
Preliminary Information

101 Innovation Drive
San Jose, CA 95134
(408) 544-7000
http://www.a ltera.com

Nios II Custom Instruction
User Guide

http://www.altera.com

Copyright © 2004 Altera Corporation. All rights reserved. Altera, The Programmable Solutions Company, the stylized Altera logo, specific device des-
ignations, and all other words and logos that are identified as trademarks and/or service marks are, unless noted otherwise, the trademarks and
service marks of Altera Corporation in the U.S. and other countries. All other product or service names are the property of their respective holders. Al-
tera products are protected under numerous U.S. and foreign patents and pending applications, maskwork rights, and copyrights. Altera warrants
performance of its semiconductor products to current specifications in accordance with Altera's standard warranty, but reserves the right to make
changes to any products and services at any time without notice. Altera assumes no responsibility or liability arising out of the ap-
plication or use of any information, product, or service described herein except as expressly agreed to in writing by Altera
Corporation. Altera customers are advised to obtain the latest version of device specifications before relying on any published in-
formation and before placing orders for products or services.

Printed on recycled paper

ii Altera Corporation
Preliminary

UG-N2CSTNST-1.2

Altera Corporation iii

Contents

About this User Guide ... v
How to Find Information ... v
How to Contact Altera .. 1–vi
Typographic Conventions ... 1–vii

Chapter 1. Nios II Custom Instruction Overview
Introduction .. 1–1
Custom Instruction Overview ... 1–2

Implementing Custom Instruction Hardware ... 1–3
Implementing Custom Instruction Software ... 1–4

Custom Instruction Architectural Types .. 1–4
Combinatorial Custom Instruction Architecture ... 1–5

Combinatorial Port Operation .. 1–5
Multi-Cycle Custom Instruction Architecture ... 1–6

Multi-Cycle Port Operation ... 1–8
Extended Custom Instruction Architecture ... 1–9

Extended Custom Instruction Port Operation ... 1–10
Internal Register File Custom Instruction Architecture ... 1–10

Internal Register File Custom Instruction Port Operation ... 1–12
External Interface Custom Instruction .. 1–12

Chapter 2. Software Interface
Introduction .. 2–1
Chapter Overview ... 2–1

Bit-Swap Custom Instruction — Example A .. 2–1
Bit-Swap Custom Instruction — Example B .. 2–1
Built in Functions & User-Defined Macros .. 2–2
Custom Instruction Assembly Software Interface ... 2–4

Chapter 3. Implementing a Nios II Processor Custom Instruction
Introduction .. 3–1
Hardware & Software Requirements ... 3–1
Tutorial Files ... 3–1
Design Example: Leading Zeros Detector .. 3–2
Running the Software Algorithm in Nios II IDE .. 3–2

Creating a New Nios II IDE Project ... 3–2
Building & Downloading the Software Application .. 3–4

Implementing Custom Instruction Hardware in SOPC Builder .. 3–6
Open The Custom Instruction Hardware Design ... 3–6
Add The Leading-Zeros Custom Instruction Logic .. 3–7

iv Altera Corporation

Contents

Generate the SOPC Builder System & Compile in Quartus II Software 3–10
Accessing the Custom Instruction from Software .. 3–11

Custom Instruction Templates 1
VHDL & Verilog HDL Templates .. A–1

VHDL Template .. A–1
Verilog HDL Template ... A–2

Custom Instruction Built-In Functions 1
Built-In Functions .. B–1

Built-In Functions Returning Void ... B–1
Built-in Functions Returning int ... B–1
Built-in Functions Returning float .. B–1
Built-in Functions Returning a Pointer .. B–2

Porting First- Generation Nios Custom Instructions to Nios II Systems 1
Hardware & Software Porting Considerations .. C–1

Hardware Porting Considerations .. C–1
Software Porting Considerations .. C–1

... C–1

Altera Corporation v
Preliminary

About this User Guide

This user guide provides comprehensive information about Altera®
Nios II custom instructions.

Table 1–1 shows the user guide revision history. December

How to Find
Information

! The Adobe Acrobat Find feature allows you to search the contents of
a PDF file. Click the binoculars toolbar icon to open the Find dialog
box

! Bookmarks serve as an additional table of contents
! Thumbnail icons, which provide miniature previews of each page,

provide a link to the pages
! Numerous links, shown in green text, allow you to jump to related

information

Table 1–1. Tutorial Revision History

Date Description

December 2004 Updates for the Nios II version 1.1 release.

September 2004 Updates for the Nios II version 1.01 release.

May 2004 First release of custom instruction user guide for the Nios II
processor.

vi Altera Corporation
Preliminary

How to Find Information Nios II Custom Instruction User Guide

How to Contact
Altera

For the most up-to-date information about Altera products, go to the
Altera world-wide web site at www.altera.com. For technical support on
this product, go to www.altera.com/mysupport. For additional
information about Altera products, consult the sources shown below.

Information Type USA & Canada All Other Locations

Technical support www.altera.com/mysupport/ altera.com/mysupport/

(800) 800-EPLD (3753)
(7:00 a.m. to 5:00 p.m. Pacific Time)

(408) 544-7000 (1)
(7:00 a.m. to 5:00 p.m. Pacific Time)

Product literature www.altera.com www.altera.com

Altera literature services lit_req@altera.com (1) lit_req@altera.com (1)

Non-technical customer
service

(800) 767-3753 (408) 544-7000
(7:30 a.m. to 5:30 p.m. Pacific Time)

FTP site ftp.altera.com ftp.altera.com

Note to table:
(1) You can also contact your local Altera sales office or sales representative.

http://www.altera.com/mysupport/
http://www.altera.com/mysupport/
http://www.altera.com
http://www.altera.com
mailto:lit_req@altera.com
mailto:lit_req@altera.com
ftp://ftp.altera.com
ftp://ftp.altera.com
http://www.altera.com
http://www.altera.com/mysupport

Altera Corporation vii
Preliminary

About this User Guide How to Find Information

Typographic
Conventions

This document uses the typographic conventions shown below.

Visual Cue Meaning

Bold Type with Initial
Capital Letters

Command names, dialog box titles, checkbox options, and dialog box options are
shown in bold, initial capital letters. Example: Save As dialog box.

bold type External timing parameters, directory names, project names, disk drive names,
filenames, filename extensions, and software utility names are shown in bold
type. Examples: fMAX, \qdesigns directory, d: drive, chiptrip.gdf file.

Italic Type with Initial Capital
Letters

Document titles are shown in italic type with initial capital letters. Example: AN 75:
High-Speed Board Design.

Italic type Internal timing parameters and variables are shown in italic type.
Examples: tPIA, n + 1.

Variable names are enclosed in angle brackets (< >) and shown in italic type.
Example: <file name>, <project name>.pof file.

Initial Capital Letters Keyboard keys and menu names are shown with initial capital letters. Examples:
Delete key, the Options menu.

“Subheading Title” References to sections within a document and titles of on-line help topics are
shown in quotation marks. Example: “Typographic Conventions.”

Courier type Signal and port names are shown in lowercase Courier type. Examples: data1,
tdi, input. Active-low signals are denoted by suffix n, e.g., resetn.

Anything that must be typed exactly as it appears is shown in Courier type. For
example: c:\qdesigns\tutorial\chiptrip.gdf. Also, sections of an
actual file, such as a Report File, references to parts of files (e.g., the AHDL
keyword SUBDESIGN), as well as logic function names (e.g., TRI) are shown in
Courier.

1., 2., 3., and
a., b., c., etc.

Numbered steps are used in a list of items when the sequence of the items is
important, such as the steps listed in a procedure.

! " • Bullets are used in a list of items when the sequence of the items is not important.

v The checkmark indicates a procedure that consists of one step only.

1 The hand points to information that requires special attention.

c
The caution indicates required information that needs special consideration and
understanding and should be read prior to starting or continuing with the
procedure or process.

w The warning indicates information that should be read prior to starting or
continuing the procedure or processes

r The angled arrow indicates you should press the Enter key.

f The feet direct you to more information on a particular topic.

viii Altera Corporation
Preliminary

How to Find Information Nios II Custom Instruction User Guide

Altera Corporation Core Version a.b.c variable 1–1
December 2004 Preliminary

1. Nios II Custom Instruction
Overview

Introduction With the Altera® Nios® II embedded processor, system designers can
accelerate time-critical software algorithms by adding custom
instructions to the Nios instruction set. With custom instructions, system
designers can reduce a complex sequence of standard instructions to a
single instruction implemented in hardware. System designers can use
this feature for a variety of applications, e.g., to optimize software inner
loops for digital signal processing (DSP), packet header processing, and
computation-intensive applications. The Nios II CPU configuration
wizard, which is accessed via the Quartus® II software’s SOPC Builder,
provides a graphical user interface (GUI) used to add up to 256 custom
instructions to the Nios II processor.

The custom instruction logic connects directly to the Nios II arithmetic
logic unit (ALU) as shown in Figure 1–1.

Figure 1–1. Custom Instruction Logic Connects to the Nios II ALU

Nios II Embedded Processor

+
-

&

<<
>>

Result

A
Nios II
ALU

B

Custom
Logic

1–2 Core Version a.b.c variable Altera Corporation
Nios II Custom Instruction User Guide December 2004

Custom Instruction Overview

This chapter:

! Describes the Nios II processor custom instruction feature
! Discusses the requirements for implementing a custom instruction in

hardware & software
! Defines custom instruction architectural types

For information regarding custom instructions software interface, refer to
Chapter 2, Software Interface. A tutorial with design files and step-by-
step instructions for implementing a custom instruction, is found in
Chapter 3, Implementing a Nios II Processor Custom Instruction.

Custom
Instruction
Overview

With Nios II processor custom instructions, system designers are able to
take full advantage of the flexibility of FPGAs to meet system
performance requirements. Custom instructions allow system designers
to add custom functionality to the Nios II processor ALU.

Nios II processor custom instructions are custom logic blocks adjacent to
the ALU in the CPU’s data path. This gives system designers the ability
to tailor the Nios II processor core to meet the needs of a particular
application. System designers have the ability to accelerate time critical
software algorithms by converting them to custom hardware logic blocks.
Because it is easy to alter the design of the FPGA-based Nios II processor,
custom instructions provide an easy way to experiment with
hardware/software trade-offs during an embedded system’s
implementation phase—rather than the specification phase.

Altera Corporation Core Version a.b.c variable 1–3
December 2004 Nios II Custom Instruction User Guide

Nios II Custom Instruction Overview

Implementing Custom Instruction Hardware

Figure 1–2 is a hardware block diagram of a Nios II processor custom
instruction.

Figure 1–2. Hardware Block Diagram of a Nios II Processor Custom Instruction

The basic operation of Nios II custom instruction logic is to receive input
on the dataa[31..0] and/or datab[31..0] and drive out the result
on its result[31..0] port. The designer generates the custom
instruction logic that produces the results.

The Nios II processor supports different architectural types of custom
instructions. Figure 1–2 lists the additional signals that accommodate
different architectural types. Only the ports used for the specific custom
instruction implementation are required.

Figure 1–2 also shows an optional interface to external logic. The interface
to external logic allows designers to include a custom interface to system
resources outside of the Nios II processor data path.

Combinatorial

Optional interface to external
memory, FIFO, or other logic

Multi-cycle

result

Extended

Internal
Register File

[31..0]

done

dataa[31..0]
datab[31..0]

clk
clk_en

reset
start

n[7..0]

a[4..0]
readra

b[4..0]
readrb

c[4..0]
writerc

Combinatorial

Custom
Logic

1–4 Core Version a.b.c variable Altera Corporation
Nios II Custom Instruction User Guide December 2004

Custom Instruction Architectural Types

Implementing Custom Instruction Software

The Nios II processor custom instruction software interface is simple and
abstracts the details of the custom instruction from the programmer. For
each custom instruction, the Nios II integrated development
environment (IDE) produces a macro that is defined in the system header
file. You can call the macro from C or C++ application code as a normal
function call and you do not need to program assembly to access custom
instructions. Custom instructions can also be accessed via the Nios II
processor assembly code.

f For more information, refer to Chapter 2, Software Interface.

Custom
Instruction
Architectural
Types

There are different custom instruction architectures available to suit the
application’s requirements. The architectures range from a simple, single-
cycle combinatorial architecture to an extended variable-length, multi-
cycle custom instruction architecture. The chosen architecture determines
what the hardware interface looks like.

Table 1–1 shows custom instruction architectural types, application, and
the associated hardware interface.

This section discusses the basic functionality and hardware interface of
each custom instruction architecture type listed in Table 1–1.

Table 1–1. Custom Instruction Architectural Types, Application & Hardware Interface

Architectural Type Application Hardware Interface

Combinatorial Single clock cycle custom logic
blocks

dataa[31..0], datab[31..0],
result[31..0]

Multi-cycle Multi clock cycle custom logic block
of fixed or variable durations

dataa[31..0], datab[31..0],
result[31..0], clk, clk_en,
start, reset, done

Extended Custom logic blocks that are
capable of performing multiple
operations

dataa[31..0], datab[31..0],
result[31..0], clk, clk_en,
start, reset, done, n[7..0]

Internal Register File Custom logic blocks that access
internal register file for input and/or
output

dataa[31..0], datab[31..0],
result[31..0], clk, clk_en,
start, reset, done, n[7..0],
a[4..0], readra, b[4..0], readrb,
c[4..0], writerc

External Interface Custom logic blocks that interface to
logic outside of the NIOS II
processor’s data path

Standard custom instruction signals, plus user-
defined interface to external logic.

Altera Corporation Core Version a.b.c variable 1–5
December 2004 Nios II Custom Instruction User Guide

Nios II Custom Instruction Overview

Combinatorial Custom Instruction Architecture

Combinatorial custom instruction architecture consists of a logic block
that is able to complete in a single clock cycle.

Figure 1–3 shows a block diagram of a combinatorial custom instruction
architecture.

Figure 1–3. Combinatorial Custom Instruction Architecture

The Figure 1–3 combinatorial custom instruction diagram uses
dataa[31..0] and datab[31..0] ports as inputs and drives the
results on the result[31..0] port. Because the logic is able to complete
in a single clock cycle, control signals are not needed.

Table 1–2 lists the combinatorial custom instruction signals.

The only required port for combinatorial custom instructions is the
result[31..0] port. The dataa[31..0] and datab[31..0]signals
are optional, and should only be included if the application requires input
operands. If only a single data port is needed, use dataa[31..0].

Combinatoria l Port Operation

This section describes the combinatorial custom instruction hardware
interface port operation. Figure 1–4 shows the combinatorial custom
instruction hardware interface timing diagram.

Table 1–2. Combinatorial Custom Instruction Signals

Signal Name Direction Required Purpose

dataa[31..0] Input No Input Operand to custom
instruction

datab[31..0] Input No Input Operand to custom
instruction

result[31..0] Output Yes Result from custom
instruction

dataa[31..0]

datab[31..0]
Combinatorial result[31..0]

1–6 Core Version a.b.c variable Altera Corporation
Nios II Custom Instruction User Guide December 2004

Custom Instruction Architectural Types

In Figure 1–4, the CPU presents the dataa[31..0] and datab[31..0]
ports on the rising edge of the CPU clock. The CPU reads the
result[31..0] port on the following rising edge of the CPU clock.

The Nios II processor issues combinatorial custom instructions
speculatively, and therefore combinatorial custom instructions cannot
have an external interface.

Combinatorial custom instructions can be further optimized by utilizing
the extended custom instructions architecture. Refer to “Extended
Custom Instruction Architecture” on page 1–9.

Figure 1–4. Combinatorial Custom Instruction Interface Timing Diagram

Multi-Cycle Custom Instruction Architecture

Multi-cycle, or sequential, custom instructions consists of a logic block
that requires two or more clocks to complete an operation. Multi-cycle
custom instruction can complete in either a fixed- or variable-number of
clock cycles. Additional control signals are required for multi-cycle
custom instructions. See Table 1–3.

Figure 1–5 shows the multi-cycle custom instruction block diagram.

Altera Corporation Core Version a.b.c variable 1–7
December 2004 Nios II Custom Instruction User Guide

Nios II Custom Instruction Overview

Figure 1–5. Multi-Cycle Custom Instruction Block Diagram

As stated previously, multi-cycle custom instructions can be either fixed
or variable length in duration:

! Fixed length: You specify the required number of clock cycles during
system generation

! Variable length: The start and done signals are used in a
handshaking scheme to determine when the custom instruction
execution is complete.

Table 1–3 lists multi-cycle custom instruction signals.

dataa[31..0]
datab[31..0]
clk
clk_en
reset
start

Optional Interface

done

result[31..0]

Table 1–3. Multi-Cycle Custom Instruction Signals

Signal Name Direction Required Application

clk Input Yes System clock

clk_en Input Yes Clock enable

reset Input Yes Synchronous reset

start Input No Signals custom instruction logic to start execution

done Output No Custom instruction logic signals the CPU that execution is
complete.

dataa[31..0] Input No Input operand to custom instruction

datab[31..0] Input No Input operand to custom instruction

result[31..0] Output No Result from custom instruction

1–8 Core Version a.b.c variable Altera Corporation
Nios II Custom Instruction User Guide December 2004

Custom Instruction Architectural Types

As indicated in Table 1–3, the clk, clk_en, and reset signals are
required for multi-cycle custom instructions. However, the start, done,
dataa[31..0], datab[31..0], and result[31..0] signals are
optional, and should only be used if required for the specific application.

Multi-Cycle Port Operation

The section provides operational details for the multi-cycle, custom
instruction hardware interface. Figure 1–6 shows the multi-cycle custom
instruction timing diagram.

! The CPU asserts the active high start port on the first clock cycle of
execution when the custom instruction issues through the ALU. At
this time, the dataa[31..0] and datab[31..0] signals have
valid values and remain valid throughout the duration of the custom
instruction execution.

! Fixed or variable length custom instruction port operation:
" Fixed length: The CPU asserts start, waits a specified number

of clock cycles, and then reads result[31..0]. For an n-cycle
operation, the custom logic block must present valid data on the
(n-1) rising edge after the start signal is asserted.

" Variable length: The CPU waits until the active high done signal
is asserted. The CPU reads the result[31..0] port on the
clock edge that done is asserted. The custom logic block should
present data on the result[31..0] port on the same clock
that the done signal is asserted.

! The Nios II system clock feeds the custom logic block’s clk signal,
and the Nios II master reset feeds the active high reset signal. The
reset signal is asserted only when the whole Nios II system is reset.

! The custom logic block should use the active high clk_en signal as
a conventional clock qualifier signal and should ignore all clock
rising edges while clk_en is deasserted.

! Any port in the custom logic block that is not recognized as a custom
instruction signal is considered to be an external interface signal.

! Multi-cycle custom instructions can be further optimized utilizing
the extended, internal register file, and external interface custom
instructions. Refer to “Extended Custom Instruction Architecture”
on page 1–9, “Internal Register File Custom Instruction
Architecture” on page 1–10, or “External Interface Custom
Instruction” on page 1–12.

Altera Corporation Core Version a.b.c variable 1–9
December 2004 Nios II Custom Instruction User Guide

Nios II Custom Instruction Overview

Figure 1–6. Multi-Cycle Custom Instruction Timing Diagram

Extended Custom Instruction Architecture

Extended custom instruction architecture allows for a single custom logic
block to output results for different operations. Extended custom
instructions make use of the N field to specify which logic operation is
performed by the custom logic. The 8-bit wide N field in the op-code
allows for 256 different operations for a single block of custom logic.

Figure 1–7 is a block diagram of an extended custom instruction with bit-
swap, byte-swap, and half-word-swap operations.

Figure 1–7. Extended Custom Instruction with Swap Operations

dataa[31..0]

0

1

2

n[7..0]

result[31..0]

bit-swap
operation

byte-swap
operation

half-word-swap
operation

1–10 Core Version a.b.c variable Altera Corporation
Nios II Custom Instruction User Guide December 2004

Custom Instruction Architectural Types

The Figure 1–7 swap operations are performed on data coming in via the
dataa[31..0] port. The n[7..0] port is used as a select signal on an
output multiplexer to select which operation is presented to the
result[31..0] port.

Extended custom instructions can be either combinatorial or multi-cycle
custom instructions. To implement an extended custom instruction,
simply add an n[7..0] port to the interface for your custom instruction
logic. The bit width of the n[7..0] port is a function of a number of
operations the extended custom instruction can perform.

Extended Custom Instruction Port Operation

The n[7..0]port behaves similarly to the dataa[31..0] port. The
CPU presents the n[7..0] port for execution on the rising edge of clock
when start is asserted, and the n[7..0] port remains stable
throughout the execution of the custom instruction. Each custom
instruction’s bit-width of the n[7..0] port is a function of the number of
unique operations the custom logic block is able to perform.

All other custom instruction port operations remain the same.

Internal Register File Custom Instruction Architecture

The Nios II processor allows custom instruction logic to access its own
internal register file for I/O, which provides you the flexibility to specify
if operands should be read from the Nios II processor’s register file or the
custom instructions internal register file. In addition, results from
operations can be written to the local register file rather than the Nios II
processor’s register file.

Internal registers accessing custom instructions use readra, readrb,
and writerc to determine if I/O should take place between the Nios II
register file or an internal register file. Additionally, signals a[4..0],
b[4..0], and c[4..0] specify which internal registers to read from
and/or write to. For example, if readra is deasserted (i.e., read from the
internal register), a[4..0] provides an index to the internal register file.

Figure 1–8 shows a simple, multiply-accumulate custom logic block.

Altera Corporation Core Version a.b.c variable 1–11
December 2004 Nios II Custom Instruction User Guide

Nios II Custom Instruction Overview

Figure 1–8. Multiply-Accumulate Custom Logic Block

When readrb is deasserted, the multiplication of dataa[31..0] and
datab[31..0] occurs, and the results are stored in the accumulate
register. Those results can be read back by the Nios II processor, or
alternatively that value in the accumulator can be read as input to the
multiplier by asserting readrb.

Table 1–4 lists the internal register file custom instructions signals. The
signals are optional and should only be used if required by the
application.

dataa[31..0]

datab[31..0]

readrb

result[31..0]Multiply Accumulate

Table 1–4. Internal Register File Custom Instruction Signals

Signal Name Direction Required Application

readra Input No If readra is high, dataa[31..0] and
datab[31..0] are supplied by the Nios II CPU. If
readra is low, custom instruction logic should read
the internal register file indexed by a[4..0].

readrb Input No If readrb is high, dataa[31..0] and
datab[31..0] are supplied by the Nios II CPU. If
readrb is low, custom instruction logic should read
the internal register file indexed by a[4..0].

writerc Input No Signal’s custom instructions to write result of
c[4..0] to custom instruction internal register file.

a[4..0] Input No Custom instruction internal register file index

b[4..0] Input No Custom instruction internal register file index

c[4..0] Input No Custom instruction internal register file index

1–12 Core Version a.b.c variable Altera Corporation
Nios II Custom Instruction User Guide December 2004

Custom Instruction Architectural Types

Internal Register File Custom Instruction Port Operation

The readra, readrb, writerc, and a[4..0], b[4..0], and c[4..0]
ports behave similarly to dataa[31..0]. When the start signal is
asserted, the CPU presents the readra, readrb, writerc, a[4..0],
b[4..0], and c[4..0]signals on the rising edge of the CPU clock. All
the ports remain stable throughout the execution of the custom
instructions.

To determine how to handle register file I/O, custom instruction logic
should read the active high readra, readrb, and writerc signals. The
a[4..0], b[4..0], and c[4..0] ports should be used as register file
indexes. When readra or readrb are not asserted, the custom
instruction logic should ignore the corresponding a[4..0]or
b[4..0]port. When writec is not asserted, the CPU ignores the value
driven on the result[31..0] port.

All other custom instructions port operations remain the same.

External Interface Custom Instruction

Figure 1–9 shows that the Nios II processor custom instructions allow
you to add an interface to communicate with logic outside of the
processor’s data path. At system generation, any signals that are not
recognized as custom instruction signals will propagate out to the top
level of the SOPC Builder module where external logic can access the
signals.

Figure 1–9. Custom Instructions Allow the Addition of an External Interface

dataa[31..0]
datab[31..0]
clk
clk_en
reset
start

Optional Interface

done

result[31..0]

Altera Corporation Core Version a.b.c variable 1–13
December 2004 Nios II Custom Instruction User Guide

Nios II Custom Instruction Overview

Figure 1–9 shows a multi-cycle custom instruction that has an external
memory interface. Because the custom instruction logic is able to access
memory external to the CPU, it extends the capabilities of the custom
instruction logic.

Custom instruction logic can perform various tasks, e.g., store
intermediate results, or read memory to control the custom instruction
operation. The optional external interface also provides a dedicated path
for data to flow into, or out of, the CPU. For example, custom instruction
logic can feed data directly from the CPU’s register file to an external
FIFO memory buffer, bypassing the processor’s data bus.

1–14 Core Version a.b.c variable Altera Corporation
Nios II Custom Instruction User Guide December 2004

Custom Instruction Architectural Types

Altera Corporation Core Version a.b.c variable 2–1
December 2004 Preliminary

 2. Software Interface

Introduction The Nios II processor custom instruction details are abstracted from the
application code. During the build process the Nios II integrated
development environment (IDE) automatically generates macros that
allow easy access from application code to custom instructions.

Chapter
Overview

This chapter provides custom instruction software interface details
including:

! Bit-swap custom instruction examples
! Built-in functions & user-defined macros
! Custom instruction assembly software interface

Bit-Swap Custom Instruction — Example A

Example A shows a portion of the system.h header file that defines the
macro for a bit-swap custom instruction. This bit-swap example uses one
32-bit input and performs only one function:

#define ALT_CI_BSWAP_N 0x00

#define ALT_CI_BSWAP(A) __builtin_custom_ini(ALT_CI_BSWAP_N,(A))

In bit-swap Example A, ALT_CI_BSWAP_N is defined to be 0x0, which
is the custom instruction’s op-code number. The ALT_CI_BSWAP(A)
macro is mapped to a gcc built-in macro that takes a single argument.

Bit-Swap Custom Instruction — Example B

The following bit-swap example illustrates a bit swap custom instruction
used in application code.

1. #include "system.h"
2.
3.
4. int main (void)
5. {
6. int a = 0x12345678;
7. int a_swap = 0;
8.
9. a_swap = ALT_CI_BSWAP(a);
10. return 0;
11.}

2–2 Core Version a.b.c variable Altera Corporation
Nios II Custom Instruction User Guide December 2004

Chapter Overview

In this example, the system.h file is included on line 1 to locate the custom
instruction macro definitions. Two integers are declared; one on line 6 and
one on line 7. Integer a is passed as input to the bit swap custom
instruction with the results loaded into a_swap on line 9.

The bit-swap Example B accommodates most applications using custom
instructions. The macros defined by the Nios II IDE only make use of c
integer types. Occasionally, applications need to make use of input types
other than integers, and therefore, need to pass expected return values
other than integers.

1 The Nios II processor custom instructions allow you to define
custom macros that allow for other 32-bit input types to
interface with custom instructions.

Built in Functions & User-Defined Macros
The Nios II processor uses gcc built-in functions to map to custom
instructions. Using built-in functions allows for types other than integers
to be used with custom instructions. There are 52 uniquely-defined, built-
in functions to accommodate the different combinations of the supported
types.

f Refer to Appendix B, Custom Instruction Built-In Functions for more
information on custom instruction’s built-in functions.

Built-in functions have the following format:

__builtin_custom_<return type>n<parameter types>

Table 2–1 shows 32-bit input types supported by custom instructions as
parameters and return types, as well as the abbreviations used in the
built-in function definition.

Table 2–1. 32-Bit Input Types Support by Custom Instructions

Input Type Built-In Function Abbreviation

int i

float f

void * p

Altera Corporation Core Version a.b.c variable 2–3
December 2004 Nios II Custom Instruction User Guide

Software Interface

Example C shows the prototype definition for two built-in functions.

Example C:

void __builtin_custom_nf (int n, float dataa);
float __builtin_custom_fnp(int n, void *dataa);

In Example C, the _builtin_custom_nf function takes an int and a
float as inputs, and does not return a value. Whereas, the
_builtin_custom_fnp function takes an integer and a pointer as an
input, and returns a float.

To support non-integer input types, you should define macros that map
to the specific built-in function required for the application.

f Refer to Appendix B, Custom Instruction Built-In Functions for a list of
built-in functions.

Example D shows user-defined custom instruction macros used in an
application.

Example D:

1. /* define void udef_macro1(float data); */
2. #define UDEF_MACRO1_N 0x00
3. #define UDEF_MACRO1(A) __builtin_custom_nf(UDEF_MACRO1_N,
(A));
4. /* define float udef_macro2(void *data); */
5. #define UDEF_MACRO2_N 0x01
6. #define UDEF_MACRO2(B) __builtin_custom_fnp(UDEF_MACRO2_N,
(B));
7.
8. int main (void)
9. {
10. float a = 1.789;
11. float b = 0.0;
12. float *pt_a = &a;
13.
14. UDEF_MACRO1(a);
15. b = UDEF_MACRO2((void *)pt_a);
16. return 0;
17. }

On lines 2 through 6, the user-defined macros are declared and mapped
to the appropriate built-in functions. The macro UDEF_MACRO1 takes a
float as an input parameter and does not return anything. The macro
UDEF_MACRO2 takes a pointer as an input parameter and returns a float.
Lines 14 and 15 show the use of the two user-defined macros.

2–4 Core Version a.b.c variable Altera Corporation
Nios II Custom Instruction User Guide December 2004

Chapter Overview

Custom Instruction Assembly Software Interface
The Nios II processor custom instructions are also accessible in assembly
code. This section describes the assembly interface.

Custom instructions are R-type instructions with a 6-bit op-code, three
5-bit register index fields, and an 11-bit op-code-extension field. The 11-
bit op-code extension field is broken into an 8-bit N field for the extended
custom instruction and 3 bits for the readra, readrb and writerc bits.

Figure 2–1 is a diagram of the op-code for custom instructions, excerpted
from the “Instruction Set Reference” chapter in the Nios II Processor
Reference Handbook.

Figure 2–1. Op-Code for Custom Instructions Diagram

The assembler syntax for the custom instruction is:

custom N, xC, xA, xB

Where N is the custom instruction op-code number, xC is the destination
register for the result[31..0] port, xA is operand1, and xB is
operand2. To access the Nios II CPU’s register file, replace x with r. To
access a custom register file, replace x with c.

The following shows the syntax for two examples of custom instruction
assembler calls:

Example 1: custom 0, r6, r7, r8

Example 2: custom 3, c1, r2, c4

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
NCBA uP OPCode = Custom

writerc
readrb
readra

A = Register index of operand A
B = Register index of operand B
C = Register index of operand C
N = 8-bit number that selects instruction
readra = 1 if instruction uses rA, 0 otherwise
readrb = 1 if instruction uses rB, 0 otherwise
writerc = 1 if instruction provides result for rC, 0 otherwise

Instruction Fields:

Altera Corporation Core Version a.b.c variable 2–5
December 2004 Nios II Custom Instruction User Guide

Software Interface

Example 1 executes a custom instruction with an op-code number of 0.
The contents of the Nios II processor register r7 and r8 are used as input
with the results stored in the Nios II processor register r6.

Example 2 executes a custom instruction with an op-code number of 3.
The contents of the Nios II processor register r2 and custom register c4
are used as inputs. The results are stored in the custom register c1.

2–6 Core Version a.b.c variable Altera Corporation
Nios II Custom Instruction User Guide December 2004

Chapter Overview

Altera Corporation Core Version a.b.c variable 3–1
December 2004 Preliminary

3. Implementing a Nios II
Processor Custom

Instruction

Introduction This chapter walks you through the process of implementing a Nios® II
processor custom instruction, and illustrates the enormous time-savings
that are possible with Nios II custom instructions.

Hardware &
Software
Requirements

The instructions in this chapter require the following hardware and
software:

! Quartus® II software version 4.1, SP1 or later
! Nios II development kit
! Nios development board, Stratix® II, Stratix, Stratix Professional, or

Cyclone™ Edition

Tutorial Files The tutorial design files are installed with the Nios II development kit.
The hardware design files are stored in the tutorials directory: <Nios II kit
path>\tutorials\Nios2_Custom_Instruction\<board version>\

Each development board has its own tutorial design file directory (see
Table 3–1). The Quartus II project files are contained in the
quartus_project directory and the hardware for the custom instruction is
contained in the rtl directory.

This tutorial uses the Nios II integrated development environment (IDE)
software template design files located in the following directory:

<Nios II kit path>\examples\software\ci_tutorial

1 The software files in this directory are copied to your working
project directory in the Nios II IDE, so there is no need to move
the files.

Table 3–1. Design File Directories

Nios Development Board Tutorial Directory

Stratix II Edition niosII_stratixII_2s60_es

Stratix Edition niosII_stratix_1s10 & niosII_stratix_1s10_es

Stratix Professional Edition niosII_stratix_1s40

Cyclone Edition niosII_cyclone_1c20

3–2 Core Version a.b.c variable Altera Corporation
Nios II Custom Instruction User Guide December 2004

Design Example: Leading Zeros Detector

Design Example:
Leading Zeros
Detector

The leading-zeros-detector design is a simple application that is relevant
to floating-point math algorithms. The number of leading zeros found in
floating point operands is used during the normalization process before
the floating point operation takes place.

This design example counts the number of leading zeros of an array of
numbers. Without Nios II custom instructions, the software algorithm
loops until it finds the first 1, which takes several iterations and multiple
CPU clocks cycles. However with Nios II custom instructions, the same
algorithm can complete in a single clock cycle using priority encoder
custom logic block.

Running the
Software
Algorithm in
Nios II IDE

The following guides you through the steps required to run the leading-
zeros-detector-software algorithm, while providing an opportunity to see
the design’s functionality and software algorithm’s performance.

This section includes:

! Creating a new Nios II IDE project
! Building and downloading the software application

Creating a New Nios II IDE Project

In this section you will create a new Nios II IDE project using a software
template. The example’s design files are pre-installed with the Nios II
development kit. To create a new Nios II IDE project, perform the
following steps:

1. Choose Programs >Altera > Nios II Development Kit <version
number>Nios II IDE (Windows Start menu).

2. Choose New > C/C++ Application… (File menu). The first page of
the New Project wizard appears. See Figure 3–1 on page 3–3.

3. From Select Project Template, select Custom Instruction Tutorial.

4. Leave the default selection for the project’s name and ensure that
Use Default Location is checked.

Altera Corporation Core Version a.b.c variable 3–3
December 2004 Nios II Custom Instruction User Guide

Implementing a Nios II Processor Custom Instruction

Figure 3–1. New Project Window

5. Click Browse in Select Target Hardware. The Select Target
Hardware dialog box appears.

6. Browse to the custom instruction tutorial hardware design for the
Nios development board that you are targeting.

7. Choose the system.ptf SOPC Builder system file.

8. Click Open to return to the New Project wizard. The SOPC Builder
System field from the Select Target Hardware window is now
specified with the custom instruction project SOPC Builder system.
(See Figure 3–1.) In addition, the CPU field now contains the name
of the CPU in the system.

9. Click Finish.

3–4 Core Version a.b.c variable Altera Corporation
Nios II Custom Instruction User Guide December 2004

Running the Software Algorithm in Nios II IDE

At this point, the new Nios II project file creation is complete. Figure 3–2
shows that upon successful project creation, the C/C++ Projects window
contains the following:

! Application project: ci_tutorial_0
! HAL software library for the custom instruction hardware:

ci_tutorial_0_syslib
! Nios II device drivers

Figure 3–2. C/C++ Projects Window

1 For more information on the HAL software library, refer to the
Nios II Software Developer’s Handbook.

Building & Downloading the Software Application

This section provides the steps to download the leading-zeros software
application to the Nios development board.

Before the application is executed, you should examine the
leading_zeros_ci.c file:

! The contents of main should include three sets of test data, i.e., best
case, worse case, and random data sets that have the leading zeros
counted and placed into another array.

! There are conditional compile statements based on the existence of
the ALT_CI_LEADING_ZERO_DETECTOR symbol. This is the name
of the macro that is defined when the leading-zeros custom
instruction is added to the system later in the tutorial.

1. Choose Run As >Nios II Hardware (Run menu). The build process
begins.

Depending on the current hardware image on the Nios development
board, Nios II IDE might recognize that the current hardware image
is not the image required for the tutorial design. If this occurs, the
Nios II IDE displays an error message and launches the Quartus II
Programmer (see Figure 3–3). If the Quartus II Programmer does not
launch, skip to Step 8.

Altera Corporation Core Version a.b.c variable 3–5
December 2004 Nios II Custom Instruction User Guide

Implementing a Nios II Processor Custom Instruction

Figure 3–3. Quartus II Programmer Window

When the Nios II IDE detects that the SOPC Builder system for the
current project differs from the SOPC Builder system on the board, you
must download an appropriate configuration file for the FPGA.

To download a new FPGA configuration file—SRAM object file (.sof)—to
the Nios development board, perform the following steps:

2. Choose Open (File menu). A Windows Explorer dialog box appears.

3. Select custom_instruction.sof. See Figure 3–3.

4. Click Open to add the custom_instruction.sof programming file to
the Quartus II Programmer file list and return to the Quartus II
Programmer.

5. From the file list, turn on Program/Configure for the
custom_instruction.sof programming file. See Figure 3–3.

6. Choose Start (Processing menu) to download the programming file.

3–6 Core Version a.b.c variable Altera Corporation
Nios II Custom Instruction User Guide December 2004

Implementing Custom Instruction Hardware in SOPC Builder

Your Altera programming hardware must first be configured
correctly before you can click the Start button. If necessary, click
Hardware Setup... to configure your programming hardware.

7. Exit the Quartus II Programmer and return to the Nios II IDE.

8. In the Nios II IDE, choose Run As > Nios II Hardware (Run menu).
This will start the build process and download the software image
to the development board.

After the image is downloaded, the terminal will display the results of
running 500 samples through the leading zeros detector in software. The
worse case number is if all the samples are a value of 0x1. The best-case
numbers are for the case of 0x80000000. The random case is random
samples. The following is an example of the three sets of test data:

Now measuring the time to find leading zeros for 500 samples
**
Worst Case
[Software] Number of clocks 138410
The number mills-seconds: 2.7681999207

Random Case
[Software] Number of clocks 21926
The number mills-seconds: 0.4385199845

Best Case
[Software] Number of clocks 12434
The number mills-seconds: 0.2486800104
**
Program Complete.

Implementing
Custom
Instruction
Hardware in
SOPC Builder

This section walks you through the process of implementing Nios II
custom instructions in hardware, and also provides custom instruction
tool-flow explanations.

To implement the Nios II custom instruction for the leading-zeros design,
you must:

1. Open the custom instruction tutorial hardware design.

2. Add the leading-zeros custom instruction logic to the Nios II CPU.

3. Generate the SOPC Builder system and compile the design in
Quartus II.

Altera Corporation Core Version a.b.c variable 3–7
December 2004 Nios II Custom Instruction User Guide

Implementing a Nios II Processor Custom Instruction

Open The Custom Instruction Hardware Design

1. Choose Programs > Altera > Quartus II <version> (Windows Start
menu).

2. Choose Open Project... (File menu).

3. Browse to the quartus_project directory for your board.

4. Choose the custom_instruction.qpf and click Open.

5. Choose SOPC Builder…(Tools menu) to start SOPC Builder.

Add The Leading-Zeros Custom Instruction Logic

This section walks you through the process of adding a custom
instruction to an SOPC Builder system, and also provides custom
instruction tool-flow explanations.

1. Select cpu_0 in the Altera SOPC Builder System Contents page.
See Figure 3–4.

Figure 3–4. SOPC Builder System Contents Page

2. Choose Edit… (Module menu). The Nios II Processor Configuration
wizard appears.

3. Click on the Custom Instructions tab.

3–8 Core Version a.b.c variable Altera Corporation
Nios II Custom Instruction User Guide December 2004

Implementing Custom Instruction Hardware in SOPC Builder

4. Click Import… The Interface to User Logic wizard appears. See
Figure 3–5.

Figure 3–5. Interface to User Logic Wizard

The Interface to User Logic wizard is used to import Nios II custom
instruction logic. To import custom instruction logic into the system, you
must:

! Add HDL source files to the list.
! Specify the top level module.
! Read in the port list.

Nios II custom instructions require specific port names (see “Custom
Instruction Architectural Types” on page 1–4 of Chapter 1”). Any port
name not matching the expected port names will be listed as a type
export, i.e., export is a type assigned to a signal that is not an expected
custom instruction name. Exported signal types are considered to be a
part of the custom instruction’s external interface.

In addition to specifying custom instruction port information, you have
the option of specifying whether or not the custom instruction will be
simulated with the system or if it will be black boxed. Also custom
instructions can be published for later re-use in different projects.

Altera Corporation Core Version a.b.c variable 3–9
December 2004 Nios II Custom Instruction User Guide

Implementing a Nios II Processor Custom Instruction

f For more information, refer to AN 333: Developing Peripherals for SOPC
Builder.

5. Click Add. A Windows Explorer dialog box appears. Browse up one
directory and descend into the ../rtl directory.

6. Choose the leading_zero_detector.v file in the ../rtl directory

7. Click Open to select the leading_zero_detector.v file and return
back to the Interface to User Logic wizard.

8. Click the Read port-list from files button. This will read the port
information from the HDL files. The Figure 3–5 example uses
dataa[31..0] and result[31..0] ports.

9. Click Add to System to complete the custom instruction importing
process. The Nios II Processor Configuration wizard appears.

Figure 3–6 shows that once the custom instruction is imported, the top
level module name is listed in the Name field.

Figure 3–6. Altera Nios II -cpu_0

1 For this tutorial to work correctly, the custom instruction’s top
level module name must be leading_zero_detector.

3–10 Core Version a.b.c variable Altera Corporation
Nios II Custom Instruction User Guide December 2004

Implementing Custom Instruction Hardware in SOPC Builder

The Clock Cycles field shows that the instruction is a combinatorial logic
custom instruction. If the tutorial custom instruction was a fixed length,
multi-cycle custom instruction instead, you can edit this field to specify
the number of clocks. In the case of a variable length multi-cycle custom
instruction, the Clock Cycles field displays Variable.

The N port field displays a "-," indicating that the leading_zero_ detector
design is not an extended custom instruction. In the case of an extended
custom instruction, this field shows the width of the N port. The op-code
extension displays 00000000 0, that indicates the encoding of the N
field in the instruction word.

10. Click Finish to add the leading zeros detector custom instruction to
the system and return to the SOPC Builder window.

Generate the SOPC Builder System & Compile in Quartus II
Software

Now that the custom instruction logic has been added to the system, you
are now ready for system generation and Quartus II compilation. During
system generation, SOPC Builder will wire the custom logic to the Nios II
CPU.

1. Click Generate in the SOPC Builder.

2. Click Exit when SOPC Builder system generation is complete.

3. Return to the Quartus II window.

4. Choose Start Compilation (Processing menu) to begin compilation.

Altera Corporation Core Version a.b.c variable 3–11
December 2004 Nios II Custom Instruction User Guide

Implementing a Nios II Processor Custom Instruction

Accessing the
Custom
Instruction from
Software

Now that you have added the custom logic block to hardware, you are
ready to access it from software. Because there is a change to the SOPC
Builder system contents, the Nios II IDE project needs to be rebuilt to
accommodate the changes. One important change will be that the
system.h header file will be updated with the macros for the custom
instruction.

Return to the Nios II IDE “Building & Downloading the Software
Application ” on page 3–4 and repeat steps 1 through 8. Once you are
done, you will see the difference the custom instructions make in
performance. Refer to the following console output:

Now measuring the time to find leading zeros for 500 samples
**
Worst Case
[Software] Number of clocks 139632
The number mills-seconds: 2.7926399708
[Hardware] Number of clocks 8443
The number mills-seconds: 0.1688600034

Random Case
[Software] Number of clocks 22419
The number mills-seconds: 0.4483799934
[Hardware] Number of clocks 8056
The number mills-seconds: 0.1611199975

Best Case
[Software] Number of clocks 12402
The number mills-seconds: 0.2480400205
[Hardware] Number of clocks 8032
The number mills-seconds: 0.1606400013
**

3–12 Core Version a.b.c variable Altera Corporation
Nios II Custom Instruction User Guide December 2004

Accessing the Custom Instruction from Software

Altera Corporation A–1
December 2004 Preliminary

Appendix A. Custom
Instruction Templates

VHDL & Verilog
HDL Templates

This section provides VHDL and Verilog HDL custom instruction
templates that you can reference when writing custom instructions in
VHDL and Verilog HDL. You can download the template files from the
Altera® world-wide website at www.altera.com/nios.

VHDL Template

Sample VHDL template file:

LIBRARY __library_name;
USE __library_name.__package_name.ALL;

ENTITY __entity_name IS
 PORT(

signal clk : IN STD_LOGIC; -- CPU's master-input clk <required for multi-cycle>
signal reset : IN STD_LOGIC; -- CPU's master asynchronous reset <required for multi-cycle>
signal clk_en: IN STD_LOGIC; -- Clock-qualifier <required for multi-cycle>
signal start: IN STD_LOGIC; -- True when this instr. issues <required for multi-cycle>
signal done: OUT STD_LOGIC; -- True when instr. completes <required for variable muli-cycle>
signal dataa: IN STD_LOGIC_VECTOR (31 DOWNTO 0); -- operand A <always required>
signal datab: IN STD_LOGIC_VECTOR (31 DOWNTO 0); -- operand B <optional>
signal n: IN STD_LOGIC_VECTOR (7 DOWNTO 0); -- N-field selector <required for extended>
signal a: IN STD_LOGIC_VECTOR (4 DOWNTO 0); -- operand A selector <used for Internal register

file access>
signal b: IN STD_LOGIC_VECTOR (4 DOWNTO 0); -- operand B selector <used for Internal register

file access>
signal c: IN STD_LOGIC; -- result destination selector <used for Internal register file

access>
signal readra: IN STD_LOGIC; -- register file index <used for Internal register file access>
signal readrb: IN STD_LOGIC; -- register file index <used for Internal register file access>
signal writerc: IN STD_LOGIC; -- register file index <used for Internal register file access>
signal result : OUT STD_LOGIC_VECTOR (31 DOWNTO 0) -- result <always required>

);
END __entity_name;

ARCHITECTURE a OF __entity_name IS
 signal clk: IN STD_LOGIC;
 signal reset : IN STD_LOGIC;
 signal clk_en: IN STD_LOGIC;
 signal start: IN STD_LOGIC;
 signal readra: IN STD_LOGIC;
 signal readrb: IN STD_LOGIC;
 signal writerc: IN STD_LOGIC;
 signal n: IN STD_LOGIC_VECTOR (7 DOWNTO 0);
 signal a: IN STD_LOGIC_VECTOR (4 DOWNTO 0);
 signal b: IN STD_LOGIC_VECTOR (4 DOWNTO 0);
 signal c: IN STD_LOGIC_VECTOR (4 DOWNTO 0);
 signal dataa: IN STD_LOGIC_VECTOR (31 DOWNTO 0);
 signal datab: IN STD_LOGIC_VECTOR (31 DOWNTO 0);

 signal result : OUT STD_LOGIC_VECTOR (31 DOWNTO 0);
 signal done: OUT STD_LOGIC;
BEGIN

A–2 Altera Corporation
Nios II Custom Instruction User Guide December 2004

-- Process Statement
-- Concurrent Procedure Call
-- Concurrent Signal Assignment
-- Conditional Signal Assignment
-- Selected Signal Assignment
-- Component Instantiation Statement
-- Generate Statement

END a;

Verilog HDL Template

Sample Verilog HDL template file:

//Verilog Custom Instruction Template

module __module_name(
clk, // CPU's master-input clk <required for multi-cycle>
reset, // CPU's master asynchronous reset <required for multi-cycle>
clk_en, // Clock-qualifier <required for multi-cycle>
start, // True when this instr. issues <required for multi-cycle>
done, // True when instr. completes <required for variable muli-cycle>
dataa, // operand A <always required>
datab, // operand B <optional>
n, // N-field selector <required for extended>
a, // operand A selector <used for Internal register file access>
b, // operand b selector <used for Internal register file access>
c, // result destination selector <used for Internal register file access>
readra, // register file index <used for Internal register file access>
readrb, // register file index <used for Internal register file access>
writerc,// register file index <used for Internal register file access>
result // result <always required>

);

input clk;
input reset;

input clk_en;
input start;
input readra;
input readrb;
input writerc;
input [7:0] n;
input [4:0] a;
input [4:0] b;
input [4:0] c;

input [31:0]dataa;
input [31:0]datab;

output[31:0]result;
output done;

// Port Declaration

// Wire Declaration

// Integer Declaration

// Concurrent Assignment

// Always Construct

endmodule

Altera Corporation MegaCore Version a.b.c variable B–1
December 2004 Preliminary

Appendix B. Custom
Instruction Built-In Functions

Built-In
Functions

This section lists the following custom instruction built-in functions:

! Returning void
! Returning int
! Returning float
! Returning a pointer

Built-In Functions Returning Void
void __builtin_custom_n(int n);
void __builtin_custom_ni(int n, intdataa);
void __builtin_custom_nf(int n, floatdataa);
void __builtin_custom_np(int n, void *dataa);
void __builtin_custom_nii(int n, intdataa, intdatab);
void __builtin_custom_nif(int n, intdataa, floatdatab);
void __builtin_custom_nip(int n, intdataa, void *datab);
void __builtin_custom_nfi(int n, floatdataa, intdatab);
void __builtin_custom_nff(int n, floatdataa, floatdatab);
void __builtin_custom_nfp(int n, floatdataa, void *datab);
void __builtin_custom_npi(int n, void *dataa, intdatab);
void __builtin_custom_npf(int n, void *dataa, floatdatab);
void __builtin_custom_npp(int n, void *dataa, void *datab);

Built-in Functions Returning int
int __builtin_custom_in(int n);
int __builtin_custom_ini(int n, intdataa);
int __builtin_custom_inf(int n, floatdataa);
int __builtin_custom_inp(int n, void *dataa);
int __builtin_custom_inii(int n, intdataa, intdatab);
int __builtin_custom_inif(int n, intdataa, floatdatab);
int __builtin_custom_inip(int n, intdataa, void *datab);
int __builtin_custom_infi(int n, floatdataa, intdatab);
int __builtin_custom_inff(int n, floatdataa, floatdatab);
int __builtin_custom_infp(int n, floatdataa, void *datab);
int __builtin_custom_inpi(int n, void *dataa, intdatab);
int __builtin_custom_inpf(int n, void *dataa, floatdatab);
int __builtin_custom_inpp(int n, void *dataa, void *datab);

Built-in Functions Returning float
float __builtin_custom_fn(int n);
float __builtin_custom_fni(int n, intdataa);
float __builtin_custom_fnf(int n, floatdataa);
float __builtin_custom_fnp(int n, void *dataa);
float __builtin_custom_fnii(int n, intdataa, intdatab);

B–2 MegaCore Version a.b.c variable Altera Corporation
Nios II Custom Instruction User Guide December 2004

Built-In Functions

float __builtin_custom_fnif(int n, intdataa, floatdatab);
float __builtin_custom_fnip(int n, intdataa, void *datab);
float __builtin_custom_fnfi(int n, floatdataa, intdatab);
float __builtin_custom_fnff(int n, floatdataa, floatdatab);
float __builtin_custom_fnfp(int n, floatdataa, void *datab);
float __builtin_custom_fnpi(int n, void *dataa, intdatab);
float __builtin_custom_fnpf(int n, void *dataa, floatdatab);
float __builtin_custom_fnpp(int n, void *dataa, void *datab);

Built-in Functions Returning a Pointer
void * __builtin_custom_pn(int n);
void * __builtin_custom_pni(int n, intdataa);
void * __builtin_custom_pnf(int n, floatdataa);
void * __builtin_custom_pnp(int n, void *dataa);
void * __builtin_custom_pnii(int n, intdataa, intdatab);
void * __builtin_custom_pnif(int n, intdataa, floatdatab);
void * __builtin_custom_pnip(int n, intdataa, void *datab);
void * __builtin_custom_pnfi(int n, floatdataa, intdatab);
void * __builtin_custom_pnff(int n, floatdataa, floatdatab);
void * __builtin_custom_pnfp(int n, floatdataa, void *datab);
void * __builtin_custom_pnpi(int n, void *dataa, intdatab);
void * __builtin_custom_pnpf(int n, void *dataa, floatdatab);
void * __builtin_custom_pnpp(int n, void *dataa, void *datab);

Altera Corporation MegaCore Version a.b.c variable C–1
December 2004 Preliminary

Appendix C. Porting First-
Generation Nios Custom

Instructions to Nios II Systems

Hardware &
Software Porting
Considerations

Most first-generation Nios custom instructions will port over to a Nios II
system with minimal changes. This section clarifies hardware and
software considerations when porting first-generation Nios custom
instructions to your Nios II system.

Hardware Porting Considerations

Both combinatorial and multi-cycle first-generation Nios custom
instructions will work with a Nios II system without any changes.
However, because parameterized first-generation Nios custom
instructions allow a prefix to be passed to the custom instruction logic
block, parameterized first-generation Nios custom instructions require a
design change.

There is no strict definition for the use of prefixes in first-generation Nios
systems, but in most cases the prefix controls the operation performed by
the custom instruction. However in a Nios II system, the prefix option is
supported directly by extended custom instructions. Therefore, any
parameterized first-generation Nios custom instruction that uses a prefix
to control the operation executed by the custom instruction should be
ported to a Nios II extended custom instruction. Refer to “Extended
Custom Instruction Architecture” on page 1–9.

Any other use of the prefix may be accomplished with one of the Nios II
custom instruction architecture types. Refer to “Custom Instruction
Architectural Types” on page 1–4.

Software Porting Considerations

All first-generation Nios custom instructions will require a small change
to application software. Assuming no hardware changes (i.e., not a
parameterized first-generation custom instruction), software porting
should be nothing more than a search and replace operation. The first-
generation Nios and Nios II system macro definition nomenclature is
different; therefore first-generation Nios macro calls should be replaced
by the Nios II macros. In the case of parameterized first-generation
custom instructions, additional changes will be required depending on
the implementation. Refer to Chapter 2, Software Interface.

C–2 MegaCore Version a.b.c variable Altera Corporation
Nios II Custom Instruction User Guide December 2004

Hardware & Software Porting Considerations

