
Abstract

This paper presents the design and implementation
of the new Active Memory Manager Unit (AMMU)
designed to be embedded into System-on-Chip CPUs. The
unit is implemented using VHDL in Field Programmable
Gate Array (FPGA) technology. The modified buddy sys-
tem is used as the hardware algorithm for memory man-
agement. The RISC compatible open-source CPU is
deployed with the memory management unit to demon-
strate the feasibility of implementation. The results indi-
cate that the proposed AMMU achieves high performance
in memory allocation and deallocation for software sys-
tems.

1. Introduction

Intellectual Property (IP) core-based hardware-software

systems have emerged as a result of the new System-on-

Chip (SoC) design paradigm. SoC is generally defined as

an integration of complex functional modules or cores,

where each core is complex enough to be a complete

Integrated Circuit (IC) in itself. In order for these IP cores

to be as reusable as possible, the cores must be soft cores in

a synthesizable Hardware Description Language (HDL)

form so that they can be targeted to different semiconductor

process technology.

The traditional approach to system design involves

combining a microprocessor and other devices on a single

circuit board. Today advanced submicron technologies

enable a complete design on a single chip. Increasing the

density and speed of Field Programmable Gate Arrays

(FPGAs) leads to adoption of IP core-based System-on-

Chip (SoC) designs. Since processors are common in

system design, the result of these advances is the ability to

embed them with other functions into a single device. 

Reduced Instruction Set Computer (RISC) instruction

sets have gradually moved to Complex Instruction-Set

Computer (CISC) instruction sets during the 1980s. After

two decades and the invention of SoC processors, RISC

machines are gaining more attention due to the fact that

only 25% of the instructions of a complex instruction set

are frequently used (about 95% of the time) [6]. A RISC

instruction set typically contains less than 100 instructions

with fixed-length format such as 32 bits. Only three to five

addressing modes are used. Most instructions are register-

based. Memory access is done using load/store

instructions. Because of the reduction in instruction-set

complexity, RISCs are implementable on a single chip. For

example, Sun Microsystems has released PicoJava, a stack-

based 32-bit microprocessor softcore which executes Java

bytecode instructions [2]. Xilinx Inc. and IBM announced

IBM’s PowerPC hard core on Xilinx’s Virtex-II FPGA [1].

Altera Excalibur solution provides embedded processor

programmable logic to the design community. The

Excalibur softcore solution is a configurable RISC

processor called Nios. Nios offers high flexibility and

scalability and low cost. The Excalibur hardcore solution is

an ARM-based processor from Advanced RISC Machines

(ARM) Limited and Million Instructions Per Second

(MIPS) - based from MIPS Technologies, Inc. [3].

The SoC approach encourages design engineers to adopt

existing IP cores. This promotes reuse. A modern IP core

library typically includes features for specific applications

such as communication ports, image processing units, and

Floating Point Units (FPUs). Nowadays, object-oriented

software applications are getting dynamic memory

intensive[9]. This creates a need for a high-performance

memory allocator and deallocator as a core extension. For

example, the Active Memory Management Unit (AMMU)

provides high performance in memory management [7].

AMMU uses hardware accelerated dynamic memory

management algorithm based on the modified buddy

system [4]. To study the feasibility of such a processor

extension, we developed a detailed design of the Active

Memory Management Unit.

In reference [7], the memory allocation scheme used in

seven applications from the SPECjvm98 benchmark suite

was analyzed with the results given in Table 1. This

reference is also reported that over 98% of the objects were

smaller than 4,096 bytes and over 90% of the allocation

calls were completed within 1000 cycles. For example, 92

S. Kagan Agun and Morris Chang

Computer Science Department, Illinois Institute of Technology, agunsal@iit.edu

Reconfigurable Fast Memory Management System Design for Application 

Specific Processors

Proceedings of the IEEE Computer Society Annual Symposium on VLSI (ISVLSI’03) 
0-7695-1904-0/03 $17.00 © 2003 IEEE 



percent of the memory allocations in the Compress

application takes an average of 410 cycles to allocate less

than 4 Kilobytes of memory. While memory allocation is

taking 410 ns on 1 GHz system for Compress, it takes an

average of 139 ns in RISC1000 + AMMU(256)

implemented on a Xilinx FPGA (VIRTEXE

V300EFG456). 

This paper presents our design experience in combining

the proposed memory management unit into a 32-bit RISC

compatible microprocessor, OpenRISC 1000 [5].

OpenRISC 1000 is a RISC architecture written in

synthesizable Very High Speed Integrated Circuit

(VHSIC) Hardware Description Language (VHDL).

OpenRISC 1000, with source code available in the public

domain, can be targeted to a wide range of platforms. The

Xilinx Foundation 2.1i tool is used to design each

component. 

The remainder of this paper is organized as follows.

Section 2 introduces the modified buddy system for

memory management. Section 3 describes the Active

Memory Management Unit implementation and Section 4

describes the OpenRISC 1000 processor. Section 5

evaluates the result of the implementation of the design.

The last section presents the conclusions of this paper. 

2. Memory allocation based on the buddy sys-
tem

When a memory block of a given size is to be allocated,

the buddy system locates a block whose size is a power of

two that is large enough to fullfill the request. The block is

split in half as many times as possible, until it reaches the

block size needed to hold the requested size. When a block

is split, its two halves are known as buddies. At the time a

block is freed if  its buddy is also free, the buddy system

naturally coalesces the blocks, making available a block of

larger size. 

 Many real-time programmers prefer binary buddy

allocation because it is easier to implement and more

predictable. A separate free list is used for each possible

object size (power of two). Allocation of a new object starts

from the smallest free segment list and continues until it

finds segments large enough to satisfy the allocation

request. If  a list is empty, the algorithm allocates a larger

segment from one of the upper layers and divides it into

buddies and updates the  lists. When an object is freed, the

algorithm attempts to coalesce with its buddy and update

the lists. 

Binary buddy systems always allocate memory in sizes

equal to a power of 2, so they may leave unused space. This

is known as internal fragmentation. In the worst case,

memory utilization is poor if it is necessary to allocate

memory in different sizes. In practice, internal

fragmentation imposes a higher memory overhead. 

On the other hand, a bit-map approach can easily form

the base of a binary tree and it can be efficiently maintained

in hardware. Allocation and deallocation are done using a

hardware-maintained binary tree through combinational

logic. The hardware approach eliminates internal

fragmentation by allocating/deallocating memory of the

exact sizes required. This approach is known as the

modified buddy system. Such bit-manipulation is quite

easy in hardware realization. 

3. Implementation of the AMMU

3.1. Locating free blocks

In this approach, the or-gate tree determines whether

there are enough free cells of the size requested  to allocate.

Anding output of or gates at the same level gives the

availability of the  size of blocks requested. If one of the

nodes that shows the availability of requested sizes at the

same level has a zero value, which shows the availability of

the requested size,  the "and" results of this level will be

zero. For example, at level 2, each node, b and c, represents

22 cells and anding b and c produces the availability of free

cells of this size. Figure 1 demonstrates free cell

availability.

Figure 1. Building the or-gate tree

On the other hand, a large free memory block can be

shared by the buddies without making a large enough block

available to the system. This is known as a blind spot. For

example, the bit array “11011001” cannot report the

availability of any blocks of size 2  in the or-gate tree. This

Table 1: Malloc latencies of objects with size less than 

4,096 bytes [7]

Application Total Allocated 
Objects

Ave. Minimum 
latency (cycles)

% of allocation less 
than 1000 cycles

Compress 11,624 410 92.25

DB 3,215,782 407 98.99

Jack 6,871,646 387 94.46

Javac 5,943,930 386 94.91

Jess 7,939,856 388 90.20

MpegAudio 15,182 413 93.83
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blind spot limitation can be eliminated by shifting the bit

array left or right at least 1 and no more than n-1 times

where n is the size of the bit array.

3.2. Finding the first zero address

A second binary tree is constructed from and gates to

determine the first zero address. This and-gate tree

propagates the information upward in the tree. Searching

the zero nodes from root to leaves gives the first zero

address e.g. nodes 1, 2, 5, and 11 in Figure 2a. Branching

to the right is ‘0’ and to the left is ‘1’ in the address

determination. The root node of the tree represents the most

significant bit and the lowest leaves the least significant

bits in the address. In Figure 2a, the address is “010” = ‘0’

(from node 1 to 2), ‘1’ (from node 2 to 5), and ‘0’ (from

node 5 to 11). 

Figure 2. Building the and-gate tree

To find the first address of the free cell(s) in the desired

level, the or-gate results of this level are transferred to the

and-gate tree which passes the availability of cell(s) at the

required level upward toward the root. Suppose the and-

gate tree determines the address of the first zero at level  l

of the or- gate tree. However, in the search for free cells, the

algorithm goes back to the parent node to check the next

leaf node, therefore the and-gate tree needs a backtracking

algorithm to calculate the exact address of the free cell(s).

By propagating the left child of each and-node to the parent

node, this need is avoided and the target address is formed

via these propagated bits (Figure 2b). But this address is a

relative address which points to the beginning of the 2level

size cells. Therefore this address should be multiplied by

2level or simply shifted to the right by  level bits.

3.3. Designing locator: or-and-gate tree

In the algorithm proposed above, the nodes of the

desired level of the or-gate tree are fed into the and-gate

tree which determines the first zero space of this level. This

approach requires bit-map transfer through combinational

logic. The or-gate values of level(l) feed the combinational

logic. The output of the combinational logic is the input of

the and-gate tree. Combining the or-gate and the and-gate

into the or-and gate tree eliminates this overhead and

reduces the complexity of the and-gate tree.

Each node in the or-and-gate tree consists of an or gate,

an and gate and a multiplexor. The multiplexor transfers the

or-gate or the and-gate value to the and-gate tree above.

This transfer happens only for the requested size. The

requested size determines the allocation level. The

propagation bit, the P_bit, provides the back-tracking

information to the multiplexor that finds the first available

free space address. Anding of the or-gate values of each

level shows the availability of any size in this level. Figure

3(a) demonstrates the or-and-gate node and (b) VHDL

code. Figure 4 shows the complete or-and-gate tree for

block size 8. 

Figure 3. or-and-gate node: locator node.  

Figure 4. Complete or-and-gate tree for block size 8

3.4. Marking Free Space 

When the blocks are located by the or-gate tree and the

and-gate tree, the number of bits requested for allocation

need to be marked as occupied. Thus we need an algorithm

that it is feasible to implement in hardware to mark the

corresponding bits. The free cell locator provides the

starting address of these cells. We need to mark logic

blocks of the requested size from the starting address. The

basic implementation of marking the bit array is described

in Figure 5. The size value is transferred into the
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BEGIN 

  out_or <= or_a OR or_b;

   IF (level = '1') THEN

      out_and <= or_a OR or_b;

   ELSE
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   END IF;
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consequent bit array, then shifted by the starting address.

This shifted bit array is “or”ed with the actual bit array to

mark the requested bits.

The marking algorithm above is very simple and easy to

implement in terms of a behavioral design. On the other

hand, it is not efficient due to nondeterministic design size.

This approach takes more space in the Configurable

Computing Machine (Table 4). Therefore, a much smaller

version of the marking algorithm is needed. Considering

the or-gate tree and the and-gate tree, marking can be

achieved through signal propagation. Marking signals will

be directed by size and starting address inputs, so only

corresponding bits will receive the marking signal. Unlike

the and-gate tree, the bit-marker propagates signals from

the root of the tree to the leaves.

 Initially we need a route signal, which is set to 1 by

default. This signal travels from the top of the tree to the

bottom and routes starting address bits at each level. A

node that receives a route signal, considers whether to mark

one of its subnodes.  The starting address bits at this level

determine which nodes will  receive the  mark signal. Other

nodes will  receive a route signal in the case of potential

partial allocation in this subtree. In this example node 4

receives mark signal and propagates it to left and right sub

nodes and so on. Once a mark signal is activated in one

direction, a route signal is routed in the other direction.

Figure 5 shows the marking operations. The routing signals

of the marking nodes in the last row are not shown in order

to simplify the diagram.

The advantage of using the buddy system is fast cell

allocation. This approach is using significantly more cells

than other strategies at the space locating stage. However

the final marking can mark the exact size. The modified

buddy system does not always yield better cell utilization.

Due to external fragmentation and blind spots, there would

be cell wastes among the allocated cells.

Figure 5. Marking Tree

The implementation of the marking tree is based on a

one-bit marking node. Managing  the signal distribution

among the nodes is the most serious design challenge. This

is achieved through careful node and signal labelling. In

each node the sending signal is labelled with the target

node label. For example, if node 1 is sending signals to

nodes 3 and 4, the respective outgoing signals are labelled

3 and 4. The Out signals, mark and route, consist of two

bits, the most significant bit is for the right node, the least

significant bit is for the left node. In signals are labelled

with the receiving node label, so node 1 receives mark

signal [1] and route signal [1]. Labelling nodes starting

from 0 and from left to  right gives an advantage in

determining starting and ending node numbers in each row.

3.5. Round-up System

This system rounds up a given n-bit binary data item to

the closest higher value of the form 2N. The highest ‘1’ of

the input sets the feedback to ‘1’. The shift signal indicates

whether there are ones in lower significant bits of the input

after the highest significant one. The shift signal will set the

next highest bit to one to round up the input to 2N. The

decision slice is determined by the first bit equal to ‘1’ in

the imput with feedback = ‘0’. Once the condition is met,

this slice generates the feedback and the rest of the slices

pass this feedback signal to the next ones. Figure 6. shows

the n-bit round-up system.

Figure 6. n-bit round-up system

3.6. Final Design: AMMU

The final step is forming the Active Memory

Management Unit (AMMU). Every component of AMMU

is the result of a parameterized design that can be

instantiated to any precision. These components can be

reused regardless of the precision. The VHDL generate

and generic statements can instantiate small components

(e.g. 1-bit round-up) to a n-bit round-up system in an

iterative fashion. Such an approach results in a reusable

design. 

A configuration file is used to keep precision parameters

in order to instantiate the AMMU. A clock is also added to

the final design to store the allocation bit map in a local

register. Figure 7 shows the AMMU final design. The

designs of 256 and 512 block allocators are synthesized

with speed optimization by the XILINX Foundation series

2.1i tool. Table 2 shows the synthesize results of AMMU

for two different sizes. The 512 block allocator can work at

the speed of 7.1 MHz but it takes 21% of the total chip area.
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Figure 7. The design of the n-bit AMMU  

*VIRTEXE V300EFG456 speed -8 (optimized for speed)

4. Description of the OpenRISC Processor

OpenRISC 1000 architecture is the architecture of a

family of open source, synthesizable RISC architectures. It

is a 32-bit load and store RISC architecture designed for

speed and scalability. It also provides native bus interface

to communicate with compatible devices. Figure 8 shows

the OpenRISC architecture.

Figure 8. OpenRISC 1000 Architecture

The RISC design is synthesized for the Xilinx Virtex

target device for speed optimization. Table 1 shows the

area distribution of the design components. Due to its

reduced instruction set architecture, the processor takes

only 7% of the target device. This makes RISC based

processors valuable for SoC systems. 

*Xilinx Virtex V800HQ240-6 target device

Two instructions were added to the processor

instruction set to implement memory allocation and de-

allocation. These instructions are the Arithmetic Logic

Unit (ALU) like instructions. A mux is also added to

Integer Unit (IU) to select either the ALU or AMMU result.

An integer unit controller (iuctrl) generates the AMMU

select signal. Figure 9 demonstrates the ALU memory

instructions. 

Figure 9. ALU memory allocation instructions

5. Results of the AMMU Design Implementa-
tion

The design of the locator  and the behavioral and

structural designs of the marking tree were intended   to

implement free memory space allocation algorithm on a

Reconfigurable Computing Machine. The foundation

series 2.1i tool was used in the design process for target

device, XC4000E. Table 1 shows the result of three designs

in terms of the number of Configurable Logic Blocks

(CLBs), delays and Line of Code (LOC) of the VHDL

source code. Structural hardware implementation of the

Table 2: AMMU area and speed requirements*

AMMU(256) AMMU(512)

Number of Slices 987 (32%) 1,929 (62%)

Slice Flip Flops 256 512

LUT(4 input) 1,940 3,795

Gate Count 13,688 26,866

Max clock 

frequency (MHz)

14.308 11.286

Max net delay(ns) 7.944 11.092
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Table 3: AMMU components

Components Number of Func.
 Generators

Number of 
Registers

Fetcher 56 85

ALU 430 61

Regfile 0 64 + (64 DRAM)

iu 586 64 + (64 DRAM)

iuctrl 130 125

biu 65 66

RISC1000 837 649 + (64 DRAM)

0 x 3b         A       reserved                  Immediate

31               26 25      22 21              16  15                                                     0

0 x 2f         A          B                reserved     

31               26 25      22 21       18  17                                                            0

constant ALLOCI : std_logic_vector (5 downto 0) := "111010";

constant ALLOCR : std_logic_vector (5 downto 0) := "101111"; 

                                        
alloc rA, I     :      rA         alloc I

allocr rA, rB  :      rA        alloc rB
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optimized buddy system demonstrates high performance

for allocation of free memory space. 

* Xilinx 4000E-1BG225 (400 CLBs, 10K max logic gates)

The tree-search algorithm of the active memory

manager unit results in a slow clock rate. This will be the

main factor in determining the speed of the RISC

compatible processor. The 512-bit block addressable

memory manager unit is 6 times slower than the processor

(Table 5). Adding the AMMU to the processor core will

slow down all the pipeline instructions. The space

requirement of the AMMU is also high. The 512 block

memory allocation unit takes 3.2 times more space than the

RISC 1000 processor. 

*VIRTEXE V300EFG456 speed -8 (optimized for speed)

The 32-bit processor have 232 address space, a process

needs only a small portion of this address space for its

memory allocation and deallocation requests. Considering

4Kbyte memory blocks, the 1024 bit memory manager

maps 4 Mbyte address space per process. As a result,

memory intensive applications have the benefit of a

memory management unit despite the slow clock rate on

FPGAs. Implementation of memory management unit on

ASIC will eliminate the speed factor. So, the memory

allocation/deallocation instructions of the applications in

Table 1 will gain an average performance of 399 with

AMMU. 

One solution is to increase the overall performance is

embedding the smaller memory management unit by

dividing the main tree into sub-trees. For example the 512-

bit tree can be divided into four 128-bit sub-trees and one

4-bit top-tree. To complete the memory allocation and

deallocation these instructions may require a maximum 4

clock cycles. This also requires less space on the chip. 

Another approach is instead of having the AMMU

inside the core, it can be placed outside of the processor so

that it acts like an auxiliary memory. Allocation and

deallocation can be performed by load/store like

instructions without affecting processor performance.

6. Conclusion

Recent advances in software engineering, such as

Graphical User Interfaces (GUIs) and object-oriented

programming have caused today’s applications to become

dynamic memory intensive. These applications consume

up to one-third of program execution time in dynamic

storage management. This illustrates the need for a high-

performance memory allocator and deallocator.   

This paper presented a simple hardware design to

allocate and free memory blocks, saving considerable time

over the software approaches. Allocation and deallocation

can be preformed in constant time. The node-based tree

design approach provides an efficient and reusable design.

The Active Memory Management unit can be integrated

into System-on-Chip designs such as the processor and

coprocessor. Operating Systems may benefit from this

approach to the management of storage related operations.
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Table 4: Locator and Marker implementation results on 

XC4000E*

Component LOC
Size 
(bits)

Number of 
Logic Cell

Gate 
Count

Max Net 
Delay(ns)

Max 
Delay(ns)

Locator 
(Structural)

160 16 28 (%07) 310 6.5 41.2

32 58 (%14) 654 7.5 56.5

64 118 (%29) 1336 14.1 83.1

128 244 (%61) 2715 24.6 155.7

Marking 
(Structural)

64 16 22 (%05) 264 5.8 22.5

32 46 (%11) 552 11.5 26.6

64 94 (%23) 1128 14.3 29.3

128 190 (%49) 2280 11.9 41.8

Marking

(Behavioral)

30 16 88 (%22) 1301 13.6 34.6

32 194 (%48) 3136 22.9 44.1

64 417 (%104) 7238 -- --

128 -- -- -- --

Table 5: RISC and AMMU area and speed requirements*

RISC1000 RISC +AMMU(256) RISC+AMMU(512)

Number of Slices 657 (21%) 1746 (56%) 2,790 (90%)

Slice Flip Flop 616 873 1129

LUT (4 Input) 904 3,063 5,080

Gate Count 19,699 34,709 48,859

Max clock 
frequency (MHz)

68.395MHz 13.245MHz 10.076MHz

Max net delay(ns) 7.212 8.0885 11.210
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