Malloc Implementation

Due: May 2", 2007
(Grading will be in room 013, CSE Resource Center from 1 to 4 pm)

In this assignment, you will create your own version of malloc and free routines that
replace the standard-C library version. The program that will be used to test your routines
is available on the class website. The program spawns four tasks:

1.

initialize task (priority level 6) creates three additional tasks, 2 to perform
memory allocations and one to use the allocated information. After these three
tasks are created, initialize task terminates itself.

2. free task (priority level 7) uses and frees half of the total allocated nodes then

suspends itself for a short interval (currently set to 35 seconds). Note that when it
is run for the first time, it simply initializes the turn variable and then suspends
itself for 50 seconds.

malloc_taskl and malloc_task2 (priority level 8 and 9) allocate 12000 nodes each.
For each task, its main responsibility is to finish the allocation of nodes before

free_task wakes up. If this requirement is not satisfied, the program fails.

Y ou must make sure that your malloc routine will allow malloc_taskl and malloc_task2
to accomplish its responsibility in the given amount of time or shorter (50 seconds
initially and 35 seconds afterward). You must also make sure that your free does not
increase the execution time of free_task by more than 10% of the current execution time.
You can use alt timestamp_start() and alt timestamp_stop(), the same functions used in
your instruction extension assignment, to time the free_task function.

Steps:

1.

Your work must be performed on the Altera DE-2 board. Make sure that you can
get the provided image to work ASAP.

You can design your malloc and free using multiple tasks. However, the priority
of these tasks must not be higher (lower priority numbers) than the given tasks.
Also do not use priority 10. This means that your own tasks should start at priority
number 11 and beyond. You are allowed to optimize your routines to match the
allocation behaviors.

Modify malloc_taskl so that its priority changes between 8 and 10 each time it
runs. To change priority, you can use OSTaskChangePrio(). You must make sure
that the provided test program does not starve (i.e. free task tries to access nodes
when the number of alloc_nodel or number of alloc_node? is zero). This may
mean that you have to modify malloc task2 to prevent starvation. You should
change priority after or instead of the 80 ms delay in task 1. Do your routines
still use the same amount of time to meet the deadlines? If your answer is yes,
explain how your routine can accommodate such a change. If your answer is no,
modify your routines so that they would perform well in both scenarios.

Submission:

We will grade the assignment in room 20 on Wednesday May 2™. The grading time will
be from 1:00 to 4:00 pm. After the grading period, you must submit the following
programs through handin by 11:59 pm on the same day.
malloc_assignment.c and malloc_assignment modified.c (the modified version is
the one with priority changing of malloc_task1).
* Your malloc and free routines.
* Any header files that you have created to support this assignment.
* A short report answer the following questions:

o What are some of the differences between programming in MicroC/OS-II
and a typical desktop operating systems such as Windows or Linux (list at
least two differences).

o How much time you spend in this project?

o What happen when we change the priority of malloc taskl? How does it
affect the design of your malloc and free routines?

o What is the level of difficulty of this assignment (0 = very easy, 10 =
impossible to do)?

