
CSCE 496: Embedded Systems Design and Implementation
Homework 1

Due February 2nd, 2005

A stack memory is implemented using a standard RAM with a read port and a write port. The
stack can store bytes of input data (incoming messages) that would be written into the stack se-
quentially if the stack is not full. Only one message can be read (or pop) in a clock cycle. The
message read is the one that was written (or pushed) last into the stack among the messages cur-
rently stored.

The implementation of such stack typically employs one counter, pointing at the top of the stack
as in the Figure 1. The top counter contains the address of the first empty location in the stack. Af-
ter each pop or push operation, the top counter is decremented or incremented, respectively.
(Hint: You can perform a pop or a push operation from/to RAM at rising edges and increment/
decrement the top counter at falling edges).

In the Fig.1, there are eight entries in the stack. Thus, the counters need be only 3 bits long. How-
ever, if data is being written or pushed into the stack more often than it is being read out or pop,
the top counter that is being incremented in the modulo 8 fashion eventually points to location 0
again (although in this case this means that the stack is full; not empty). To avoid ambiguity we
can use a 4-bit counter, which will indicate that the stack is empty when the top pointer is 0000
and that it is full when the top pointer is 1000 (as seen in Fig. 1). When the stack is empty, the
empty output line is set and a read request would result in the error line being set. Similarly, when
the stack is full, the full output line is set and a write request would result in the error line being
set.

The Figure 2 presents the possible input and output signals of the stack. Please design this stack-
using a RAM with 8 bytes. This contains a data_in bus (8-bit wide), and a data_out bus (8-bit
wide), and eight control signals listed below:

1. rclock (input): A data is read from the stack at the positive edge of rclock when rreq is
asserted. .

2. wcolck (input): A data is written into the stack at the positive edge of wclock when
wreq is asserted.

3. wreq (Write Request; active high; input): Enables writing into stack when asserted.
4. rreq (Read Request; active high; input): Enables reading from stack when asserted.

STACK

data_in data_out

wclock
rclock
wreq
rreq
reset

full

empty

Fig. 1 Fig. 2

data
data
data
data
data
data
empty
empty

0

7

top = 0110

error

88

Due: See course web-page

5. full (output): Asserted (high) only when the stack is full.
6. empty (output): Asserted (high) only when the stack is empty.
7. reset (active high; input): It will clear data in the stack and reset all the top counter

when asserted (i.e. high).
8. error (output): Asserted (high) when error conditions occur.

You are asked to design this stack in VHDL with the LPM RAM component —lpm_ram_dq pro-
vided by Altera. The VHDL Component Declaration for lpm_ram_dq is as follows:

COMPONENT lpm_ram_dq
 GENERIC (LPM_WIDTH: POSITIVE;
 LPM_TYPE: STRING := L_RAM_DQ;
 LPM_WIDTHAD: POSITIVE;
 LPM_NUMWORDS: STRING := UNUSED;
 LPM_FILE: STRING := UNUSED;
 LPM_INDATA: STRING := REGISTERED;
 LPM_ADDRESS_CONTROL: STRING := REGISTERED;
 LPM_OUTDATA: STRING := REGISTERED);

PORT (data: IN STD_LOGIC_VECTOR(LPM_WIDTH-1 DOWNTO 0);
 address: IN STD_LOGIC_VECTOR(LPM_WIDTHAD-1 DOWNTO 0);
 we: IN STD_LOGIC := ‘1’;
 inclock: IN STD_LOGIC := ‘1’;
 outclock: IN STD_LOGIC := ‘1’;
 q: OUT STD_LOGIC_VECTOR(LPM_WIDTH-1 DOWNTO 0));
END COMPONENT;

Note: Please use the lpm_ram-dq with following parameters:
lpm_ram_dq
GENERIC MAP (LPM_WIDTH => myWidth,

LPM_WIDTHAD => myWidthAd,
LPM_ADDRESS_CONTROL => “UNREGISTERED”,
LPM_OUTDATA => “UNREGISTERED”)

PORT MAP (data => mydata_in,
address => myaddress,
we => mywe,
inclock => myinclock,
q => mydata_out); -- note: no outclock is needed in this case

--
-- The data will be written into memory at the rising edge of inclock.
-- The data will be read out from memory as soon as the address applied.

You also need to simulate your design to ensure correctness. Write a short report to be submitted
during lab time that clearly explains your test cases. The information should include the goal of
each test case, why are you choosing them, and expected output. You should have sufficient num-
ber of test cases to be sure that your design is correct.

In your report, also include the power estimation of your design when it is operated under five dif-
ferent clock periods (10 ns, 50 ns, 100 ns, 500 ns, and 1 us). Make sure that you set your end-time
to at least 10 us. This can be done through the assignments -> settings -> simulator within Quar-

tus.

HINT: Make sure that you thoroughly test the lpm_ram_dq to ensure that you COMPLETELY
understand the basic operation of the design (e.g. corresponding input/output signals, initializa-
tion parameters, etc.).

Submission Procedure

We will grade your design in the lab on that day. Please go to the lab early and have your design
compiled and simulated on one of the machines in room 20. The report will be submitted during
the grading period.

Acknowledgement

This problem was initially written by Dr. Morris Chang at Iowa State University. The initial ver-
sion was written as a FIFO queue problem.

