;

WHEN l =>
x_out <= ‘1’;
IF b = ‘0’ THEN w_out <= ‘1’;

else w_out <= ‘0’; end if;
IF b = ‘1’ THEN
 next_state<= m;
ELSE
 next_state<= n;
END IF;

WHEN m =>
w_out <= ‘1’;
IF b = ‘1’ THEN
 next_state<= m;
ELSIF (b = ‘0’ and c = ‘1’) THEN
 next_state<= k;
ELSIF (b = ‘0’ and c = ‘0’) THEN
 next_state<= j;
END IF;

WHEN n =>
next_state<= m;
y_out <= ‘1’;

END CASE;

end process;

with mstate select
state <= “00001” when j,

 “00010” when k,
 “00100” when l,
 “01000” when m,
 “10000” when n;

END statemach;

1.3.5 Structural Description in VHDL

 • A digital system, very often, is described as a set of components
connected by signals. The implementation detail of components
are not known at this level. The interface of the components,
however, must be explicitly declared.

©1995—99 Morris Chang

CS-471 37

 • The components are instantiated in the architecture body via
component instantiation statements.

 • Structural description establishes the hierarchy in a design
description.

 • The following example illustrates the structural description of a 4-
to-1 mux.

ENTITY mux2con is
 PORT (
 data : in bit_vector(3 downto 0);
 sel: in bit_vector(1 downto 0);
 f : out bit);
END mux2con;

ARCHITECTURE structural of mux2con is

COMPONENT mux
 port (a,b,sel : in bit; y : out bit);

END COMPONENT;
FOR ALL : mux USE ENTITY work.mux (behv);-- optional
signal ins1, ins2 : bit;

BEGIN
m1: mux PORT MAP(data(3), data(2), sel(0), ins1);
m2: mux PORT MAP(data(1), data(0), sel(0), ins2);
m3: mux PORT MAP(ins1, ins2, sel(1), f);

END structural;

 • The architecture body has declarative part and statement part.

A
B

Sel

Y

A
B

Sel

Y

A
B

Sel

Y

m1

m2

data(3)

data(2)

data(1)
data(0)
sel(0)

sel(1)

f

ins1

ins2

m3

mux2con

©1995—99 Morris Chang

CS-471 38

 • Declarative part includes (1) the name of the component and its
ports (i.e. component declaration) (2) the name of the internal
signal which will be used in the architecture. The scope of the
signals is restricted to the architecture body (will not be
recognized outside the body). The internal signal ins1 is used as
a carrier for connecting two components. (3) the configuration
specifications.

FOR ALL : mux USE ENTITY work.mux (behv);

 • The configuration of mux specifies that for all instantiations of this
component (ALL : mux) the behv architecture of the mux entity
(which exists in the WORK library) should be used. By default
(i.e. without the configuration specifications), the Altera system
will pick up the component (i.e. mux) from the current directory.

 • Statement part has the instantiation of the components declared
in the declarative part. The m1 (or m2, m3) is the component label
for the component instantiated. The interconnections of
components are described here.

 • Signals in the instantiations will be mapped to the ports of the
instantiated component according to their ordering in the port
map list (called positional association). For example, in m1,

 • Name association (i.e. ports are mapped directly to signals
regardless of the order in which they are listed) can be quite
useful for the interconnection of buses.

m1: mux PORT MAP(data(3), data(2), sel(0), ins1);

 Can be rewritten to

m1: mux PORT MAP(b=>data(2), a=>data(3),
sel=>sel(0), y=>ins1);

data(3)

a

data(2)

b

sel(0)

sel

ins1

y

external
signal:
internal
signal:

©1995—99 Morris Chang

CS-471 39

 • A component instantiation statement is a concurrent statement.
Thus the order of these statements is not important.

1.3.6 Structural Description with Library

 • PLD vendors have their own basic functional blocks (i.e.
primitives) used in circuit designs. The Component Declaration
for these primitives are usually provided through a package which
placed in vendor-specific library.

 • The primitives such as flip-flop (e.g. DFF, DFFE, JKFF, JKFFE ...
etc) can be accessed explicitly through component instantiation.
This approach, however,

 — must include the library and package in your VHDL code

 — becomes technology dependent (vendor dependent), thus,
may affect the portability of your VHDL code.

 • Alternative implementation of the example with two DFF and one
mux is described as follows. This example uses Altera’s
maxplus2 package. This package is located in /maxplus2/
max2vhdl/altera/maxplus2.vhd.

LIBRARY altera;
use altera.maxplus2.all;
-- /maxplus2/max2vhdl/altera/maxplus2.vhd
LIBRARY ieee;
USE ieee.std_logic_1164.all;

entity dff_mux1 is
port (reset,clock,din,sel : in std_logic;

dout : out std_logic
);

end dff_mux1;

architecture synth of dff_mux1 is
signal clearn, presetn, q_out1, q_out2: std_logic;

BEGIN
clearn<= not reset;
presetn<=’1’;

-- logic values ‘1’ are equivalent to the VCC primitives

r1 : dff PORT MAP (d=>din, q=>q_out1,clk=>clock,

©1995—99 Morris Chang

CS-471 40

clrn=>clearn,prn=>presetn);
r2 : dff PORT MAP (q_out1,clock,clearn,presetn,q_out2);

dout <= q_out1 WHEN sel = ‘1’ ELSE
q_out2;

END synth;

** EQUATIONS **

clock : INPUT;
din : INPUT;
reset : INPUT;
sel : INPUT;

% dout = _LC017 %
 dout = LCELL(_EQ001 $ GND);
 _EQ001 = q_out1 & sel
 # q_out2 & !sel;

% q_out1 = _LC018 %
q_out1 = DFFE(din $ GND, clock, !reset, VCC, VCC);

% q_out2 = _LC019 %
q_out2 = DFFE(q_out1 $ GND, clock, !reset, VCC, VCC);

 • The logical operators in VHDL are equivalent to the AND, NAND,
OR, XOR and NOT logic primitives.

 Macrofunctions

 • PLD vendors also provide a collection of high-level building
blocks (macrofunctions) that can be used in logic designs. These
building blocks (e.g. adders, counters and 74 series equivalents)
can be accessed through component instantiation.

 • Example of component declaration in Altera’s maxplus2 package:

component a_8fadderb
port(cin: in STD_LOGIC;

a: in STD_LOGIC_VECTOR(8 downto 1);
b: in STD_LOGIC_VECTOR(8 downto 1);
cout: out STD_LOGIC;
sum: out STD_LOGIC_VECTOR(8 downto 1)

);
end component;

©1995—99 Morris Chang

CS-471 41

1.3.7 Structural Description with User-Defined Macrofunctions

 • Building user-defined macrofunctions is desirable in the
hierarchical design approach.

 • When instantiating user-defined macrofunctions, the ports of the
macrofunction with a component declaration must be specified.
This component declaration can be placed in a package (in a
separate file) which, then, will be declared (with a use clause) in
the top-level design file.

Example (with the package construct)

 — the component declaration is placed in file mux_pak.vhd :

-- my mux_pak package

PACKAGE mux_pak IS
 component mux
 port (a,b,sel : in bit; y : out bit);
 end component;
END mux_pak;

 — the top-level design file mux2pkg.vhd :

-- use of user-defined package

LIBRARY work; -- work library is the default library
USE work.mux_pak.all; -- in the file: mux_pak.vhd

entity mux2pkg is
 port (
 data : in bit_vector(3 downto 0);
 sel: in bit_vector(1 downto 0);
 f : out bit);
end mux2pkg;

ARCHITECTURE struc OF mux2pkg IS
signal ins1, ins2 : bit;

BEGIN
m1: mux port map(data(3), data(2), sel(0), ins1);
m2: mux port map(data(1), data(0), sel(0), ins2);
m3: mux port map(ins1, ins2, sel(1), f);

END struc;

©1995—99 Morris Chang

CS-471 42

 • The macrofunctions (e.g. the design of mux) must be compiled
before it can be used as components in the higher-level design.

2. More VHDL examples

2.1 Adders

 • Full adder (filename full_add.vhd)

ENTITY full_add is
 port(a,b,cin : in bit;
 sum,cout: out bit);
end full_add;

architecture df of full_add is
begin
 cout <= (a and b) or (a and cin) or (b and cin);
 sum <= (a xor b) xor cin;
end df;

 • Full adder using function construct (filename fadd_fcn.vhd)

ENTITY fadd_fcn is
 port(a,b,cin : in bit;
 sum,cout: out bit);
end fadd_fcn;

architecture df of fadd_fcn is

-- following is a function body
 FUNCTION f_cout(a,b,cin : in bit)
 RETURN bit IS
 BEGIN
 RETURN (a and b) or (a and cin) or (b and cin);

END f_cout;

begin
-- function call with positional association

 cout <= f_cout(a,b,cin);
 sum <= (a xor b) xor cin;
end df;

 • The general syntax for a function body:

©1995—99 Morris Chang

CS-471 43

 function function_name (parameter_list) return return_type is

 begin . . . end function_name;

 • The only mode allowed for the parameters is mode in. Also, only
constants and signal objects can be passed in as parameters.
The default object class is constant (e.g. a, b, cin).

 • Using function in a signal assignment:

 cout <= f_cout(a,b,cin);

 • The function body can be placed in a package body which is
always associated with a package declaration.

 package declaration and package body:
(filename : my_pkgbd.vhd)

-- package body for Full Adder using function

PACKAGE my_pkgbd IS
 FUNCTION f_cout(a,b,cin : in bit)
 RETURN bit;
END my_pkgbd;

PACKAGE BODY my_pkgbd IS
 -- following is a function body
 FUNCTION f_cout(a,b,cin : in bit)
 RETURN bit IS
 BEGIN
 RETURN (a and b) or (a and cin) or (b and cin);
 END f_cout;
END my_pkgbd;

 The full adder uses package my_pkgbd (filename: fa_pkgbd.vhd)

library work;
use work.my_pkgbd.all;

ENTITY fa_pkgbd is
 port(a,b,cin : in bit;
 sum,cout: out bit);
END fa_pkgbd;

architecture df of fa_pkgbd is
begin

©1995—99 Morris Chang

CS-471 44

 -- function call with positional association
 cout <= f_cout(a,b,cin);

 sum <= (a xor b) xor cin;
end df;

 • It is worth noting that a package body is not necessary if the
corresponding package declaration has no function (or
procedure, deferred constant) declarations.

 • Building an 8-bit ripple adder — a cascade of 8 full-adder stages,
each of which handles one bit.

 • Apparently, the above design presents a very good regularity in
the signal interconnections. We will use two instances of
full_add for the first and last bits of the adder. The rest of the bits
are instantiated in an iterative fashion to take advantage of the
VHDL generate statement.

 • 8-bit adder (filename fadd8.vhd)

a
b

cin
sum
cout

a(0)
b(0)

a
b

cin
sum
cout

a(1)
b(1)

a
b

cin
sum
cout

a(7)
b(7)

a
b

cin
sum
cout

a(6)
b(6)

sum(0)

sum(1)

sum(6)

sum(7)

im(0)

im(1)

im(5)

im(6)

cout

cin

©1995—99 Morris Chang

CS-471 45

ENTITY fadd8 is
 port(a,b : in bit_vector(7 downto 0);
 cin : in bit;
 sum : out bit_vector(7 downto 0);
 cout: out bit);

CONSTANT n: integer := 8; -- constant declaration
end fadd8;

architecture iterative of fadd8 is
 component
 full_add port (a,b,cin: in bit; sum, cout: out bit);
 end component;
 -- CONSTANT n: integer := 8;-- constant declaration
 signal im: bit_vector(0 to n-2);
begin
 g0: full_add port map(a(0), b(0), cin, sum(0), im(0));
 g1to6: FOR i IN 1 TO n-2

GENERATE
 g: full_add port map(a(i),b(i),im(i-1),

sum(i),im(i));
 END GENERATE;

gn: full_add port map(a(n-1),b(n-1),im(n-2),
sum(n-1),cout);

end iterative;

 • The GENERATE statement labeled g1to6 is used for wiring the full
adders for bits 1 to 6. A FOR loop with index i changing from 1 to
n-2 are used in the GENERATE statement.

 • The generate statement, works like a macro expansion, is
interpreted during elaboration. It provides for a compact
description of regular structures such as memories, registers,
and counters.

 • There are two forms of the generate statement.

 — for-generation scheme: must have locally static bounds (to
be synthesizable.)

 — if-generation scheme: must have locally static conditions (to
be synthesizable.)

 Note: A locally static expression is an expression that computes
to a constant value at compile time.

©1995—99 Morris Chang

CS-471 46

 • The if-generate statement is quite useful in handle the boundary
conditions in repetitive structures. An if-generate statement does
not have an else or else-if branch.

 • By changing the value of the CONSTANT n, an N-bit ripple adder
can be easily implemented from this design.

 • Design reuse, an effective way to reduce the design cycles, can
be achieved through parameterized design.

2.2 Design Parametrization

 • GENERIC statement in VHDL can be used for parameterized
design. (maxplus2 7.2, released 3/97, supports generic)

 — Usage of generic parameters and passing of values to
these parameters is done in much the same way as it is with
ports. The syntax of constructs related to ports and gener-
ics are similar.

 — The eight-bit adder now is implemented with generic con-
struct (file name: adder_n.vhd)

-- Morris Chang
-- N-bit Adder using Generic

ENTITY adder_n is
generic (N : integer := 8);

-- generic (N : integer);
-- the defaut value can be defined thru local generic

port(a,b : in bit_vector(N-1 downto 0);
 cin : in bit;

 sum : out bit_vector(N-1 downto 0);
 cout: out bit);

-- constant n: integer := 8;
end adder_n;

architecture iterative of adder_n is
component

full_add port (a,b,cin: in bit; sum, cout: out bit);
end component;
signal im: bit_vector(0 to N-2);

begin
g0: full_add port map(a(0), b(0), cin, sum(0), im(0));
g1to6: for i in 1 to N-2

©1995—99 Morris Chang

CS-471 47

generate
g: full_add port map(a(i),b(i),im(i-1),
sum(i),im(i));

end generate;
g2: full_add port map(a(N-1),b(N-1),im(N-2),

sum(N-1),cout);
end iterative;

 — The generic parameter N (the width of the adder) has a de-
fault value of 8.

 — In the following example, a component with generic parame-
ter is instantiated to a four-bit adder. (file name
adder_4.vhd)

--
--
ENTITY adder_4 IS
 port(a,b : in bit_vector(4-1 downto 0);
 cin : in bit;
 sum : out bit_vector(4-1 downto 0);
 cout: out bit);
end adder_4;

architecture simple of adder_4 is
 component adder_n
 generic (n : integer:=8);
-- generic (n : integer:=8); local generic is defined

port(a,b : in bit_vector(n-1 downto 0);
cin : in bit;

 sum : out bit_vector(n-1 downto 0);
cout: out bit);

 end component;
 begin

 g0: adder_n
 generic map(4) -- passing parameter
 port map(a, b, cin, sum, cout);

 end simple;

 — The absence of a generic map aspect from its instantiation
implies that all such generics will use the default values (i.e.
for a eight-bit adder)

g0: adder_n port map(a, b, cin, sum, cout);

©1995—99 Morris Chang

CS-471 48

 — Same as port map, generic map can use either name asso-
ciation or positional association.

 • Library of Parameterized Modules (LPMs)

 — Obviously, time to market is an important driving force be-
hind the acceptance of HDLs, synthesis and CPLD. But in
addition to time-to-market benefits, top-down methods
promise device independence.

 — Most synthesis and silicon vendors support the library of
Parameterized Modules (LPMs), a set of logic functions that
can be imported into a design and fit directly into the target
device. This portable code concept means that you can
switch silicon vendors without having to rewrite your design.

 — VHDL versions of Altera’s description of LPM blocks can be
found in http://www.edif.org. (“Programmable logic and syn-
thesis strive to get in sync”, by Mike Donlin, Computer De-
sign, August, 1996, pp78)

LIBRARY ieee;
USE ieee.std_logic_1164.ALL;
LIBRARY lpm;
USE lpm.lpm_components.ALL

ENTITY mux_ex IS
port (

data : IN STD_LOGIC_VECTOR (1 downto 0);
sel :: IN STD_LOGIC_VECTOR (0 downto 0);
result : OUT STD_LOGIC_VECTOR (0 downto 0)

);
END mux_ex;

architecture lpm of mux_ex is
BEGIN

mymux : lpm_mux -- use name association
generic map (LPM_SIZE => 2,

LPM_WIDTHS => 1,
LPM_PIPELINE => 0, -- can be omitted
LPM_width => 1)

port map (data(0,0) => data(0),
data(1,0) => data(1),
sel => sel,
result => result);

©1995—99 Morris Chang

CS-471 49

END lpm;

 •Note:
LPM_WIDTH: Width of the data[][] and result[] ports.
LPM_WIDTHS: Width of the sel[] input port.
LPM_SIZE : Number of input buses to the multiplexer.

LPM_SIZE <= 2LPM_WIDTHS
LPM_PIPELINE: Specifies the number of Clock cycles of latency
associated with the result[] output. A value of zero (0) indicates
that no latency exists, and that a purely combinatorial function will
be instantiated. If omitted, the default is 0.

2.3 Counter

 • Example for counter:

ENTITY counter IS
PORT
(din : IN INTEGER RANGE 0 TO 15;

clk : IN BIT;
clear, load: INBIT;
result : OUT INTEGER RANGE 0 TO 15

);
end counter;

architecture behv of counter is
-- A synchronous load, clear counter
begin

PROCESS (clk,load,clear)
VARIABLE cnt: INTEGER RANGE 0 TO 15;

BEGIN
IF (clk’EVENT AND clk = ‘1’) THEN

IF clear = ‘1’ THEN
-- active low may save you one gate

cnt := 0;
ELSIF load = ‘1’ THEN

cnt := din;
ELSE

cnt := cnt + 1;
END IF;

END IF;
result<=cnt;

END PROCESS;
end behv;

©1995—99 Morris Chang

CS-471 50

** EQUATIONS **

clear : INPUT;
clk : INPUT;
din0 : INPUT;
din1 : INPUT;
din2 : INPUT;
din3 : INPUT;
load : INPUT;

% result0 = cnt0~78 %
% cnt0~78 = _LC018 %
 result0 = DFFE(_EQ001 $!clear, clk, VCC, VCC, VCC);
 _EQ001 = !clear & !load & result0
 # !clear & !din0 & load;

% result1 = cnt1~78 %
% cnt1~78 = _LC019 %
 result1 = DFFE(_EQ002 $!clear, clk, VCC, VCC, VCC);
 _EQ002 = !clear & !load & result0 & result1
 # !clear & !load & !result0 & !result1
 # !clear & !din1 & load;

% result2 = cnt2~78 %
% cnt2~78 = _LC020 %
 result2 = DFFE(_EQ003 $ GND, clk, VCC, VCC, VCC);
 _EQ003 = !clear & !load & result0 & result1 & !result2
 # !clear & !load & !result1 & result2
 # !clear & !load & !result0 & result2
 # !clear & din2 & load;

% result3 = cnt3~78 %
% cnt3~78 = _LC022 %
 result3 = DFFE(_EQ004 $!clear, clk, VCC, VCC, VCC);
 _EQ004 = !clear & !load & result0 & result1 & result2 &
result3
 # !clear & !load & !result3 & _X001
 # !clear & !din3 & load;
 _X001 = EXP(result0 & result1 & result2);

2.4 A shift register

-- 4 bit shift register with load
library ieee;

©1995—99 Morris Chang

CS-471 51

use ieee.std_logic_1164.all;

entity shif_reg is
port(din : in std_logic_vector(3 downto 0);

 clock,load,left_right : in std_logic;
 dout : out std_logic_vector(3 downto 0)
);

end shif_reg;

architecture synth of shif_reg is
signal shift_tmp : std_logic_vector(3 downto 0);

begin
process (clock,load)
begin
 if load = ‘1’ then -- asynchronouns load

shift_tmp <= din;
elsif (clock’event and clock = ‘1’) then
 if (left_right = ‘0’) then -- right shift

shift_tmp <= ‘0’ & shift_tmp(3 downto 1);
 else

shift_tmp <= shift_tmp(2 downto 0) & ‘0’;
 end if;
end if;

end process;
dout <= shift_tmp;

end synth;

 • The operands for & (concatenation) operators can be either a 1-
dimensional array type or an element type. The result is always
an array type. For example,

‘1’ & ‘0’

 results in an array of characters “01”.

 if x_byte and y_byte are two 8-bit arrays of BITs,

0 0123

0123

shift_tmp

right shift

00123

0123

shift_tmp

left shift

©1995—99 Morris Chang

CS-471 52

 x_byte & y_byte

 forms a 16-bit array of BITs.

 Note: & operator is useful for merging buses and registers.

2.5 Building a Multiplier

 • The FSM for a shift-add multiplier with one-hot state encoding.

 — ASM chart

 — the VHDL code (filename: mult_fsm.vhd)

LIBRARY ieee;
USE ieee.std_logic_1164.all;

entity mult_fsm is

port (
 clock, reset: in bit;
 init_out, add_out, shift_out: out bit;
 done: inout bit;
 mpl : in std_logic_vector(3 downto 0);
 mplr_bit : out std_logic
);
end mult_fsm;

architecture statmach of mult_fsm is

init

add

count = n
FT

init_out

add_out

shift_out

shift

©1995—99 Morris Chang

CS-471 53

 constant n: integer :=4; -- for 4 bit mult_fsm
 type state_type is (init, add, shift);
-- one hot encoding is used through attribute enum_encoding
-- yes, I wasted one flip-flop

attribute enum_encoding : string;
attribute enum_encoding of state_type: type is

“100 010 001”;
 signal mstate : state_type; -- initial state is init
 signal mplr_tmp : std_logic_vector(3 downto 0);
begin
 process(clock,reset)
 variable count : integer range 0 to n;

-- infered registers
 begin
 if reset = ‘1’ then
 mstate <= init; -- asynchronous input
 mplr_tmp <= mpl;
 elsif clock = ‘1’ and clock’event then
 case mstate is
 when init =>

count := 0;
mplr_bit <= mplr_tmp(0);
mplr_tmp <= mplr_tmp(0)&mplr_tmp(n-1 downto 1);
mstate <= add;
done <= ‘0’;

 when add =>
 mstate <= shift;
 when shift =>

count := count +1;
 if (count = n) then

done <= ‘1’;
 --the done signal will be set in next cycle

 mstate <= init;
 else
 mstate <= add;
 mplr_bit <= mplr_tmp(0);

mplr_tmp <= mplr_tmp(0)&mplr_tmp(n-1 downto
1);
 end if;
 end case;
 end if;
 end process;

add_out <= ‘1’ when mstate = add else ‘0’;
init_out <= ‘1’ when mstate = init else ‘0’;
shift_out <= ‘1’ when ((mstate = shift)

and (done /= ‘1’)) else ‘0’;
end statmach;

3. Programmable Logic Device

3.1 Field Programmable Gate Array (FPGA)

 • Segment of the Xilinx chip architecture

 — Fixed arrays of logical function cells (a.k.a. CLB — Config-
urable Logic Blocks) are connectible by a system of pass
transistors driven by static RAM cells.

 — The RAM cells sprinkled through out the chip (define the
connectivity) and are linked into a long shift register.

 — The device down load the program from a serial PROM,
from a microprocessor, or from a parallel PROM. This re-
sults a fast reprogrammability but loses its program each
time it is powered down.

 • Xilinx supports three methods of interconnecting the CLBs and
IOBs

 — (1). Direct interconnect: Adjancent CLBs are wired together
in the horizontal or vertical direction. (This is the most effi-
cient interconnect) In the 3000 series — X output connect to

IOB

CLB

IOBIOB

IO
B

IO
B

IO
B

IO
B

IOB

CLBCLB

CLB

Wiring Channels

©1995—99 Morris Chang

CS-471 55

the east and west neighbors and Y output connect to the
north and south neighbors. Shift registers fit nicely in this in-
terconnect.

 — (2). General-purpose interconnect: This are used mainly for
longer distance connections or for signals with a moderate
fan-out.

 — (3). Long line interconnect: This are saved for time critical
signals (e.g. clock signal need be distributed to many CLBs)

 • 2000, 3000 and 4000 series.

 — 3020: 64 LOBs and 64 CLBs (8X8 matrix) has about 2000
equivalent gates.

 — 3090: 320 CLBs and 144 IOBs has about 9000 equivalent
gates.

 • The CLB in 3000 family.

DI
B
C
K
E

CLB0

X

Y

CE A

D R

DI
B
C
K
E

CLB1

X

Y

CE A

D R

DI
B
C
K
E

CLB2

X

Y

CE A

D R

DI
B
C
K
E

CLB3

X

Y

CE A

D R

Switching
Matrix

Global
Vertical
Long Lines

Long Line

General
Purpose Lines

Horizontal
Long Line

Direct
Connections

©1995—99 Morris Chang

CS-471 56

 — This version contains two flip flops and one combinational
function box

 — The flip flops are connected to the combinational function
box through multiplexers.

 • The contents of the combinational function box is a static CMOS
RAM.

 — The CMOS RAM cell (same as the RAM cells used for inter-
connections) is implemented with five transistors :

 — The function box RAM makes a truth table of any logic func-
tion of the input variables. The input variables are applied on
the address lines of the RAM, and the RAM data outputs
are the function outputs.

Combinatorial
Function
Generator

Qx

Qy

F

G

A
B
C
D
E

F
Din
G

F
Din
G

RD

CE

D Q

RD

CE

D Q

Clock

Clock
Enable

Data
In

Reset

X

Y

Read or
Write

Data

Q
Q

©1995—99 Morris Chang

CS-471 57

 — Exampls of RAM based truth table functions with three vari-
ables A, B, C as address

3.2 Complex Programmable Logic Device (CPLD)

 • Altera pioneered the developement of erasable programmable
logic devices (EPLDs) based on CMOS erasable ROM
technology. The EPLD can be erased by exposing it to ultraviolet
(UV) light. (The newer EPLD based on EEPROM (electrically
erasable PROM) technology can be erased by applying voltage to
it.)

 • Today, the term CPLD (Complex Programmable Logic Devices) is
more popular than the term EPLD.

 • The arhitecture of Altera’s MAX (Multiple Array Matrix) family
consists of Logic Array Blocks (LAB) and Programmable
Interconnect Array (PIA).

X = A*B*C Data X = (/A*B)+C Data

A B C X A B C X

0 0 0 0 0 0 0 0

0 0 1 0 0 0 1 1

0 1 0 0 0 1 0 1

0 1 1 0 0 1 1 1

1 0 0 0 1 0 0 0

1 0 1 0 1 0 1 1

1 1 0 0 1 1 0 0

1 1 1 1 1 1 1 1

©1995—99 Morris Chang

CS-471 58

 • LABs typically contain sixteen macrocells and thirty-two expander
gates (foldback NAND gates).

 — The macrocell contains a programmable AND array, a multi-
ple fan-in OR gate to compute the logic function with pro-
grammable output polarity (via the XOR gate), a tri-state
buffer driving an I/O pin, a programmable sequential logic
block, and a programmable feedback section.

LAB H

LAB G

LAB F

LAB E

P

I

A

LAB A

LAB B

LAB C

LAB D

inputsinput/clk
inputs

system
clock

©1995—99 Morris Chang

CS-471 59

 — The macrocell’s AND array is crossed with true and comple-
ment of the dedicated input and clock pin signals and the in-
ternal feedbacks from each of the component’s outputs.

 — Crosspoints are implemented by EPROM (or EEPROM)
connections that are initially connected. Unwanted connec-
tions are broken by “blowing” the appropriate PROM bits.

 • The MAX 7000 family —

 — Controllable output slew rate

 — More output enable control signals

AND
Array

Invert
Control

D Q

Clock
MUX

Output
MUX

F/B
MUX

PAD

Clock

clr

©1995—99 Morris Chang

CS-471 60

 • PLD device density and VLSI technology

3.3 Performance Comparison

 • Advantages of CPLDs over FPGAs

 • performance of PLD

 — low-density PLD (7032-44) with 5-ns logic delay (operating
freq. to 180 MHZ)

 — high-density PLD (7128-100) with 7.5-ns logic delay

 • The price of the high density PLDs is reduced about 40-percent
per year.

 • Price and performance

 — CPLD price is nearly two times FPGAs

 — CPLDs are more than twice as fast as FPGAs. The predict-
able interconnect delays and high fan-in logic arrays of
CPLDs consistently give faster and more uniform operating
speed than FPGAs.

Year 1995 1996 1997 1998

Technology 0.6 micron 0.35 micron 0.25 micron 0.22 micron

Gate count 25K 100K 250K 1 million

Transistor count 3.5 million 12 million 23 million 75 million

CPLD FPGA

Interconnect style continuous segmented

 Architecture & timing predictable Unpredictable

Software compile times short long

In-system performance Fast Moderate

Applications addressed Conbinatorial and
registered logic

Registered logic only

Forcasted growth rate*
(1996-2000) by dataquest

33% 26%

©1995—99 Morris Chang

CS-471 61

 — The integration of dedicated memory blocks into larger
CPLDs is increasing system performance by reducing the
number of interchip connections and delays.

 — CPLDs are used for high-speed communications equip-
ment; FPGAs are used in price sensitive consumer product
markets.

 • With ISP (in-System Programmable), the CPLD can be
reprogrammed while it’s still soldered onto the board.

 — By 2002, 80% of all CPLD produced will be ISP units. (“Per-
formance, price cuts, ISP heat up the CPLD market” by Dan
Tanner, Computer Design, p.p. 91-96 Dec. 1996)

 • Two distinct architectures of FPGA:

 — SRAM-based FPGA: Xilinx

 — Antifuse-based.FPGA: Actel, QuickLogic (faster, cheaper,
can be programmed only once)

 • Two distinct architectures of PLD from Altera

 — Product Term based: MAX 5000, MAX 6000 and MAX 9000.

 — Look-Up Table based: FLEX 8000 and FLEX 10K (FLEX:
Flexible Logic Element MatriX)

4. More about ASIC design

“Core-based methodology maturing in time for mainstream?” by
Barbara Tuck, Computer Design, March 1997, pp. 47- 52

Core-based: hard cores with fixed layouts ro soft cores that you
can modify. Soft cores are synthesizable technology-independent
cores. (LSI Logic, offers technology-dependent hard cores tuned to
their own processes. With fixed layout and timing and interfaces that
are well-defined and specified, hard cores will let you get to market
faster.)

Lucent offers both hard and soft cores. The project can start with
a soft core and as volumes increase, you can switch to a customized,
hand-packed hard core.

©1995—99 Morris Chang

CS-471 62

Not all vendors encourage user access to source code. Altera’s
IP solution has been to offer post-synthesis netlist that can be dropped
into customers’ designs. (source-code issue can be negotiated.

 • Tools you need to integrate your soft cores into your ASIC flow:

First level: synthesis scripts, documentation (e.g. 80 pages for
PCI core from Sand Microelectronics), RTL code, gate-level netlist and
functional test vectors. Second level are tools you need for cores that
interact with software. For example, for a USB core, you’ll need
software compliant to the USB spec for the application driver and the
microcontroller on the host side. At the third level, for the processor
core, you’ll need a software-development environment, perhaps with
board-level prototype for your design.

