Virtual

Has the time come to kiss
that old iron goodbye?

BOB SUPNIK, SUN MICROSYSTEMS

»Virtual Macn
the Past (and Future)

es of

S
—— i%-—"‘

>

i e

imulators are a form of “virtual machine”

intended to address a simple problem: the

absence of real hardware. Simulators for past sys-
tems address the loss of real hardware and preserve the
usability of software after real hardware has vanished.
Simulators for future systems address the variability
of future hardware designs and facilitate the develop-
ment of software before real hardware exists.

SIMH, the Computer History Simulation system, is

a behavioral simulator for obsolete systems of historic
interest. Originally intended as an educational project,
it is increasingly being used in long-lived produc-
tion environments as a substitute for real systems.
SIMH is continuously being extended to simulate new
machines.

A TAXONOMY OF VIRTUAL MACHINES
The term virtual machine has been used to describe at
least three different types of computer programs:

1. The virtualized computer operating system
(hypervisor) pioneered by VM/370 and today com-
mercialized through such products as VMWare. Virtual
hypervisors allow a single system to run multiple
operating environments simultaneously.

2. The abstract computer system produced by inter-
preted environments such as Java and C# today (and
many other projects in earlier times). Virtual machine
interpreters allow code to be portable across incom-
patible instruction architectures.

3. A simulated or emulated computer system, like
SIMH (http://simh.trailing-edge.com), which looks

back to the behavioral simulators of 35 years ago, such as
MIMIC.! Simulators create virtual machines that can run
code for other systems, typically because the other system
no longer exists or does not yet exist.

All virtual machines share a common set of problems:
(1) They must faithfully reproduce the target; (2) they
must be able to faithfully reproduce the environment
expected by the software (timing, I/O, etc.); and (3) they
must deliver adequate performance in order to be a usable
environment.

SIMH
SIMH is an open-source simulation system for obsolete
computer systems. Its purpose is to preserve computing'’s
legacy—both hardware and software—and to make sys-
tems of historic interest accessible to anyone with a per-
sonal computer. SIMH consists of a common framework
known as SCP (Simulator Control Package) and individual
simulators for more than 20 systems:
e DEC: PDP-1, PDP-4, PDP-7, PDP-8, PDP-9, PDP-10, PDP-
11, PDP-15, VAX
¢ Data General: Nova, Eclipse
¢ IBM: 1130, 1401, 1620, System/3
e Interdata: 16- and 32-bit systems
¢ Others: Royal-Mcbee LGP-30, SDS 940, Honeywell
H316, GRI-909

SIMH is portable and runs on Windows, Linux, and
most other flavors of Unix, Mac OS X, and VMS (Virtual
Memory System). The overall design of SIMH has been
described elsewhere;? this article focuses on the practical
implementation issues of writing a simulator, and the
common problems that must be solved.

WRITING A SIMULATOR

Writing a simulator for an obsolete system requires his-
torical research, software engineering, and detective work,
in about equal parts.

HISTORICAL RESEARCH

The essential basis for any simulator is an accurate speci-
fication of the target system. While modern architectures
are specified in great detail, descriptions of historical

54 July/August 2004 QUEUE

3 Virtual Machines of

imulators

“the Past (and Future)

systems tend to be sketchy. In addition, time has created
gaps in the historical record: manuals have been thrown
out, schematics lost, and actual machine examples
scrapped. As in most forms of historical research, primary
sources (schematics, microcode listings, and maintenance
documentation) are best; secondary sources such as
handbooks, marketing material, textbooks, and even user
manuals cannot be trusted.

The Internet provides multiple starting points for
simulation research:
¢ Collectors, universities, and museums have transcribed

and published their private archives of documentation.
e Search engines can provide pointers to Web pages and
Web sites dedicated to historical computing or particu-
lar systems of interest.
* Documentation and, occasionally, complete systems are
offered for sale on eBay.

Several newsgroups are devoted to obsolete systems
and emulation.

Nonetheless, even for the most popular systems,
survival of hardware and software is chancy. For example,
Unix versions 1-4 appear to be irrevocably lost. On the
other hand, the sources for PDP-15 XVM/DOS—not
exactly a widely used operating system—turned up in a
collection of DECtapes on eBay.

SOFTWARE ENGINEERING

Once adequate documentation is in hand, the next stage
is designing and implementing the simulator. Certain
design decisions are critical: How will the hardware
system architecture be mapped into software? How will
memory and I/O devices be represented? How will asyn-
chrony (simulated time) be handled?

SIMH handles these issues as follows:

SIMH maps the hardware architecture using a variation of
PMS (processor-memory-switch) notation.® Simulators are col-
lections of devices; the CPU is just a device that executes
instructions. Devices consist of registers, which hold
state, and units, which contain data sets. For example, a
disk controller is a device. Its registers are the controller
state. The units represent the disk drives, each of which
has a data set.

rants: feedback@acmqueue.com

SIMH represents memory and 1/O data sets by a uniform
mapping into host system containers. All containers are C
integer data types. For example, a 12-bit memory would
be represented by a C unsigned short array (typically 16
bits). Containers for I/O devices are typically disk files,
although they can also be mapped to real devices such as
floppy or CD drives.

SIMH models the asynchronous operation of a computer
system explicitly. The simulator keeps track of simulated
time in any convenient unit (nanoseconds, instructions).
Devices that operate asynchronously schedule events in
“future time.” When the simulator reaches the appropri-
ate time, it calls the device event handler to execute the
asynchronous operation.

Once the high-level design issues are decided, the
simulator can be detailed, designed, and coded, usually
from the CPU out to the peripherals. The CPU design has
the most complexity: How will instructions be decoded
and executed? How will the CPU communicate with I/O
devices? How will exceptions and interrupts be handled?
What debugging facilities should be included? A typical
SIMH simulator handles these issues as follows:

Instruction execution models the behavior of the real
system, with a fetch phase, an address decode phase, and
instruction execution. Often, the instruction breakout is
simply a large case statement. This is fast and models the
structure of microcode, but can be bulky and difficult to
read.

e The CPU implements formal, configurable interfaces to
I/0 devices, usually with the same basic operations as
the real system’s I/O bus. These interfaces allow an I/O
dispatch table to be built at runtime so that I/O devices
can be included or excluded as desired.
Exceptions are often handled in the same way they
are in the hardware: by a global trap (C longjmp) to a
central exception routine. This is anathema in modern
object-oriented languages but accurately models how
many real systems work.
Interrupts are modeled to balance accuracy and simula-
tion speed. For complex priority interrupt systems, the
best approach is a central routine to evaluate the state
of the interrupt system after any event that can change
it (for example, an I/O instruction).
All simulators provide symbolic assembly and disas-
sembly for memory, execution breakpoints, single
execution step, and a PC change history. Some provide
deep instruction trace capabilities or multiple types of
breakpoints.

The simulator is now ready for initial debugging with
hand test cases, or diagnostics if available.

more queue: www.acmqueue.com

What Are These Systems?

SIMH simulates systems that are of historic or
architectural interest—or, in many cases, of
personal interest to the author. For example, the
LGP-30 was the first computer | ever saw. Built
in the mid-1950s, it used a drum for memory (all
4,000 words of it). It had less computing power
than today’s disposable calculators. The IBM 1620
was the first computer | ever programmed. Built
in the late 1950s, it was popular with universities
because of its low cost (only $64,000—in 1960 dol-
lars). It implemented decimal arithmetic with table
lookups, leading to the nickname Cadet—"“Can’t
add, doesn’t even try.”

The PDP-1, an 18-bit computer delivered in
1960, was Digital Equipment'’s first computer.
It was used to develop the world'’s first video
game, Spacewar. DEC’s PDP-8, a 12-bit com-
puter delivered in 1966, was considered the first
minicomputer, because it cost less than $20,000
and consisted of only half a rack of logic instead

of multiple racks. The PDP-8 was also the first
mass-produced computer; more than 50,000 were

manufactured.

The first 16-bit minicomputers were delivered
in the mid- to late-1960s. Hewlett-Packard’s 2100,
Interdata’s Model 3, and Honeywell’s H516 were
all early examples of 16-bit minicomputers. The
H516 was used to implement the ARPAnet IMP
(Advanced Research Projects Agency Network
interface message processor), in effect the first
router for the predecessor to the Internet. In 1970,
the DEC PDP-11 and Data General Nova revolution-
ized minicomputer architecture. The elegant and
complex PDP-11 was the most popular minicom-
puter ever and influenced most late-1970s systems,
including the Intel x86; the x86’s “little endian”
byte order derives from the PDP-11. The radical
simplicity of the Nova foreshadowed the RISC
(reduced instruction set computer) architectures of
the 1980s.

Thirty-two-bit computing broke out of the
mainframe category with the introduction of the
“supermini” Interdata 7/32 in the mid-1970s and
then the VAX in 1977. The 7/32 hosted the first
port of Unix, as well as the first port to a 32-bit
system. The VAX was the most popular 32-bit com-
puter of the 1980s, until it was overtaken first by
RISC and then by PCs.

QUEUE July/August 2004 55

mulators

N Virtual Machines of

DETECTIVE WORK

The last stage is bringing up the operating system and
other operational software. In theory, a simulator that
runs diagnostics should run any operating system. In
practice, this isn’t the case for a number of reasons:

The software may be incomplete. Attempts to bring
up the PDP-15 ADSS (Advanced System Software) were
stymied by lack of the proper paper-tape bootstrap.
Eventually, a PDP-9 bootstrap turned up in France, but
no paper-tape reader was available to transcribe it. The
collector in France scanned the tape in sections on
a flatbed scanner and then wrote a program to recognize
and transcribe the holes and splice the transcribed sec-
tions together. The PDP-15 simulator writer then discov-
ered, through debugging the boot process of ADSS, what
changes had occurred between the PDP-9 and PDP-15.

The software path may be untested. Attempts to bring
up PDP-10 TOPS-10 7.04 uncovered a bug in the instal-
lation routine’s handling of magnetic tapes. The “new
system” installation path for 7.04 had never been tested,
because by the time 7.04 shipped in 1988, the PDP-10
had been out of production for six years, and all installa-
tions were upgrades.

The simulator configuration may be untested.
Simulators are much cheaper than real hardware, and
it’s easy to build a simulated configuration that would
have been utterly impractical, in financial or physical
terms, in real life. For example, initial bring-up of PDP-15
DOS failed when the software attempted to “size” the
fixed-head disk. The simulator implemented a maxi-
mumb-size disk of 2 million words (eight platters). In the
real world, however, no such configuration had ever
been built because it was too expensive. The sizing code
contained a bug that looped indefinitely on a maximum
configuration.

The software may depend on details of timing or
implementation that are not simulated accurately. DEC’s
MSCP disk controllers proved particularly difficult to get
right. RSTS/E and RSX11M on the PDP-11, and NetBSD
on the VAX, had timing dependencies in their MSCP
drivers (and different timing dependencies at that). As of
this writing, there is still a timing problem in the MSCP

56 July/August 2004 QUEUE

“the Past (and Future)

driver for OpenBSD/VAX, although not for VMS, Ultrix,
or BSD 4.3.

In all of these cases, the debug vehicle was an operat-
ing system. Operating systems are great at finding bugs in
simulators, but their reporting mechanisms—hang, crash,
or loop—leave something to be desired. Hence the need
for powerful debug tools in the simulator. The debug
tools are not there to debug software but to debug the
simulator itself.

KEY ISSUES
Any form of virtual machine must deal with three key
issues: accuracy, software dependencies, and performance.

ACCURACY

For SIMH, accuracy of simulation has been a key require-
ment. This stems from a simple observation: the more
accurate the simulation, the more software it will run cor-
rectly. The critical choices in implementation are level of
simulation (behavioral, register-transfer); detail of simula-
tion (instruction-accurate, cycle-accurate); and specificity
of implementation (architectural accuracy, specific model
accuracy).

Level of simulation. Most simulators are behavioral:
they reproduce the behavior of a computer system rather
than its internal implementation. Though there are likely
to be similarities (for example, register files abstracted
as arrays), these are coincidental. No attempt is made
to reproduce the “blow-by-blow” internal operation of
the system. For example, a typical 1960s minicomputer
would access memory through specific buffer registers:
MAR <- memory_address;

MBR <- memory_access ();
memory destination <- MBR;

A behavioral simulator abstracts out the intermediate
register transfers:
memory_destination <- memory_access (memory address);

In contrast, a register-transfer-level simulator does
include the details of the hardware intermediate steps.

SIMH is a behavioral system. Even so, most SIMH
simulators follow the hardware flows with great precision
and model system structure accurately.

rants: feedback@acmqueue.com

Detail of simulation. The old saw that “the devil is
in the details” is particularly applicable to simulators.
Processor and peripheral behavior needs to be reproduced
at a very fine level of detail, or software will fail to run.
Some examples:

1. Every published manual on HP’s 16-bit computer
systems (the 2100 family, later renamed the 1000 family)
states that the SFS and SFC instructions do not imple-
ment the “clear flag” option. The schematics, however,
clearly show that these instructions do implement the
option; HP’s RTE-IV operating system depends on this
undocumented feature.

2. PDP-11 interrupts were supposed to follow a well-
defined model, but as more and more peripherals were
implemented, deviations from the model arose as a result
of “improvements” or optimizations. The idiosyncratic
interrupt behavior of the PDP-11’s Ethernet and Massbus
controllers—which will not disable a pending interrupt
even if the interrupt enable flag is cleared—must be repro-
duced “bug-for-bug,” or PDP-11 Unix will not run.

3. The Honeywell 316 simulator specifies only a small
number of the possible bit combinations in the “generic
A” operate instruction class. To reproduce the undefined
but not unpredictable behavior of the other bit combi-
nations, the simulator must reproduce the decode logic
since the generic A operates signal-by-signal.

In this last case, the simulator predicted different
results from the only published article on the subject; and
testing on the real hardware proved the simulator to be
correct.

Specificity of simulation. Finally, a simulator must
reproduce a specific and complete system, rather than
an idealized architectural model. This is clear enough for
early computer systems, which predate the concept of
a compatible computer family, but it is equally true for
well-specified systems. SIMH doesn’t simulate “the PDP-
11”7 or “the VAX”; it simulates the PDP-11/73 and the
MicroVAX 3900. Deviations can be perilous:

e The PDP-11 architecture did not specify the ordering
of decoding and fetching operands in a double-oper-
and instruction, and different PDP-11s implemented
different orderings. PDP-11 software is not supposed to
depend on this ordering. A PDP-11 simulator imple-
menting a specific model, however, must implement
double-operand processing in the exact right order;
otherwise, the “model identification” software in a
major operating system (RSX11M+) will not get the
right answer.

e Different models are needed to accommodate differ-
ent software environments; for example, early PDP-11

more queue: www.acmqueue.com

Unix systems run only on the PDP-11/45 and must be
invoked by specific controls as alternatives to the main
simulation environment.

REPRODUCING THE MACHINE ENVIRONMENT

SIMH has explicit mechanisms for handling software
dependencies on the real machine environment, such
as I/O formats, I/O timing dependencies, and real-world
timing dependencies. I've already described handling of
1I/O formats and asynchronous operations; this section
focuses on real-world timing dependencies.

Wall clocks versus simulated clocks. Simulated perfor-
mance varies with the speed of the host processor. If the
simulator keeps track of time by counting instructions
or cycles, then simulated time will run faster on fast
machines and will run slower on slow ones. This makes
it difficult for simulated software to keep track of “wall
time.”

SIMH provides calibrated timers. A periodic event
(such as the ticking of the realtime clock) is initially
scheduled by guesstimate. As simulation progresses,
SIMH calibrates the clock against wall time and automati-
cally adjusts the simulated delay between clock ticks to
approximate realtime.

Timing loops. Some programs, particularly games,
require even greater timing accuracy. For example, PDP-1
Spacewar, the world's first video game, runs in a gigantic
loop that is speed-matched to the performance of a real
PDP-1. If the loop runs too fast—and on modern hard-
ware a simulated PDP-1 runs 100 times faster than the
original—the spaceships will zoom across the screen and
fall into the sun before the user can react.

Simulators can use the calibrated timers and the simu-
lator-specific timing mechanism to calculate the instruc-
tion execution rate. If this is too high, the simulator can
run idle loops or go to sleep to slow down simulated
execution to real-world rates.

PERFORMANCE

Simulated processor and 1/0 performance. Simulators
typically take a large number of instructions to execute
one simulated instruction: up to 1,000:1 for a complex
simulator such as the VAX. On modern computers,

the disparity in clock rates between simulator host and
simulated target (3 gigahertz for a modern PC, versus .8
megahertz for a PDP-8 or 5 megahertz for a MicroVAX II)
is usually more than sufficient to overcome the adverse
simulation ratio. In addition, I/O on a modern com-
puter is much faster than on historic systems, as a result
of improvements in peripherals and the copious use

QUEUE July/August 2004 57

rtual

wn

D
N 8 Vi

LL | Machines

mulators

5

Virtual Machines of

of memory for caches and buffers. Taken together, the
improvements can be dramatic: one SIMH user reported
that the running time of a complex program build was
reduced from 2.5 hours on a real MicroVAX 3100-38 to 14
minutes on the simulator.

Simulators benefit from improvements in micropro-
cessor performance. Cache hit rates are high because
the instruction stream is relatively small, and the data
sets are bounded by historic memory sizes. On the other
hand, branches are frequent, and branch predictability is
poor. In general, simulators run best on microprocessors
with high clock rates, shallow pipelines, large level-one
instruction stream caches, and large level-two data stream
caches.

Scale. For historic systems, simulator scale is not an
issue because the scale is bounded by real system lim-
its. Simulating a 512-megabyte PDP-11 is not an issue
because real PDP-11s were limited to 4 megabytes. Simu-
lators are also used to re-create systems of relatively recent
provenance, however, such as the Hercules 370 simulator
or the SIMH VAX simulator. For simulators of modern
architectures, scale is certainly an issue.

In the last year, users of SIMH VAX requested greater
memory and storage capacity than provided by the
original target system, the MicroVAX 3900. Fortunately,
the VAX architecture abstracts the details of memory and
storage representation to some extent. In the VAX archi-
tecture, memory size is presented to an operating system
by bootstrap code; the operating system isn’t required to
understand the details of the underlying memory system.
Likewise, in MSCP, disk-drive size is presented to an oper-
ating system by the drive itself; the operating system is
expected to handle drives of arbitrary size. These abstrac-
tions allowed expansion of memory from 64 megabytes
to 512 megabytes with changes only to the simulator
and the boot firmware, and expansion of drive capacity
to 1 terabyte (!) with changes only to the simulator’s I/O
routines to handle files larger than 2 gigabytes.

AVOIDING PITFALLS
SIMH has successfully re-created machines covering a 40-
year span of computing history, using a common design

58 July/August 2004 QUEUE

= _— “the Past (and Future)

and control framework as well as common implementa-

tion techniques. SIMH can be readily extended to

simulate additional systems if three simple rules are
observed:

e Research the system to be simulated thoroughly.

e Work through the mapping of the hardware architec-
ture to software structures before starting implementa-
tion.

e Run as much real software as possible to debug simula-
tor operations.

With a little luck, and a lot of debugging, anyone can

open another locked treasure from computing’s past. Q

REFERENCES

1. Supnik, R. “Debugging Under Simulation,” in Debug-
ging Techniques in Large Systems, edited by R. Rustin.
Prentice-Hall, 1971.

2. Supnik, B. Writing a Simulator for the SIMH System,
Revised February 11, 2004, http://simh.trailing-
edge.com.

3. Siewiorek, D., Bell, G., and Newell, A. “PMS Notation.”
Chap. 13 in Computer Structures: Principles and Examples.
McGraw-Hill, 1982.

LOVE IT, HATE IT? LET US KNOW
feedback@acmqueue.com or www.acmqueue.com/forums

BOB SUPNIK joined Sun Microsystems via the acquisition

of Nauticus Networks, where he served as chief technology
officer and vice president of engineering. For the bulk of

his career, he was a senior manager and technical leader at
Digital Equipment Corporation, where he led the develop-
ment of DEC’s VAX microprocessors; started and program
managed the entire Alpha engineering program (chips,
systems, and software); and managed the creation of the
Palo Alto Internet Exchange, the Personal Jukebox, and other
innovative research products. He has a B.S. in mathematics
and a B.S. in history from MIT, and an M.A. in history from
Brandeis University. Supnik holds seven patents in silicon and
systems architecture. He is the principal developer of SIMH,
the computer history simulation project.

© 2004 ACM 1542-7730/04/0700 $5.00

rants: feedback@acmqueue.com

http://simh.trailing-edge.com
http://simh.trailing-edge.com
mailto:feedback@acmqueue.com
http://www.acmqueue.com/forums

