
Altera Corporation 8–1
March 2007

8. MicroC/OS-II Real-Time
Operating System

Introduction This chapter describes the MicroC/OS-II real-time kernel for the Nios® II
processor.

Overview MicroC/OS-II is a popular real-time kernel produced by Micrium Inc.,
and is documented in the book MicroC/OS-II - The Real Time Kernel by Jean
J. Labrosse (CMP Books). The book describes MicroC/OS-II as a portable,
ROMable, scalable, preemptive, real-time, multitasking kernel.
MicroC/OS-II has been used in hundreds of commercial applications
since its release in 1992, and has been ported to over 40 different processor
architectures in addition to the Nios II processor. MicroC/OS-II provides
the following services:

! Tasks (threads)
! Event flags
! Message passing
! Memory management
! Semaphores
! Time management

The MicroC/OS-II kernel operates on top of the hardware abstraction
layer (HAL) system library for the Nios II processor. Because of the HAL,
programs based on MicroC/OS-II are more portable to other Nios II
hardware systems, and are resistant to changes in the underlying
hardware. Furthermore, MicroC/OS-II programs have access to all HAL
services, and can call the familiar HAL advanced programming interface
(API) functions.

Further Information
This chapter discusses the details of how to use MicroC/OS-II for the
Nios II processor only. For complete reference of MicroC/OS-II features
and usage, refer to MicroC/OS-II - The Real-Time Kernel. Further
information is also available on the Micrium website,
www.micrium.com.

NII52008-7.0.0

8–2 Altera Corporation
Nios II Software Developer’s Handbook March 2007

Other RTOS Providers

Licensing
Altera distributes MicroC/OS-II in the Nios II Embedded Design Suite
(EDS) for evaluation purposes only. If you plan to use MicroC/OS-II in a
commercial product, you must contact Micrium to obtain a license at
Licensing@Micrium.com or http://www.micrium.com

1 Micrium offers free licensing for universities and students.
Contact Micrium for details.

Other RTOS
Providers

Altera distributes MicroC/OS-II to provide you with immediate access to
an easy-to-use real-time operating system (RTOS). In addition to
MicroC/OS-II, many other RTOSs are available from third-party vendors.

f For a complete list of RTOSs that support the Nios II processor, visit the
Nios II homepage at www.altera.com/nios2.

The Altera Port
of MicroC/OS-II

Altera ported MicroC/OS-II to the Nios II processor. Altera distributes
MicroC/OS-II in the Nios II EDS, and supports the Nios II port of the
MicroC/OS-II kernel. Ready-made, working examples of MicroC/OS-II
programs are installed with the Nios II EDS. In fact, Nios development
boards are pre-programmed with a web server reference design based on
MicroC/OS-II and the Lightweight IP TCP/IP stack.

The Altera® port of MicroC/OS-II is designed to be easy-to-use from
within the Nios II IDE. Using the Nios II IDE, you can control the
configuration for all the RTOS’s modules. You need not modify source
files directly to enable or disable kernel features. Nonetheless, Altera
provides the Nios II processor-specific source code if you ever wish to
examine it. The code is provided in directory <Nios II EDS install
path>/components/altera_nios/UCOSII. The processor-independent
code resides in <Nios II EDS install path>/components/micrium_uc_osii.
The MicroC/OS-II software component behaves like the drivers for
SOPC Builder hardware components: When MicroC/OS-II is included in
a Nios II integrated development environment (IDE) project, the header
and source files from components/micrium_uc_osii are included in the
project path, causing the MicroC/OS-II kernel to compile and link into
the project.

MicroC/OS-II Architecture
The Altera port of MicroC/OS-II for the Nios II processor is essentially a
superset of the HAL. It is the HAL environment extended by the inclusion
of the MicroC/OS-II scheduler and the associated MicroC/OS-II API. The
complete HAL API is available from within MicroC/OS-II projects.

Altera Corporation 8–3
March 2007 Nios II Software Developer’s Handbook

MicroC/OS-II Real-Time Operating System

Figure 8–1 shows the architecture of a program based on MicroC/OS-II
and the relationship to the HAL.

Figure 8–1. Architecture of MicroC/OS-II Programs

The multi-threaded environment affects certain HAL functions.

f For details of the consequences of calling a particular HAL function
within a multi-threaded environment, see the HAL API Reference chapter
of the Nios II Software Developer’s Handbook.

MicroC/OS-II Thread-Aware Debugging
When debugging a MicroC/OS-II application, the debugger can display
the current state of all threads within the application, including
backtraces and register values. You cannot use the debugger to change
the current thread, so it is not possible to use the debugger to change
threads or to single step a different thread.

1 Thread-aware debugging does not change the behavior of the
target application in any way.

MicroC/OS-II Device Drivers
Each peripheral (i.e., an SOPC Builder component) can provide include
files and source files within the inc and src subdirectories of the
component’s HAL directory.

f For more information, refer to the Developing Device Drivers for the HAL
chapter of the Nios II Software Developer’s Handbook.

User Program

C Standard
 Library

HAL API

Device
Driver

Device
Driver

...Device
Driver

Nios II Processor System Hardware

MicroC/OS-II
API

8–4 Altera Corporation
Nios II Software Developer’s Handbook March 2007

The Altera Port of MicroC/OS-II

In addition to the HAL directory, a component may elect to provide a
UCOSII directory that contains code specific to the MicroC/OS-II
environment. Similar to the HAL directory, the UCOSII directory
contains inc and src subdirectories. These directories are automatically
added to the source and include search paths when building MicroC/OS-
II projects in the Nios II IDE.

You can use the UCOSII directory to provide code that is used only in a
multi-threaded environment. Other than these additional search
directories, the mechanism for providing MicroC/OS-II device drivers is
identical to the process described in the Developing Device Drivers for the
HAL chapter of the Nios II Software Developer’s Handbook.

The HAL system initialization process calls the MicroC/OS-II function
OSInit()before alt_sys_init(), which instantiates and initializes
each device in the system. Therefore, the complete MicroC/OS-II API is
available to device drivers, although the system is still running in single-
threaded mode until the program calls OSStart() from within main().

Thread-Safe HAL Drivers
To allow the same driver to be portable across the HAL and MicroC/OS-II
environments, Altera defines a set of OS-independent macros that
provide access to operating system facilities. When compiled for a
MicroC/OS-II project, the macros expand to a MicroC/OS-II API call.
When compiled for a single-threaded HAL project, the macros expand to
benign empty implementations. These macros are used in Altera-
provided device driver code, and you can use them if you need to write a
device drivers with similar portability.

Table 8–1 lists the available macros and their function.

f For more information on the functionality in the MicroC/OS-II
environment, see MicroC/OS-II – The Real-Time Kernel.

Altera Corporation 8–5
March 2007 Nios II Software Developer’s Handbook

MicroC/OS-II Real-Time Operating System

The path listed for the header file is relative to the <Nios II EDS install
path>/components/micrium_uc_osii/UCOSII/inc directory.

Table 8–1. OS-Independent Macros for Thread-Safe HAL Drivers (Part 1 of 2)

Macro Defined in
Header

MicroC/OS-II
Implementation

Single-Threaded HAL
Implementation

ALT_FLAG_GRP(group) os/alt_flag.h Create a pointer to a flag
group with the name group.

Empty statement.

ALT_EXTERN_FLAG_GRP(group) os/alt_flag.h Create an external reference
to a pointer to a flag group
with name group.

Empty statement.

ALT_STATIC_FLAG_GRP(group) os/alt_flag.h Create a static pointer to a
flag group with the name
group.

Empty statement.

ALT_FLAG_CREATE(group,
flags)

os/alt_flag.h Call OSFlagCreate() to
initialize the flag group
pointer, group, with the
flags value flags. The error
code is the return value of
the macro.

Return 0 (success).

ALT_FLAG_PEND(group, flags,
wait_type, timeout)

os/alt_flag.h Call OSFlagPend() with
the first four input arguments
set to group, flags,
wait_type, and timeout
respectively. The error code
is the return value of the
macro.

Return 0 (success).

ALT_FLAG_POST(group, flags,
opt)

os/alt_flag.h Call OSFlagPost() with
the first three input
arguments set to group,
flags, and opt
respectively. The error code
is the return value of the
macro.

Return 0 (success).

ALT_SEM(sem) os/alt_sem.h Create an OS_EVENT
pointer with the name sem.

Empty statement.

ALT_EXTERN_SEM(sem) os/alt_sem.h Create an external reference
to an OS_EVENT pointer
with the name sem.

Empty statement.

ALT_STATIC_SEM(sem) os/alt_sem.h Create a static OS_EVENT
pointer with the name sem.

Empty statement.

8–6 Altera Corporation
Nios II Software Developer’s Handbook March 2007

The Altera Port of MicroC/OS-II

The Newlib ANSI C Standard Library
Programs based on MicroC/OS-II can also call the ANSI C standard
library functions. Some consideration is necessary in a multi-threaded
environment to ensure that the C standard library functions are thread
safe. The newlib C library stores all global variables within a single
structure referenced through the pointer _impure_ptr. However, the
Altera MicroC/OS-II port creates a new instance of the structure for each
task. Upon a context switch, the value of _impure_ptr is updated to
point to the current task’s version of this structure. In this way, the
contents of the structure pointed to by _impure_ptr are treated as
thread local. For example, through this mechanism each task has its own
version of errno.

This thread-local data is allocated at the top of the task’s stack. Therefore,
you need to make allowance when allocating memory for stacks. In
general, the _reent structure consumes approximately 900 bytes of data
for the normal C library, or 90 bytes for the reduced-footprint C library.

f For further details on the contents of the _reent structure, refer to the
newlib documentation. On the Windows Start menu, click Programs,
Altera, Nios II <version>, Nios II Documentation.

In addition, the MicroC/OS-II port provides appropriate task locking to
ensure that heap accesses, i.e., calls to malloc() and free() are also
thread safe.

ALT_SEM_CREATE(sem, value) os/alt_sem.h Call OSSemCreate() with
the argument value to
initialize the OS_EVENT
pointer sem. The return
value is zero upon success,
or negative otherwise.

Return 0 (success).

ALT_SEM_PEND(sem, timeout) os/alt_sem.h Call OSSemPend() with the
first two argument set to sem
and timeout respectively.
The error code is the return
value of the macro.

Return 0 (success).

ALT_SEM_POST(sem) os/alt_sem.h Call OSSemPost() with the
input argument sem.

Return 0 (success).

Table 8–1. OS-Independent Macros for Thread-Safe HAL Drivers (Part 2 of 2)

Macro Defined in
Header

MicroC/OS-II
Implementation

Single-Threaded HAL
Implementation

Altera Corporation 8–7
March 2007 Nios II Software Developer’s Handbook

MicroC/OS-II Real-Time Operating System

Implementing
MicroC/OS-II
Projects in the
Nios II IDE

To create a program based on MicroC/OS-II, you must first set the
properties for the system library to a MicroC/OS-II project. From there,
the Nios II IDE offers RTOS options that allow you to control the
configuration of the MicroC/OS-II kernel.

Traditionally, you had to configure MicroC/OS-II using #define
directives in the file OS_CFG.h. Instead, the Nios II IDE provides a GUI
that allows you to configure each option. Therefore, you do not need to
edit header files or source code to configure the MicroC/OS-II features.
The GUI settings are reflected in the system library’s system.h file;
OS_CFG.h simply includes system.h.

The following sections define the MicroC/OS-II settings available from
the Nios II IDE. The meaning of each setting is defined fully in the
MicroC/OS-II – The Real-Timer Kernel chapter of the MicroC/OS-II
Configuration Manual.

f For step-by-step instructions on how to create a MicroC/OS-II project in
the Nios II IDE, refer to Using the MicroC/OS-II RTOS with the Nios II
Processor Tutorial.

MicroC/OS-II General Options
Table 8–2 shows the general options.

Table 8–2. General Options (Part 1 of 2)

Option Description

Maximum number of tasks Maps onto the #define OS_MAX_TASKS. Must be at least 2

Lowest assignable priority Maps on the #define OS_LOWEST_PRIO. Maximum allowable value
is 63.

Enable code generation for event
flags

Maps onto the #define OS_FLAG_EN. When disabled, event flag
settings are also disabled. See “Event Flags Settings” on page 8–8.

Enable code generation for mutex
semaphores

Maps onto the #define OS_MUTEX_EN. When disabled, mutual
exclusion semaphore settings are also disabled. See “Mutex Settings”
on page 8–8

Enable code generation for
semaphores

Maps onto the #define OS_SEM_EN. When disabled, semaphore
settings are also disabled. See “Semaphores Settings” on page 8–9.

Enable code generation for mailboxes Maps onto the #define OS_MBOX_EN. When disabled, mailbox
settings are also disabled. See “Mailboxes Settings” on page 8–9.

8–8 Altera Corporation
Nios II Software Developer’s Handbook March 2007

Implementing MicroC/OS-II Projects in the Nios II IDE

Event Flags Settings
Table 8–3 shows the event flag settings.

Mutex Settings
Table 8–4 shows the mutex settings.

Enable code generation for queues Maps onto the #define OS_Q_EN. When disabled, queue settings are
also disabled. See “Queues Settings” on page 8–9.

Enable code generation for memory
management

Maps onto the #define OS_MEM_EN. When disabled, memory
management settings are also disabled. See “Memory Management
Settings” on page 8–10.

Table 8–2. General Options (Part 2 of 2)

Option Description

Table 8–3. Event Flags Settings

Setting Description

Include code for wait on clear event
flags

Maps on #define OS_FLAG_WAIT_CLR_EN.

Include code for OSFlagAccept() Maps on #define OS_FLAG_ACCEPT_EN.

Include code for OSFlagDel() Maps on #define OS_FLAG_DEL_EN.

Include code for OSFlagQuery() Maps onto the #define OS_FLAG_QUERY_EN.

Maximum number of event flag
groups

Maps onto the #define OS_MAX_FLAGS.

Size of name of event flags group Maps onto the #define OS_FLAG_NAME_SIZE.

Table 8–4. Mutex Settings

Setting Description

Include code for
OSMutexAccept()

Maps onto the #define OS_MUTEX_ACCEPT_EN.

Include code for OSMutexDel() Maps onto the #define OS_MUTEX_DEL_EN.

Include code for OSMutexQuery() Maps onto the #define OS_MUTEX_QUERY_EN.

Altera Corporation 8–9
March 2007 Nios II Software Developer’s Handbook

MicroC/OS-II Real-Time Operating System

Semaphores Settings
Table 8–5 shows the semaphores settings.

Mailboxes Settings
Table 8–6 shows the mailbox settings.

Queues Settings
Table 8–7 shows the queues settings.

Table 8–5. Semaphores Settings

Setting Description

Include code for OSSemAccept() Maps onto the #define OS_SEM_ACCEPT_EN.

Include code for OSSemSet() Maps onto the #define OS_SEM_SET_EN.

Include code for OSSemDel() Maps onto the #define OS_SEM_DEL_EN.

Include code for OSSemQuery() Maps onto the #define OS_SEM_QUERY_EN.

Table 8–6. Mailboxes Settings

Setting Description

Include code for OSMboxAccept() Maps onto #define OS_MBOX_ACCEPT_EN.

Include code for OSMBoxDel() Maps onto #define OS_MBOX_DEL_EN.

Include code for OSMboxPost() Maps onto #define OS_MBOX_POST_EN.

Include code for
OSMboxPostOpt()

Maps onto #define OS_MBOX_POST_OPT_EN.

Include code fro OSMBoxQuery() Maps onto #define OS_MBOX_QUERY_EN.

Table 8–7. Queues Settings (Part 1 of 2)

Setting Description

Include code for OSQAccept() Maps onto #define OS_Q_ACCEPT_EN.

Include code for OSQDel() Maps onto #define OS_Q_DEL_EN.

Include code for OSQFlush() Maps onto #define OS_Q_FLUSH_EN.

Include code for OSQPost() Maps onto #define OS_Q_POST_EN.

Include code for OSQPostFront() Maps onto #define OS_Q_POST_FRONT_EN.

Include code for OSQPostOpt() Maps onto #define OS_Q_POST_OPT_EN.

8–10 Altera Corporation
Nios II Software Developer’s Handbook March 2007

Implementing MicroC/OS-II Projects in the Nios II IDE

Memory Management Settings
Table 8–8 shows the memory management settings.

Miscellaneous Settings
Table 8–9 shows the miscellaneous settings.

Include code for OSQQuery() Maps onto #define OS_Q_QUERY_EN.

Maximum number of Queue Control
blocks

Maps onto #define OS_MAX_QS.

Table 8–7. Queues Settings (Part 2 of 2)

Setting Description

Table 8–8. Memory Management Settings

Setting Description

Include code for OSMemQuery() Maps onto #define OS_MEM_QUERY_EN.

Maximum number of memory
partitions

Maps onto #define OS_MAX_MEM_PART.

Size of memory partition name Maps onto #define OS_MEM_NAME_SIZE.

Table 8–9. Miscellaneous Settings (Part 1 of 2)

Setting Description

Enable argument checking Maps onto #define OS_ARG_CHK_EN.

Enable uCOS-II hooks Maps onto #define OS_CPU_HOOKS_EN.

Enable debug variables Maps onto #define OS_DEBUG_EN.

Include code for OSSchedLock()
and OSSchedUnlock()

Maps onto #define OS_SCHED_LOCK_EN.

Enable tick stepping feature for
uCOS-View

Maps onto #define OS_TICK_STEP_EN.

Enable statistics task Maps onto #define OS_TASK_STAT_EN.

Check task stacks from statistics task Maps onto #define OS_TASK_STAT_STK_CHK_EN.

Statistics task stack size Maps onto #define OS_TASK_STAT_STK_SIZE.

Idle task stack size Maps onto #define OS_TASK_IDLE_STK_SIZE.

Altera Corporation 8–11
March 2007 Nios II Software Developer’s Handbook

MicroC/OS-II Real-Time Operating System

Task Management Settings
Table 8–10 shows the task management settings.

Time Management Settings
Table 8–11 shows the time management settings.

Maximum number of event control
blocks

Maps onto #define OS_MAX_EVENTS 60.

Size of semaphore, mutex, mailbox,
or queue name

Maps onto #define OS_EVENT_NAME_SIZE.

Table 8–9. Miscellaneous Settings (Part 2 of 2)

Setting Description

Table 8–10. Task Management Settings

Setting Description

Include code for
OSTaskChangePrio()

Maps onto #define OS_TASK_CHANGE_PRIO_EN.

Include code for OSTaskCreate() Maps onto #define OS_TASK_CREATE_EN.

Include code for
OSTaskCreateExt()

Maps onto #define OS_TASK_CREATE_EXT_EN.

Include code for OSTaskDel() Maps onto #define OS_TASK_DEL_EN.

Include variables in OS_TCB for
profiling

Maps onto #define OS_TASK_PROFILE_EN.

Include code for OSTaskQuery() Maps onto #define OS_TASK_QUERY_EN.

Include code for
OSTaskSuspend() and
OSTaskResume()

Maps onto #define OS_TASK_SUSPEND_EN.

Include code for OSTaskSwHook() Maps onto #define OS_TASK_SW_HOOK_EN.

Size of task name Maps onto #define OS_TASK_NAME_SIZE.

Table 8–11. Time Management Settings (Part 1 of 2)

Setting Description

Include code for
OSTimeDlyHMSM()

Maps onto #define OS_TIME_DLY_HMSM_EN.

Include code
OSTimeDlyResume()

Maps onto #define OS_TIME_DLY_RESUME_EN.

8–12 Altera Corporation
Nios II Software Developer’s Handbook March 2007

Document Revision History

Document
Revision History

Table 8–12 shows the revision history for this document.

Include code for OSTimeGet() and
OSTimeSet()

Maps onto #define OS_TIME_GET_SET_EN.

Include code for
OSTimeTickHook()

Maps onto #define OS_TIME_TICK_HOOK_EN.

Table 8–11. Time Management Settings (Part 2 of 2)

Setting Description

Table 8–12. Document Revision History

Date & Document
Version Changes Made Summary of Changes

March 2007,
v7.0.0

No change from previous release.

November 2006,
v6.1.0

No change from previous release.

May 2006, v6.0.0 No change from previous release.

October 2005,
v5.1.0

No change from previous release.

May 2005, v5.0.0 No change from previous release.

December 2004
v1.1

Added thread-aware debugging paragraph.

May 2004
v1.0

First publication.

