Virtual

wn
D
8
L | Machines

Building Systems

to be

Securely

POU L.H.EN N l NG KA /\/\.P The history of computing has been characterized by

continuous transformation resulting from the dramatic

'FR'EE'BSD D'E\/'ELO'P 'ER’]A\N D increases in performance and drops in price described
by Moore’s law. Computing “power” has migrated from

ROBERT WATSON , centralized mainframes/servers to distributed systems and
/\/\ A'F E'E 'RES _E A'RC H the commodity desktop. Despite these changes, system
C

sharing remains an important tool for computing. From
the multitasking, file-sharing, and virtual machines of the
desktop environment to the large-scale sharing of server-
class ISP hardware in collocation centers, safely sharing
hardware between mutually untrusting parties requires
addressing critical concerns of accidental and malicious
damage.

There has been a strong continuing interest in access
control and separation technologies to support safe yet
efficient sharing of computing systems. Although the
degree of sharing taking place has increased because of
similarly dramatic changes in networking, there has not
been a marked change in the nature of security concerns.
Costs of adapting software, identifying policy goals, and
minimizing administrative complexity remain a balanc-
ing act. The fundamental security primitives for separa-
tion have not changed, but our experience in attempting
to apply them is substantially greater.

42 July/August 2004 QUEUE rants: feedback@acmqueue.com

'\
S

Want to secu

Virtual

wn
D
@)
o A
L | Machines

Building Systems

to be

Securely

In this discussion, we will review existing systems that
provide strong separation via access control, virtualiza-
tion, namespace management, and partitioning. We will
then explore the FreeBSD Jail system, implemented by
us, which adopts a hybrid approach to applying secu-
rity primitives. We will pay particular attention to the
implementation and administrative costs of modifying
an existing system. We will also make recommendations
for the design of new systems to facilitate the future
introduction of security and separation features. These
recommendations will reach the somewhat unsurprising
conclusion that the path to security turns out to also be
the path of improved and intentional software design and
abstraction.

WHY SHARE SYSTEMS?

The sharing of systems refers to the use of a system to

serve simultaneous functions with differing security prop-

erties. Sharing systems offers the following benefits:

¢ In environments with inadequate computing resources,
especially early computing environments and modern
clusters, sharing allows for a more efficient use of valu-
able hardware resources, as well as for a joint invest-
ment in hardware resources.

¢ The development of ubiquitous local-area and wide-area
networking has facilitated large-scale inter-system com-
munication, permitting computers to become meeting
points between individuals and organizations.

Although the terms of sharing have changed, the

requirements remain largely the same: tasks and data

representing the interests of multiple users coexisting on

the same hardware platform.

The means to share common hardware resources

has been a fertile area for research and development for

decades. From the days of early time sharing, operat-

ing systems have been used as platforms for sharing

by scheduling jobs, providing resource mediation and

virtualization, and later providing access control. As data

communication spread, the desire to connect and share

data became a strong driver for sharing systems, placing

44 |uly/August 2004 QUEUE

focus on safe sharing.

Shared systems introduce inefficiencies such as slower
performance; they also create serious security concerns.
Security cannot simply be a question of retaining control
of the system in a technical sense, but must also address
moral and legal requirements for separation and privacy.

HOW TO SHARE SYSTEMS

In this section we will discuss a number of existing sys-
tems generally representative of broad classes of similar
systems allowing for resource sharing, as well as tech-
niques that accomplish separation. We will first discuss

a classic control-free environment and then consider the
Unix process model, Unix discretionary access control,
full virtual machine models, virtual machine-like execu-
tion environments, and classic trusted operating systems.

STRAWMAN

The earliest types of system sharing consisted of primi-
tive multiprogramming kernels that time-sliced among a
number of processes or programs.! In these “strawman”
systems, no separation techniques are applied and the
hardware may not even offer facilities to provide quali-
fied separation. All users/programs of the system have
access to all resources on the system (memory, files, etc.).
Accidental or intentional malicious behavior cannot be
prevented or reliably recorded. It can be argued that both
the administrative and user overhead from this separation
model are almost nonexistent, since little can be done.
But this is like saying that castor oil works against the
common cold: you dare not cough.

Today these systems survive mainly in the embedded
market where response-time requirements, resource con-
straints, and tightly controlled software integration make
this approach a viable if painful methodology.

UNIX PROCESSES
Unix processes provide a basic virtual machine primitive,
running each instance of an application in its own sand-
box. Although not a complete emulation of the actual
hardware environment, the process provides basic isola-
tion and consistent interfaces. Each application instance
operates with its own address space, copy of registers, and
independent references to common system resources. The
kernel provides abstracted access, virtualization, and syn-
chronization primitives for system resources, permitting
controlled and intentional communication.

The Unix process model strongly resembles those
found on many past and current systems, including
Windows NT, BSD (Berkeley Software Distribution) and

rants: feedback@acmqueue.com

Linux, and Mac OS X. Through the Posix standards, it has
become the yardstick for application separation.

UNIX MULTI-USER SECURITY
In addition to process protections, Unix systems offer
multi-user protection through a simple model of:
¢ Authenticated users
¢ Administrator-managed group system
¢ Simple discretionary access control lists for files/IPC
objects
e Simple privilege model permitting the administrator to
override protections and perform system management.
Properly configured, users, groups, and permissions
may be used to provide integrity, confidentiality, and,
to a lesser extent, availability protections among mutu-
ally untrusting users. The model scales poorly, however,
requiring administrators to maintain the groups and
requiring users to monitor and configure protections
on all objects they own. The model lends itself well to
discretionary protection in which users control access to
objects they own, but poorly to mandatory protection,
where the administrator requires controls that cannot be
bypassed.
As with the Unix process model, many other systems
have similar designs with similar benefits and pitfalls.

VMWARE

IBM’s VM/SP and, more recently, VMware provide a clas-
sic form of system virtualization and containment by
emulating an entire hardware platform and the separa-
tion offered by independent computers. The environment
allocates physical (memory, CPUs, or CPU time-slicing)
and virtual (memory backed to swap space, etc.) resources
in a manner similar to operating-system resource alloca-
tion. The implementation efficiency of this model varies
according to several important factors. For example, is the
virtual hardware environment simply subsetting existing
hardware into partitions—or is it multiplexing resources
and performing more extensive virtualization? Also,

does the hardware platform support nesting and easy
virtualization in its instruction set or other features—or

is substantial software support required (e.g., instruction
rewriting)?

Resource management is an important consideration
in the performance and cost of the model. This model,
however, offers significant improvements in hardware
utilization only if resources can be multiplexed and/or
overcommitted.

From a sharing point of view, the advantage of this
model is its ability to run multiple instances on a single

more queue: www.acmqueue.com

hardware platform, which can offer firewall partitioning
that would be difficult to implement using, for example,
the Unix security model.

The degree to which communication between
partitions is restricted has benefits and costs. Limiting
communication to explicit channels such as virtualized
or real networking provides well-understood existing
mechanisms for control (packet filtering, proxies, and
firewalls). It also reduces the efficiency and accessibil-
ity of communication, however. VMware users will be
familiar with this phenomenon, as network file sharing
must be used to move files between the host and guest
environments.

JAVA VIRTUAL MACHINE

The JVM (Java Virtual Machine) and JRE (Java Runtime
Environment) provide a variety of security and separa-
tion services to support the simultaneous execution of
mutually untrusting code. Different programs in the same
virtual machine run within the same address space and
are protected using a combination of namespace protec-
tions (a type-safe environment forbidding direct pointer
manipulation) and access control (capabilities to refer-
ence classes and objects controlled by policy).

The JVM model presents a mature and fascinating
example of trade-offs in separation as it balances the
desire for high portability and safety with the need for
tight and fast communication between mutually untrust-
ing code in execution. As a result of the tight integration
of components in the same address space, interaction is
facilitated in a manner not possible in virtual machines.
The complexity of this approach, however, adds cost to
implementing and using the system, as well as risk from
incorrect implementation and use. Similar trade-offs are
made in the balance of explicit access control for naming
classes, followed by the use of a capabilities model that
avoids the repetition of expensive policy calculations and
cryptographic checksums.

CLASSIC TRUSTED SYSTEMS

Trusted operating systems attempt to address the issue of
controlled separation through the introduction of man-
datory security models, generally based on extensions to
commercial Unix products. These policies complement
Unix DAC (discretionary access control) by introducing
protections set by the administrator and enforced for all
users. Early trusted systems relied solely on MLS (multi-
level security), which controlled the flow of information
through a system to protect against unauthorized acci-
dental or malicious sharing of sensitive information. MLS

QUEUE July/August 2004 45

Virtual

wn
D
@)
o A
L | Machines

Building Systems

to be

Securely

assigns clearances to users and controls the interaction
between users and various objects (such as files, IPC, and
the network stack) in the system based on classifications
on those objects.

In contrast to the discretionary nature of Unix access
control lists, the MLS policy permits security administra-
tors to reason about and control the flow of informa-
tion in the system. With early requirements for trusted
systems driven solely by military customers, trusted
systems have slowly been expanded to include additional
policies such as system integrity policies, role-based access
control, and rule-based policies such as domain and
type enforcement (http://www.networkassociates.com/
us/nailabs/research_projects/secure_execution/dte_
overview.asp) and type enforcement (http://www.nsa.gov/
selinux/).

Trusted systems frequently offer separation based
on combining two elements: a global policy, and either
implicit or explicit security labels on subjects (processes)
and objects. These security labels may hold clearance or
classification data, domain or type information, rule sets,
or other policy-specific content.

For sites willing to accept the trade-off of higher
overhead of comprehensive labeling of every object in
the system and implementation of the protection policy,
trusted systems are a powerful tool for controlling the
flow of information across security boundaries in a highly
trustworthy manner.

THINKING ABOUT MENTAL MODELS FOR SEPARATION
Simply providing the technical means to accomplish
separation is insufficient to produce a usable system: a
philosophy of separation is necessary so that administra-
tors can map their security requirements onto system
primitives.

Strawman systems offer no separation and therefore
little administrative complexity. Complete partitioning
systems, such as VM/SP and VMware, that create isolation
from strawman (or more complex) systems offer a com-
prehensible model, similar to introducing more indepen-

46 |uly/August 2004 QUEUE

dent systems. All resources are uniquely associated with
a partition, communication channels are well defined,
and protection follows naturally from well-understood
resource-allocation processes.

For systems offering more fine-grained solutions, such
as discretionary or mandatory access control, or perme-
able protections such as namespace subsetting, it is neces-
sary to consider both the scope and the complexity of the
administrative and auditing workload.

The scope of protection refers to the concept of protec-
tion that is provided by a protection mechanism. Even
in systems with many controls, such as trusted systems,
the scope of protection is usefully narrowed by a sen-
sible mapping of macroscopic “business rules” to control
points to constrain the degrees of freedom.

The complexity of protection corresponds to the
quantity of work required to create, maintain, or audit
the level and correctness of separation—and corresponds
primarily to whether the addition of new controls and
elements results in a simple accumulation of work, or a
combinatorial increase. Although trusted systems offer
relatively few policy choices, they require substantial
administration as a result of labels on each system
element.

Well-designed systems will minimize the scope and
complexity in order to avoid any administration diffi-
culty. To understand the impact of both poor scoping and
high complexity, we consider the BSD securelevel facility.
Securelevel is based on a simple notion of scope: as the
securelevel is raised, privileges available in the system are
reduced to limit the effect of compromise. As the system
evolved, however, securelevel became a catch-all for a
wide variety of policy controls, resulting in hundreds of
poorly documented control points being affected by a
single variable. Securelevel offers poor scoping by virtue
of providing an inconsistent model of protection that
cannot easily be applied as a tool to accomplish specific
goals. It offers high complexity as a result of the many
elements of their behavior.

It is important when designing separation facilities for
operating systems to consider the total scope and abilities
of the control points, as well as the ability of the human
mind to comprehend their combined effect.

SEPARATION CASE STUDY: FREEBSD JAIL

The FreeBSD operating system is a widely used, produc-
tion-quality operating system derived from BSD, devel-
oped at the University of California, Berkeley. In the ISP
(Internet service provider) environment, FreeBSD finds
primary use as a scalable hosting platform. The jail facil-

rants: feedback@acmqueue.com

http://www.nsa.gov/selinux/
http://www.nsa.gov/selinux/

ity provides a lightweight partitioning system, forming
the basis for a variety of virtual server environments—and
presents an interesting example of a separation scheme
introduced into an open source operating system.

In 1999 we added a partitioning facility to FreeBSD
called jail(2).? It reuses the chroot(2) implementation,
but prevents well-documented means to escape chroot
confinement. Jail offers semi-permeable partitioning of
the file system, process, and networking namespaces, and
removes all super-user privileges that would affect objects
not entirely inside the jail. In a Web-hosting environ-
ment, this is functionally similar to a full partitioning
solution such as VMware, but it selectively abandons
both the costs and benefits of complete flexibility—result-
ing in significantly lower overhead and performance
impact.

Soon after jail(2) was made available, users of Free-
BSD started to find novel uses for jails, many of which
exploited the semi-permeable nature of the partitioning.
Jail permits an administrator outside of the jail to inspect
its full contents. If a service in the jail is compromised,
the activities of the attacker will be constrained to the
jail, but also will be fully visible to the administrator,
at minimal risk to the administrator. This model offers
substantially enhanced monitoring over dedicated
hardware, or even fully virtual machines, that offer little
reliable insight into their operation once compromised.
Constraints on direct access to hardware, the kernel, and
administrative functions greatly constrain the attacker in
employing the normal suite of “rootkit” modifications
that would normally prevent proper monitoring. Semi-
permeable protections do, however, come with increased
risk if information or control can flow out of the sandbox
because of an administrator mistake.

HYBRID SECURITY AND SEPARATION MODELS

Hybrid separation models combine elements of each

of the approaches that we discussed earlier to create

a separation offering the correct balance of security,
performance, cost, and complexity for the consumer.
The FreeBSD Jail approach adopts a variety of elements—
including the Unix process and access control model,
namespace subsetting based on the chroot(2) facility, and
elements of the virtual machine approach—to provide

a high-performance virtual server environment. It also,
however, adopts a pragmatic approach to combining
these components at a low cost. The jail model substi-
tutes namespace limits for the labeling of traditional
strong security approaches, resulting in a simple imple-
mentation that meets the needs of a specific audience.

more queue: www.acmqueue.com

SOFTWARE REUSE

Complete virtual machine environments can require a
substantial investment in new software to provide proper
emulation, especially for complex architectures such as
i386. The complete separation provided between guest
environments requires running many instances of the
operating system. Hybrid forms of partitioning can offer
both reduced investment in software when reusing exist-
ing software extensively, as well as reduced investment
in hardware when reducing redundant instances. The jail
facility reuses a single kernel for all jails and takes advan-
tage of existing operating system features to construct its
protection policy—including FreeBSD’s notion of privi-
lege, file-system namespaces, and existing virtualization
in the network stack.?

CODE COMPLEXITY

Software reuse as found in jail, or software modularity
and object orientation as found in trusted operating sys-
tems, requires the existing software system to be modular
and extensible. Code that has been built from the ground
up as an object-oriented system lends itself to virtualiza-
tion, because virtualization frequently consists simply of
instantiating multiple instances of the object. Although
the file system lends itself to subsetting and virtualiza-
tion in FreeBSD, the network stack offered a much more

‘}‘_‘- \ -

Y

Simply providing the technical means
to accomplish separation
s insufficient to produce a usable system,

difficult target. Work to introduce virtualization and
subsetting of the stack required a substantial investment
of developer time to eliminate the use of global variables
and data structures that prevented multiple instantia-
tion—and to define mechanisms by which the instances
could interact. Building from scratch with multiple
instantiation in mind simplifies this task dramatically.

CAPABILITIES AND NAMING RIGHTS

The “capabilities” approach performs an access check
upon first access, and then provides a reference to an
object based on that check, which may be used indefi-

QUEUE July/August 2004 47

Virtual

wn
D
@)
o A
L | Machines

Building Systems

to be

Securely

nitely in the future. A widely used example of the capabil-
ity model is the Unix file descriptor. This permits the
continued use of a file-system object following an initial
lookup and access check. The model emphasizes perfor-
mance and simpler application error handling—at the
cost of revocation—and relies on the safety of local and
global naming schemes.

Controlling access to system objects based on
namespace is a related approach. By preventing a process
from naming an object through namespace thinning, the
system can prevent access to the object. Using policy to
provide namespace limits can be a powerful mechanism
for controlling access; it offers a relatively simple imple-
mentation and user-comprehensible behavior. In the
world of Unix, the classic namespace limitation occurs via
chroot(), which limits access to a subset of the namespace,
thus preventing access to any objects that cannot be
named.

Combining capabilities and namespace management
avoids extensive explicit access control infrastructure,
especially when namespace subsetting is facilitated by
namespace structure—permitting a specific subject to see
a masked view of the world. As the capability model dic-
tates that operations may be performed only on an object
that can be named, the namespace approach can be used
to provide strong limits on object access.

In the JVM, type safety implements a simple capability
scheme, in which executing code may name only those
objects that it has been granted the right to access using
a reference. All code executing in the virtual machine is
loaded by a ClassLoader instance, which performs explicit
access-control checks before granting a reference to a pre-
viously unreferenced class, combining explicit mandatory
or discretionary access control with a capability scheme.

HIERARCHICAL NAMESPACES: SUBSETTING

AND PROTECTIONS

Software systems frequently make use of hierarchical
namespaces to organize information. Examples include
file systems, MIBs (management information bases),

48 |uly/August 2004 QUEUE

and DNS (domain name system). Hierarchies are also a
valuable tool for introducing separation using namespace
subsetting, in which subjects in the system perform
lookups in the namespace relative to a specific root in
the namespace. In the jail model, file-system namespace
subsetting using chroot(2) permits object naming to be
constrained, a technique that may be applied easily in
other systems with hierarchical namespaces.

Hierarchical namespaces also improve efficiency by
permitting protections to be enforced recursively so that
“container objects” protect objects placed in them. The
canonical example is the “private” directory that helps
users apply protections by simplifying the common-case
act of protection to a namespace operation.

Hierarchical namespaces support other security
models as well—including discretionary and manda-
tory protections—as they facilitate endowing sections
of the namespace itself with trust. In a flat namespace,
protections on the namespace are frequently poorly or
inflexibly defined, permitting races to occur in establish-
ing a service or object by name, or requiring an explicit
allocation and the use of privilege to establish new names
in the namespace.

The notion of a controlled and hierarchical namespace
is particularly valuable in the JRE, in which the class
namespace not only organizes the class hierarchy, but
also may assist in determining policy for executing code
loaded from parts of the namespace.

REVOCATION

A critical issue in security systems relates to the revo-
cation of access to objects. Once access has been
granted—and the security policy is modified to revoke
this access—to what extent must the system identify and
remove capabilities representing that right? In a strict par-
tition scheme, in which communication between subjects
(virtual machines) occurs only through a constrained set
of interfaces, revocation will play little or no role. For
labeled security systems, however, the issue of revocation
is more important with discretionary policies such as
Unix permissions and other permeable or hybrid security
schemes.

For MLS or Unix discretionary protections, this issue
is complicated by the cost of revocation. It’s easy to block
fresh access to an object by denying the granting of addi-
tional capabilities to the object. Existing capabilities may
be scattered throughout the system, however, sometimes
in ways that involve complex subsystem interaction.

In such environments, the benefits of revocation will
frequently be outweighed by the performance and imple-

rants: feedback@acmqueue.com

mentation costs of bookkeeping and revocation, and will
be omitted from the system in the name of expediency.

In the jail system, revocation occurs only during
startup of the jail when a process must transition from
the host environment to the jail environment—and may
hold existing capabilities referring to objects outside the
jail, which might be used to attack the jail containment.
This circumstance is generally handled through the care-
ful authoring of jail management tools to release capabili-
ties prior to launching any untrusted code. This process
has risks, however, and presents a challenge when any
system requiring revocation must be addressed.

Similar challenges are faced by Unix multi-user secu-
rity in which the notion of a user is defined purely in
user-space libraries and applications (whereas the notion
of a credential used for access control is defined in the
kernel). Removing the user from the user database is
insufficient to revoke the privileges of existing processes
running on behalf of the user, requiring more expensive
and failure-prone approaches to killing off user processes,
deleting files, and removing services that they own.

INFORMATION FLOW

The specific security concerns to be addressed with
partitioning systems (integrity, confidentiality, and avail-
ability) may often be reduced to concerns about the flow
of data and control. Separation schemes address this dif-
ferently: hard information flow controls implemented by
the mandatory Biba and MLS policies do this explicitly,
whereas virtual system tools do so implicitly. By under-
standing information flow as a specific concern, systems
can make informed trade-offs. Systems might tolerate
leakage of configuration information as long as it remains
immutable, but they might not tolerate the unauthorized
flow of confidential data. Techniques such as namespace
subsetting provide powerful controls over the flow of
information by placing efficiently expressed bounds on
information access.

AVOID THE HARD PROBLEMS

Despite careful consideration and a broad set of tools
for separation, there will occasionally be systems that
simply do not lend themselves to strong separation
without extensive virtualization. One such system is
System V IPC, which uses flat namespaces combined
with discretionary access controls. Protections on indi-
vidual IPC objects are well understood and can gener-
ally be extended to provide mandatory protection. The
namespace itself, however, poses a substantial challenge
as it is nonhierarchical, and controls on the namespace

more queue: www.acmqueue.com

are difficult to introduce while maintaining flexibility
and safety. Virtualization of the namespace would involve
complex modifications to the implementation and man-
agement tools.

In the jail system on FreeBSD, we opted simply to
disable access to the IPC primitives to avoid the cost of
introducing new namespaces for each system partition,
while avoiding the risks of providing no controls. For the
application environments targeted in the jail work, this
has held up remarkably well, although we expect that it
will be necessary to address this issue in the future. Avoid-
ing hard problems to address a specific environment can
be a powerful approach for introducing effective sepa-
ration. A similar trade-off is made for administrative inter-
faces through jail, as system subsets frequently do not
have to have the full capabilities of the total system.

RESOURCE SHARING AND SCHEDULING

One of the most difficult tasks in introducing separa-
tion is resource allocation and scheduling. In separated
environments, resources come from a common pool. For
operating systems, these resources typically consist of
concrete objects or services such as CPU time, memory,
network bandwidth, and disk storage. Less concrete
resources such as latency to schedule services and other
notions of fairness may be important in some environ-
ments. On most Unix systems, the primary model is
timesharing. Resources should be allocated to balance
concerns of throughput and response time based on the
job and the expectation of resource contention. On other
systems, the trade-offs may look different—ranging from
cooperative multitasking to hard realtime systems that
perform careful resource measurement and allocation to
prevent overcommits.

The balancing act is complicated by implementation
complexity. The control of resource allocation requires
bookkeeping and enforcement. Both can become difficult
to provide in more tightly integrated environments,
where resources may be referenced by a changing set of
separated components. In virtual environments permit-
ting files to be shared among multiple sandboxes, identi-
fying which sandbox to “bill” for the cost of the file may
be difficult. Likewise, in the JVM, allocated memory may
flow between security domains.

ADMINISTRATIVE COMPLEXITY

Administrative complexity is a critical consideration

in the design of any system in which security will be
important. Experience suggests that systems that are hard
to manage securely won’t be used correctly—or at all.

QUEUE July/August 2004 49

Virtual

wn
D
@)
o A
L | Machines

Building Systems

to be

Securely

Whereas some security systems, such as trusted operat-
ing-system access-control policies, are inherently complex
because of the desired security results, identifying the
right trade-off will generally be a question of minimal-
ism: what is the simplest security solution that meets the
requirements of the user?

Specific administrative complexity goals include the
following:
e Avoid the costs of administration increasing linearly
(or worse) with the number of objects being protected.
Security policies should require more administration
only as the goals of the policy become more complex.
Avoid attributes managed by users, as each configura-
tion setting or attribute offers the opportunity for user
error, which must be minimized.
Permit security policies to be expressed in the language
of security goals, rather than in fine-grained primitives
of the implementation. Some systems (most frequently,
firewalls) require an expert knowledge of the implemen-
tation of the system—and make it difficult to convert
policy requirements into practice.
Build the system so that it’s easy to determine if the
protections are working correctly, and so that the
implications of policy are clear and testable. The more
elements that must be administered, the harder it may
be to audit those settings and determine the overall
system behavior.
Avoid providing tunable resource limits instead of
resource allocation policies as administrators will often
be unable to select bounds in an informed manner.
Also, default bounds and tunable bounds will rapidly
become stale as hardware and application platforms
evolve—potentially leading to damaging behavior.

HOW TO APPROACH NEW SYSTEMS

Throughout this article, we have discussed trade-offs in
system design that facilitate (or impede) introducing
separation efficiently and securely. In the end, the most
important lesson when designing and implementing new
systems is that this consideration of trade-offs must be

50 July/August 2004 QUEUE

explicit.

You can take the following concrete steps to prepare a
system for use in shared environments, regardless of the
security or separation model eventually adopted:

1. Object-oriented implementation works. The sim-
plest systems to virtualize are ones in which the state of
the system is encapsulated in a class that can be instanti-
ated many times with little additional effort.

2. Avoid incestuousness in the implementation and
adopt component-oriented design. By accomplishing
separation in the implementation of different software
components, you have increased leeway to adopt differ-
ent separation approaches for the components, increasing
flexibility. If a subsystem proves unnecessary in a particu-
lar environment, it can be disabled easily, thus lowering
the workload.

3. Think about namespaces early. Effective use of
hierarchical and protected namespaces permits trust to
be placed in the namespace, and for techniques such as
namespace subsetting and thinning to accomplish separa-
tion at a low cost.

4. Minimize the need for attribute and policy manage-
ment by providing primitives for which policy can be
expressed easily and in broad terms. The more fine-
grained control the primitives permit, the more aspects of
the primitives may require control in the future.

When introducing separation and protection, there
are strong arguments for adopting a hybrid design
that includes elements of many different separation
approaches. This will frequently allow avoiding 90 per-
cent of the costs while accomplishing 90 percent of the
benefits for a specific environment:
¢ Avoid hard resource allocation requirements as they

require extensive bookkeeping and are not always
needed. This also improves scalability by increasing the
level of resource sharing.

e Use lightweight namespace-based approaches to protec-
tion. They are cheap and easy to implement, and make
sense to administrators.

¢ Avoid requiring extensive administration and manage-
ment; specifically avoid approaches where the number
of security labels or access control lists scales poorly.
Allow users to make an explicit trade-off between secu-
rity complexity and administrative complexity, rather
than system utilization and administrative complexity.

COMPATIBILITY IS KEY

Attempts to introduce separation into existing systems
almost always run up against a key concern: compatibility
with the existing system. In 2000, Rob Pike gave a pro-

rants: feedback@acmqueue.com

vocative talk about the state of operating-system research
as a field in decline:*

“To be a viable computer system, one must honor

a huge list of large, and often changing, standards:

TCP/IP, HTTP, HTML, XML, Corba, Unicode, Posix,

NFS, SMB, MIME, POP, IMAPD, X, ...

“A huge amount of work, but if you don’t honor
the standards, you're marginalized.
“Estimate that 90-95 percent of the work in Plan

9 was directly or indirectly to honor externally

imposed standards.”

This is compounded by ad hoc, de facto, and design-
by-committee interfaces that frequently prevent the
integration of security features by precluding them.
Imperfect partitioning offers some relief in this area, as it
allows processes to be treated differently in certain aspects
without impeding their interaction with other processes.

Sequent and Pyramid pioneered “dual-universe”

Unix, which emulated both major variants of the Unix
operating system on a process-by-process basis. FreeBSD
follows in this tradition with the “Linux-o-lator,” which
is able to execute binary programs compiled for the Linux
operating system—providing these processes with the
environment of a real Linux system while appearing to
be a native FreeBSD process. Systems such as Carnegie
Mellon University’s Mach (http://www-2.cs.cmu.edu/afs/
cs/project/mach/public/www/mach.html) and later IBM’s
K42 (http://www.research.ibm.com/K42/) demonstrate
that it’s quite feasible to redesign the internals of an oper-
ating system while maintaining an application compat-
ibility layer that meets most requirements.

CONCLUSION

Effective separation remains critical to the deployment

of shared computing environments, driven by a desire

to increase communication and lower investment in
hardware. We have explored common implementations
of separation, ranging from complete virtual machines to
trusted operating systems, all tied together by their goals
of providing for the sharing of hardware by mutually
untrusting parties. By combining the diverse supporting
technologies for separation, we have illustrated the use of
hybrid approaches that offer many of the benefits of each
underlying primitive—but with far less implementation
cost and complexity.

Not surprisingly, tightly integrated separation tech-
nologies rely on consistent and clean implementation of
services. Systems that are built with protection in mind—
even if not the protection of eventual interest—will
generally be easier to modify to add new protections. The

more queue: www.acmqueue.com

mantras of careful software design, including modularity,
object orientation, and intentional design, each support
the integration of advanced security techniques and are
often the best means by which to prepare a system for
new security services. Since systems are inevitably used in
environments that require communication and resource
sharing, regardless of the expectations of the software
developer, planning for security from inception is critical
to allowing the system to be used safely. Q

REFERENCES

1. Hansen, P. B. RC 4000 Software: Multiprogramming
System. RCSL No. 55-D140, Regnecentralen, Copenha-
gen, Denmark, 1969.

2. Kamp, P-H., and Watson, R. Jails: Defining the Omnip-
otent Root. Sane 2000, Maastricht, The Netherlands.

3. See Reference 2.

4. Pike, R. System Software Research is Irrelevant. Bell
Labs, Lucent Technologies, 2000; http://cm.bell-
labs.com/cm/cs/who/rob/utah2000.pdf.

feedback@acmqueue.com or www.acmqueue.com/forums

POUL-HENNING KAMP (phk@FreeBSD.org) is one of the
primary developers of the FreeBSD operating system, which
he has worked on from the very beginning. He is widely
unknown for his MD5-based password scrambler, which
protects the passwords on Cisco routers, Juniper routers, and
Linux and BSD systems. Some people have noticed that he
wrote a memory allocator, a device file system, and a disk
encryption method that is actually usable. Kamp lives in
Denmark with his wife, his son, his daughter, about a dozen
FreeBSD computers, and one of the world’s most precise
NTP (Network Time Protocol) clocks. He makes a living as an
independent contractor doing all sorts of stuff with comput-
ers and networks.

ROBERT WATSON is a research scientist and DARPA
principal investigator in the Host Intrusion Protection (HIP)
Research Group at McAfee Research. He has led a variety of
research and development projects relating to network and
operating system security, ranging from product develop-
ment to research into the security implications of active net-
working. His other research interests include access control,
audit, tamper-resistant hardware, distributed file systems,
network stack performance optimization and hardening,
trusted operating systems, and windowing system security.
Watson is a FreeBSD Core Team developer and founder of
the TrustedBSD Project.

© 2004 ACM 1542-7730/04/0700 $5.00

QUEUE July/August 2004 51

http://www-2.cs.cmu.edu/afs/cs/project/mach/public/www/mach.html
http://www-2.cs.cmu.edu/afs/cs/project/mach/public/www/mach.html
http://www.research.ibm.com/K42/
http://cm.bell-labs.com/cm/cs/who/rob/utah2000.pdf
http://cm.bell-labs.com/cm/cs/who/rob/utah2000.pdf
mailto:feedback@acmqueue.com
http://www.acmqueue.com/forums
mailto:phk@FreeBSD.org

